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Accurate phase diagrams of multicomponent plasmas are required for the modeling of dense stellar plasmas,
such as those found in the cores of white dwarf stars and the crusts of neutron stars. Those phase diagrams have
been computed using a variety of standard techniques, which suffer from physical and computational limitations.
Here we present an efficient and accurate method that overcomes the drawbacks of previously used approaches.
In particular, finite-size effects are avoided as each phase is calculated separately; the plasma electrons and
volume changes are explicitly taken into account; and arbitrary analytic fits to simulation data as well as particle
insertions are avoided. Furthermore, no simulations at “uninteresting” state conditions, i.e., away from the phase
coexistence curves, are required, which improves the efficiency of the technique. The method consists of an
adaptation of the so-called Gibbs-Duhem integration approach to electron-ion plasmas, where the coexistence
curve is determined by direct numerical integration of its underlying Clapeyron equation. The thermodynamics
properties of the coexisting phases are evaluated separately using Monte Carlo simulations in the isobaric
semigrand canonical ensemble (NPT�μ). We describe this Monte Carlo-based Clapeyron integration method,
including its basic physical and numerical principles, our extension to electron-ion plasmas, and our numerical
implementation. We illustrate its applicability and benefits with the calculation of the melting curve of dense
carbon-oxygen plasmas under conditions relevant for the cores of white dwarf stars and provide analytic fits to
implement this new melting curve in white dwarf models. While this work focuses on the liquid-solid phase
boundary of dense two-component plasmas, a wider range of physical systems and phase boundaries are within
the scope of the Clapeyron integration method, which had until now only been applied to simple model systems
of neutral particles.
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I. INTRODUCTION

When a plasma comprised of different ionic species crys-
tallizes, the newly formed solid generally has a different
composition than the coexisting liquid. This composition
change is characterized by a phase diagram. Accurate phase
diagrams of multicomponent plasmas are essential for the
study of dense astrophysical objects, and in particular for
white dwarf stars. The crystallization of their C-O interiors
leads to the formation of a solid core enriched in O [1–3]. The
separation of the C and O ions releases gravitational energy
that delays the cooling of white dwarf stars by � 1 Gyr [4–9],
with important implications for the use of white dwarfs as
cosmic clocks [10,11]. A similar phase separation process is
expected to occur for other minor chemical species in white
dwarf interiors (chiefly 22Ne and 56Fe) [12–14]. Phase dia-
grams of dense multicomponent plasmas are also needed for
the study of accreting neutron stars [15].

Over the few last decades, several methods have been
proposed and used to map the phase diagrams of dense as-
trophysical plasmas. They can roughly be classified into three
categories: density-functional methods [16,17], Monte Carlo-
based (MC) techniques [18–22], and molecular dynamics
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(MD) approaches [15,23–25]. Density-functional techniques,
which rely on analytical models of the free energies of the
relevant phases, are inherently more approximate than MC
and MD simulation techniques. MC-based methods generally
consist of constructing analytic fits to results from MC sim-
ulations in the canonical (NVT) ensemble in order to obtain
an analytical model for the Helmholtz free energies of the
coexisting phases. The free energies of the liquid and solid
are then compared to identify the location of the coexistence
curve. A major limitation of this approach is that the resulting
phase diagram is sensitive to the (somewhat arbitrary) choices
of analytic functions used to interpolate the MC data. This
can even affect the qualitative shape of the phase diagram.
For example, due to minute differences in their interpolation
functions for the internal energies of binary ionic mixtures
(BIMs), Ref. [19] concludes that the C-O phase diagram is
of the azeotrope shape, while Ref. [20] finds that it is spindle
shaped. This extreme sensitivity is due to the very small differ-
ences between the free energies of the liquid and solid phases
near the coexistence conditions, and highlights the need for
accurate “at-parameter” calculations.

Two-phase MD methods such as those used by the
Horowitz et al. group [15,23–25] have the advantage of not
requiring any interpolation. Typically, a liquid and a solid
phase are initially put in contact and then evolved in time
in the microcanonical or canonical ensemble. The particles
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diffuse through the liquid-solid interface and eventually a
state of equilibrium is reached, which allows us to pinpoint
the coexistence conditions that characterize the liquid-solid
transition. However, a practical drawback of MD approaches
is their steep computational cost. Because of this, the phase di-
agram can only be partially sampled, leading to rather coarse
coexistence curves (e.g., see Fig. 2 of Ref. [23]). This can
be a problem for astrophysical applications. For instance,
the coarse sampling of the melting curves of the C-O phase
diagram of Ref. [23] leads to sizable uncertainties on the
gravitational energy released by the O sedimentation process
in white dwarfs. Similarly, a fine sampling of phase diagrams
is required to precisely identify the location of interesting
features such as an azeotropic or eutectic point. In addition,
MD simulations with liquid-solid interfaces are subject to
detrimental finite-size effects. While these artifacts can in
principle be mitigated using a large enough number of par-
ticles, the required number of particles and the cost of the
corresponding simulations often prohibit detailed studies of
this type [23].

Previous approaches (both MC and MD based) commonly
assumed a constant volume during the phase transition. This
simplifies the problem: the electronic background does not
need to be treated explicitly as the electronic density remains
constant. Only the screening effect of the electrons on the bare
ion-ion interactions was usually included (using a Yukawa
potential instead of a Coulomb potential). But this simplifica-
tion is not strictly correct. Phase transitions occur at constant
pressure and are accompanied by volume changes. That being
said, in the particular case of dense astrophysical plasmas,
where the total pressure is dominated by the degenerate elec-
tron gas, the constant volume approximation is well justified
(we demonstrate this point explicitly in Appendix D, see also
Refs. [19,22]).

An alternative technique to calculate phase diagrams is
the so-called Gibbs-Duhem integration method (we prefer the
term “Clapeyron integration method”), where the coexistence
curve is obtained by direct integration of the appropriate
Clapeyron relation [26,27]. As discussed below, this new ap-
proach to calculate the phase diagrams of dense plasmas is
largely free of the limitations that characterize the competing
methods outlined above. While the method has so far been
applied with great success to simple models of neutral mix-
tures [28–35], it has never been used for electron-ion plasmas.
Adapting this method to charged systems is not as straight-
forward as substituting an interaction potential by another. In
particular, electrons must be explicitly included in the calcu-
lations, since the method involves volume changes and ionic
identity changes that affect the electronic background. This
added complexity has its advantages (it is physically more sat-
isfying to perform all calculations at constant pressure rather
than at constant volume), but requires additional care.

The central goal of this paper is to explain how the Clapey-
ron integration technique can be adapted to map the phase
diagrams of dense plasmas. This work is a companion paper
to Ref. [9] (where we presented the astrophysical implica-
tions of our new C-O phase diagram) that provides a detailed
account of the method. Because the Clapeyron integration
approach is not commonly used, we begin in Sec. II with a
self-contained and pedagogical introduction to this technique

instead of simply referring the reader to the original papers;
for clarity and completeness, a number of technical details
are given in the Appendices. The application to electron-ion
plasma mixtures requires some care and the needed adapta-
tions are highlighted. Section II also includes an illustration
of the method and its inner workings using a simple analytic
model of plasma mixtures. After this general discussion, we
delve into the specifics of the plasma model that we use to
compute the phase diagrams of dense plasmas (Sec. III, with
additional details in Appendices B and C). We then describe
the MC method that we have implemented for this purpose
(Sec. IV). Extensive tests of our code are presented in Ap-
pendix D. As an example application of this new simulation
capability, we present the calculation of the phase diagram
of the C-O interior of white dwarf stars in Sec. V, where
we also provide useful analytic fits for implementation in
white dwarf models. Finally, a short summary is given in
Sec. VI.

II. CLAPEYRON EQUATION INTEGRATION METHOD

A. Qualitative overview of the method

A Clapeyron equation is a relation between the intensive
thermodynamic variables that characterize the conditions of
coexistence between two or more thermodynamic phases of a
physical system. The present method consists of numerically
integrating this Clapeyron equation along the coexistence
curve. At each equilibrium point along the coexistence curve,
the thermodynamic properties of each coexisting phase are
calculated simultaneously, but separately (we perform this
step using MC simulations, see Sec. IV). This allows us to
numerically evaluate and integrate the Clapeyron equation
from one state point on the coexistence curve to a neighboring
point on the curve. Pairs of MC simulations for the liquid and
solid phases are computed in succession until the coexistence
line is fully mapped.

The thermodynamic properties of the system only have
to be evaluated at the coexistence conditions, meaning that
no uninteresting state points are calculated. This has three
major advantages compared to the above-mentioned standard
methods where free energy models are built by interpolating
between many intermediate state points: (1) it is more efficient
from a computational point of view (less states to simulate),
(2) no arbitrary interpolation is required, thereby increasing
the numerical accuracy of the calculation, and (3) all thermo-
dynamic properties of the system at the phase transition are
readily available at no additional cost.

The first two advantages given above are also shared with
the two-phase MD approach. However, the Clapeyron inte-
gration approach is also free of what is probably the greatest
limitation of the two-phase MD technique. Since each phase
is treated independently (at each coexistence point, one MC
simulation is performed for the liquid phase and another
one for the solid phase), there is no liquid-solid interface to
simulate. This eliminates a major contributor to detrimental
finite-size effects. Finite-size effects can be easily mitigated
in (isotropic) single-phase simulations. Note also that the
MC calculations needed to integrate the Clapeyron equation
are relatively cheap, which allows a finer sampling of the
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phase diagram than interfacial MD simulations and a bet-
ter resolution of its interesting features (e.g., an azeotropic
point).

The MC simulations needed to integrate the Clapeyron
equation are performed in an isomolar ensemble: no particle
insertions or deletions are needed. This constitutes another
important advantage of this approach, as methods that require
transfers of particles are not practical for strongly interacting
systems such as those in which we are interested [36].

Finally, all calculations in the Clapeyron integration ap-
proach are performed at constant pressure. This is to be
contrasted with most phase transition calculations where a
constant volume is assumed, while in reality phase transitions
virtually always occur at constant pressure and imply volume
changes. Even if the constant volume approximation is often
very accurate, it is inherently more satisfying to perform all
calculations in the correct thermodynamic ensemble and it
makes the method applicable to a broader range of systems.

B. Thermodynamics of electron-ion plasmas

As we shall see, the Clapeyron integration method is
formulated in an isobaric semigrand statistical ensemble
(NPT�μ), i.e., at constant pressure P, constant temperature
T , constant total number of particles N , and constant relative
chemical potentials �μa. In this ensemble, the volume of
the system V and the number of particles Na of the different
particle species fluctuate. Therefore, the application of the
method to an electron-ion plasma raises questions regarding
the inclusion of electrons in the calculation. Both the allowed
variations in volume and in particle numbers imply variations
in the electronic density. One consequence of those varia-
tions is that the screening length used to screen the ionic
interactions can no longer be assumed to be constant as in
standard methods. While this is obvious in the case of volume
fluctuations, the effect of fluctuations of particle numbers
is more subtle. For the finite-size calculations to be phys-
ically meaningful and have a well-defined thermodynamic
limit (i.e., {Na},V → ∞ at constant density {Na}/V ), it is
necessary to enforce the global neutrality of the system. In
other words, the thermodynamic limit should be taken at con-
stant NZ = ∑

a ZaNa = 0, where the sum includes the plasma
electrons and Zae is the charge of species a. For our purpose
we found it useful to constrain the number of electrons. If
({Ni}, {Zi})i=1,...,c denotes a given ionic composition of the
plasma, with c the number of ionic species, Ni the fluctuating
number of ions of species i, and Zie the charge of each species,
then we enforce the number of electrons Ne = ∑c

i=1 ZiNi to
ensure neutrality.

With this choice, the independent extensive variables are
the entropy S, the volume V , and the number of ions of each
species {Ni}. The internal energy is given by

U (S,V, {Ni}) = T S − PV +
c∑

i=1

Niμi, (1)

where μi is the electrochemical potential of species i, defined
as the sum of the ionic chemical potential and an electronic
contribution,

μi = μion,i + Ziμe. (2)

With these variables, the equilibrium conditions between a
liquid (�) and a solid (s) phase are P� = Ps, T � = T s, and
μ�

i = μs
i for all i = 1, . . . , c. Here we restrict the discussion

to the coexistence line between a liquid and a solid phase,
although what follows applies to other phase boundaries as
well. In addition, the case of systems of neutral particles
[26–35] is recovered by setting μe = 0 in the previous and
following equations.

C. Clapeyron equation

We now turn to the derivation of the Clapeyron equations
that form the backbone of our integration technique. The
latter are conveniently derived from the Gibbs-Duhem relation
among the temperature T , pressure P, and chemical potentials
μi [37], and below we limit ourselves to examples relevant to
our purpose. For a c-component mixture, the Gibbs-Duhem
relation can be expressed as

dμ1 = −sdT + vdP −
c∑

i=2

xid (μi − μ1), (3)

where s = S/N is the entropy per ion (with N = ∑c
i=1 Ni),

v = V/N = 1/n is the volume per particle, and xi = Ni/N is
the number concentration of species i. For a one-component
system, this relation directly leads to the usual form of the
Clapeyron equation. For the solid and liquid phases to coexist,
a change in temperature must cause a change in pressure
such that the chemical potentials μ� and μs of the liquid
and solid phases remain equal. From Eq. (3), this implies
s�dT − v�dP = ssdT − vsdP along the coexistence line, and
in turn

dP

dT
= s� − ss

v� − vs
= Lm

T (v� − vs)
, (4)

where Lm is the latent heat released per particle.
For multicomponent systems, different Clapeyron equa-

tions between two field variables can be similarly derived
by fixing the other field variables to their phase equilibrium
values. For a two-component mixture, fixing P leads to the
Clapeyron relation

dT

d (μ2 − μ1)

∣∣∣∣
P

= −x�
2 − xs

2

s� − ss
, (5)

which describes the relation between T and the difference in
the chemical potentials of the two species, μ2 − μ1, along the
coexistence line. Similarly, other Clapeyron relations can be
derived for c > 2 component mixtures. We detail the case of
a three-component mixture in Appendix A.

In order to exploit Eq. (5), it will be beneficial to work with
a thermodynamic potential that explicitly depends on μi − μ1.
This can be achieved using the isobaric semigrand canonical
potential,

A(T, P, N, {μ̃i − μ̃1}i=2,...,c)

= U − T S + PV −
c∑

i=2

(μ̃i − μ̃1)Ni = Nμ̃1, (6)

where we have defined μ̃i = μi + μref
i . Here μref

i is a given
reference chemical potential that we have added to the for-
malism to deal with plasma systems. μref

i is innocuous at the
level of the theory, but, as we shall see in Sec. IV, it plays
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an important role in the numerical applications. In addition,
it will be more convenient in practice to work in terms of
fugacity fractions ξi instead of chemical potentials. Let the
fugacity of species i be

fi = eβ(μ̃i−μ0
i ), (7)

where β = 1/(kBT ), e−βμ0
i = V/�3

i , �i is the thermal de
Broglie wavelength, �i = h/(2πMikBT )1/2, kB is Boltz-
mann’s constant, h is Planck’s constant, and Mi is the mass of
species i. Then, in the general case of a c-component mixture,
the fugacity fraction is defined as

ξi = fi∑c
i=1 fi

. (8)

Unlike the chemical potentials that generally can take any
real values, the fugacity fractions are constrained to vary be-
tween 0 and 1 (i.e., 0 � ξi � 1), which is useful numerically.
Moreover, one can show that ξi = 0 (ξi = 1) when the number
concentration xi = 0 (xi = 1).

Using these new definitions, the c-component Gibbs-
Duhem equation [Eq. (3)] can be written as

d ln

(
c∑

i=1

fi

)
= hrdβ + βP

n
d ln P −

c∑
i=1

xi
dξi

ξi
, (9)

where hr = h − ∑c
i=1 xi

d
dβ

β(μ0
i + μref

i ), with h =
(U + PV )/N the enthalpy per ion. When expressed in
terms of the fugacity fractions, the two-component Clapeyron
relation of Eq. (5) reads [31]

dβ

dξ2

∣∣∣∣
P

= x�
2 − xs

2

ξ2(1 − ξ2)
(
h�

r − hs
r

) . (10)

For a given pressure, this form of the Clapeyron equation
describes how the temperature changes with the fugacity
fraction along the liquid-solid coexistence line. This is the
equation that we will integrate to map the phase diagrams
of two-component plasmas. The properties of the fugacity
fractions imply that in order to map the phase diagram of a
given two-component plasma, Eq. (10) simply needs to be
integrated from ξ2 = 0 to ξ2 = 1.

To carry out the Clapeyron integration, the concentrations
and enthalpies that appear in the right-hand side of Eq. (10)
have to be evaluated for the fixed P, T , and ξi’s that character-
ize each state point along the coexistence curve. It is for this
reason that it makes sense to work in the isobaric semigrand
canonical ensemble (NPT�μ). To link the microphysics of
our system to the thermodynamic relations given above, we
have [38]

A = −kBT lnQ, (11)

with the partition function,

Q(T, P, N, {μ̃i − μ̃1}i=2,...,c)

=
∫ ∞

0

[
dV

V0

c∑
i1=1

· · ·
c∑

iN =1

∏c
i=1 Ni!

N!

× e
−βF [T,V,{Ni}i=1,...,c]−βPV +β

N∑
j=1

(μ̃i j −μ̃1 )
]
, (12)

where

F = −kBT lnZ (13)

is the Helmholtz free energy and Z is the usual canonical
partition function. The statistical average of a thermodynamic
quantity B is given by the following equation:

〈B〉 = 1

Q

∫ ∞

0

[
dV

V0

c∑
i1=1

· · ·
c∑

iN =1

∏c
i=1 Ni!

N!

× e−βF [T,V,{Ni}i=1,...,c]−βPV +β
∑N

j=1(μ̃i j −μ̃1 )B

]
, (14)

which we will evaluate using a MC sampler (Sec. IV). All
the microphysics of the system is contained in the partition
function Z . Our model for Z is detailed in Sec. III.

D. A simple application of the Clapeyron integration method

As a simple example of the Clapeyron integration method,
we now use an analytic plasma model for a BIM to evaluate
the right-hand side of Eq. (10) and map the phase diagram
of a two-component plasma. The purpose of this application
is to illustrate the integration procedure and to show that
the Clapeyron integration technique can reproduce exactly
the same results as those obtained using more conventional
techniques when the same input physics is assumed. An ap-
plication of the full-fledged Clapeyron integration technique
(using isobaric semigrand canonical MC simulations) is pre-
sented in Sec. V.

We use the BIM model described by Ogata et al. [19] to
compute the phase diagram of a C-O plasma. We choose this
particular BIM model for this exercise as Ogata et al. have
published a C-O phase diagram based on this model to which
our results can be compared. To allow a direct comparison
with their results, we assume that the volume change dur-
ing the phase transition is negligible, meaning that Eq. (10)
simplifies to

dβ

dξ2
=

(
x�

2 − xs
2

)
ξ2(1 − ξ2)(u� − us)

, (15)

where u = U/N and where we have also fixed μref
1 = μref

2 =
0. To evaluate the right-hand side of Eq. (15) and integrate
along the melting line, we need to extract x2 and u in the
liquid and solid phases from the BIM model. The energy is ob-
tained using a linear mixing rule of the one-component plasma
(OCP) energies for which accurate fits to MC calculations
already exist,

u = x1uOCP(�1) + x2uOCP(�2) + �uBIM(RZ , x2, �1), (16)

where �i = (Zie)2

aikBT , ai = ( 3Zi
4πne

)
1/3

, and RZ = Z2/Z1. The OCP
terms are evaluated using Eq. (11) of Ogata et al. for the liquid
(see also Ref. [39]) and using their Eq. (21) for the solid (see
also Ref. [40]). As for the correction term �uBIM to the linear
mixing rule, we use the fits provided by Eqs. (12) and (20) of
Ogata et al.

The calculation of the concentrations requires a relation
between ξ2 and x2. From the definition of the fugacity and
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fugacity fraction [Eqs. (7) and (8)], we find

ξ2

1 − ξ2
= eβ(μ2−μ1 ). (17)

From μ2 − μ1, x2 can then be obtained by numerically solving

∂F (N, N2,V, T )

∂N2
= μ2 − μ1. (18)

The Helmholtz free energy F is evaluated using the analytic
fits provided by Ogata et al. [their Eqs. (16), (25), (27), and
(28)],

F = x1F OCP(�1) + x2F OCP(�2) + �F BIM(RZ , x2, �1).
(19)

With those equations in hand, we have everything we need
to determine x2 and u in the liquid and solid phases and
evaluate Eq. (15). In what follows, we define species i = 1
as C and i = 2 as O. To start the integration of Eq. (15), we
must first specify an initial coexistence point (ξ 0

O, β0). We
choose to start the integration at ξO = 0, where only C ions are
present in the plasma. The temperature β0 at this coexistence
point is then given by the melting temperature of the OCP,
�m � 175 [41].

As dβ

dξ2
is undefined in Eq. (15) for ξ2 = 0, the first

derivative has to be computed by other means. In appli-
cations of the Clapeyron integration technique to neutral
systems (e.g., Lennard-Jones fluids), this initial derivative can
be obtained through the infinite dilution limit and Henry’s
law [31,42]. Here this method demands the evaluation of
〈exp (−β�uC→O)〉NPT, where �uC→O represents the energy
change that would result from the transformation of a C
ion into an O ion. In practice, for dense plasmas, evaluating
this term using MC simulations is challenging due to the
strong fluctuations of the energy change �uC→O. This issue
is reminiscent of the limitations that affect particle insertion
methods when applied to strongly coupled systems. Although
this problem does not apply to the present section (as we
are modeling the plasma using an analytic model), we still
use the work around that we have developed for our full
MC-based Clapeyron integration (Sec. V). We initially as-
sume that the temperature at the first ξO > 0 integration step
(ξ 1

O) is the same as that at ξO = ξ 0
O = 0, i.e., dβ/dξO|ξ 0

O
= 0.

Using Eq. (15) and the BIM model, this allows us to get
a first estimate of dβ/dξO|ξ 1

O
and we then approximate the

initial derivative as dβ/dξO|ξ 0
O

= dβ/dξO|ξ 1
O
. We then use

this improved estimate of the initial derivative to obtain a
refined estimate of the temperature at ξ 1

O and repeat this pro-
cedure until the derivative dβ/dξO|ξ 1

O
converges to a stable

value.
Now that we have specified the initial coexistence condi-

tion and its initial derivative, the integration of Eq. (15) can
begin. We define a grid of ξO values and use it to step from
one ξO to the next. As the temperature at the next ξO value
is initially unknown, we use a predictor-corrector algorithm
to gradually refine its value until it stops varying by more
than a fraction γ of its value at the previous iteration. We
refer the reader to Ref. [31] for a detailed description of this
algorithm. For each step, the T , x�

O, and xs
O values are saved.

After integrating all the way to ξO = 1, the phase diagram is
directly given by the relation between those temperatures and
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FIG. 1. C-O phase diagram computed using the Clapeyron in-
tegration technique and the BIM model of Ogata et al. [19]. The
horizontal axis is the O number concentration and the vertical axis
is the ratio between the temperature and the melting temperature of a
pure C OCP (� = 175). The upper curve corresponds to the liquidus,
and the lower one is the solidus.

concentrations. More specifically, T (x�
O) corresponds to the

liquidus and T (xs
O) to the solidus.

Figure 1 displays the resulting C-O phase diagram, which
is almost identical to Fig. 5(a) of Ogata et al. [19]. The
general shape as well as the position of the azeotropic
point are the same. The only slight difference concerns
the spurious behavior of our liquidus at very small O
concentrations (see the inset of Fig. 1). We attribute this
difference to Ogata et al.’s fit of �uBIM

ex for the liquid,
which is known to lead to unphysical results at small O
concentrations [20,21].

We also tested what happens if we fix �uBIM = 0 for the
liquid phase, which corresponds to the prescription adopted
by Medin and Cumming [22]. This simplification can be jus-
tified by the fact that �uBIM is very small in the liquid phase
compared to the other energy terms. It also eliminates the
spurious behavior of Ogata et al.’s fit. With this approxima-
tion, we are able to reproduce the azeotropic phase diagram of
Medin and Cumming [compare Fig. 2 to their Fig. 5(a)]. We
also replicated their finding that the phase diagram transitions
from an azeotrope shape to a spindle shape when the charge
ratio RZ goes below �1.2. This result is to be contrasted with
the findings of Ref. [20], who use different analytic fits and
find that this transition occurs near RZ = 1.4. This difference
is very important in the context of white dwarf interiors (RZ =
1.33 for a C-O plasma), where the shape of the phase diagram
determines the composition profile of the frozen core. This
comparison stresses the sensitivity of the final results on the
fits used to derive the phase diagram. It clearly highlights
the advantage of the Clapeyron integration method, which,
once used in conjunction with isobaric semigrand canonical
MC simulations (Sec. V), requires no interpolation between
simulation results.
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FIG. 2. Same as Fig. 1, but assuming �uBIM = 0 for the liquid
phase.

III. PLASMA MODEL

So far, our discussion has been general in the sense that no
model for our plasma has been assumed. The microphysics
is all contained in the canonical partition function Z [see
Eqs. (12) and (13)]. We now specify a model for the electron-
ion plasma appropriate for the conditions in white dwarf
cores. Note, however, that the Clapeyron integration method
is by no means limited to this particular model.

We consider a fully ionized plasma mixture of c ionic
species defined as in Sec. II B. The system is contained in
a volume V = L3 with periodic boundary conditions in all
three spatial directions. For notational simplicity, the charge
(mass) of ion J is denoted ZJ (MJ ), with J = 1, . . . , N . We
assume classical ions and quantum electrons. Approximating
the ions as classical particles is well justified for the conditions
in which we are interested. At the onset of crystallization in
white dwarf cores, the interparticle distance is larger that the
thermal de Broglie wavelength �. More specifically, �/a �
0.1–0.3 where the liquid and solid phases coexist in white
dwarf interiors.

Ion-ion, electron-ion, and electron-electron interactions
need to be taken into account. We include electron-ion inter-
actions to the lowest order, which yields (Appendix B)

Z (T,V, {Ni}i=1,...,c) = 1∏c
i=1 Ni!�

3Ni
i

∫
dR3N e−βU (R3N ).

(20)
Equation (20) is the classical partition function of the ions
interacting through the effective interaction energy

U (R3N ) = Uκ (R3N ) + Fjel[ne, T ]. (21)

The first term here is the potential of the system of ions inter-
acting through the Yukawa (or screened Coulomb) interaction
(which we justify in Appendix C), and the second term is the
Helmholtz free energy of a relativistic homogeneous electron
gas modeled at density ne = Ne/V and temperature T (see
Appendix B). For a pair of ions with charges Zi and Zj , the

1024 1026 1028 1030 1032 1034 1036 1038

ne (cm−3)

0

1

2

3

4

5

κ
a

1029 1030 10310.3

0.4

0.5

0.6

WD core
xr ∼ 1

NS outer crust
xr ∼ 10

FIG. 3. Ratio of the average interparticle distance
a = (3Z/4πn)1/3, to the screening length 1/κ , as a function of
the electronic density for a fully ionized C plasma [Eq. (C4)]. The
electrons are assumed to form a completely degenerate electron
gas. xr = h̄kF

mec [with kF = (3π 2ne)1/3 the Fermi momentum] is the
relativistic parameter, and typical white dwarf (WD) core and
neutron star (NS) crust conditions are highlighted. Note that the
long-wavelength approximation (Appendix C) used here to evaluate
κ is no longer valid for the lower densities shown in this figure. It is
nevertheless an excellent approximation for the dense astrophysical
plasmas that are the focus of this work.

Yukawa interaction potential takes the form

vκ (r) = ZiZ je2

4πε0

e−κr

r
, (22)

where ε0 is the vacuum permittivity and 1/κ is the relativistic
Thomas-Fermi screening length. Figure 3 illustrates how this
screening parameter varies as a function of the electronic
density. Assuming this interaction potential, it follows that the
potential of the system of interacting ions is given by

Uκ (R3N ) = e2

2ε0V

∑
k,k �=0

1

k2 + κ2

{
ni(k)ni(−k) −

N∑
I=1

Z2
I

}

+ e2

8πε0

(
N∑

I=1

Z2
I

)
(Eκ − κ ), (23)

where ni(k) = ∑N
J=1 ZJeik·RJ is the Fourier transform of the

ion charge density and Eκ is the Madelung energy for the
Yukawa interaction (see Appendix B).

In contrast with this approach, most previous studies of
plasma phase diagrams do not explicitly include the electronic
background. This is a natural choice when working in the
canonical (NVT) ensemble, but it is not appropriate when
working in an isobaric ensemble. Indeed, when the volume
and number of electrons are not fixed (as it is the case in the
isobaric semigrand canonical on which our Clapeyron inte-
gration approach is based), the background electronic energy
is not a fixed quantity and it becomes necessary to include
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it explicitly. In any case, it is more rigorous to include the
complete system of ions and electrons.

IV. MONTE CARLO IMPLEMENTATION

A. General overview of the MC sampler

We now describe how, given this plasma model, Eq. (14)
can be evaluated using a MC sampler. Using Eqs. (8) and (20),
the partition function [Eq. (12)] reads as

Q(T, P, N, {ξi}i=2,...,c)

= 1

N!

∫ ∞

0

[
dV

V0

c∑
i1=1

· · ·
c∑

iN =1

×
∫

dR3N

V N
e
−βU (RN )−βPV +N ln V

�3
1
+∑N

j=1(ln
ξi j
ξ1

+βμref
i j

)
]
.

(24)

To reach the targeted P and {ξi}i=2,...,c conditions at a given
T , three types of moves are required in isobaric semigrand
canonical MC simulations: (1) particles displacements, (2)
volume changes, and (3) identity changes. From Eq. (24) it
follows that a particle displacement R → R′, volume change
V → V ′, or ionic identity change i → i′ is accepted with
probability

min(1, eχ ), (25)

where

χ = −β(U ′ − U ) − βP(V ′ − V ) + N ln
V ′

V

+ ln
ξi′

ξi
+ β

(
μref

i′ − μref
i

)
. (26)

The role of the reference chemical potential μref
i that we

have introduced earlier [Eq. (6)] now becomes apparent. If
we assume that μref

i = 0 for all i = 1, . . . , c, then χ is dom-
inated by the change in the electron free energy, i.e., χ �
−β(F [n′

e, T ] − F [ne, T ]). We have n′
e − ne = (Zi′ − Zi ) N

V
and typically χ � −β(Zi′ − Zi )μe with μe the electron chem-
ical potential. Under degenerate conditions, μe ∝ n2/3

e and
therefore |χ | 
 1 in dense plasmas (under white dwarf con-
ditions, ne ∼ 1030 cm−3). Then, the acceptance probability
min(1, eχ ) is either 1 or 0 and eventually all but one ionic
species disappear from the MC simulation. In other words,
the mapping xi ↔ ξi is not practical: all the variation in xi

occurs over a small range of ξi values very close to 0 or 1. The
reference chemical potentials were introduced to overcome
this difficulty. We define them as

μref
i = Ziμ

ref
e , (27)

where μref
e is fixed to a value close to μe[ne, T ]. With this

choice, the dominant β(Zi′ − Zi )μe term in Eq. (26) is largely
canceled by the β(μref

i′ − μref
i ) term and the xi ↔ ξi mapping

becomes more practical (i.e., xi ∼ ξi). Note that the electronic
density needed to define μref

e is a priori unknown, as the
electronic density fluctuates during the MC simulation. An
iterative process is therefore needed in order to find the value
of μref

e that leads to a well-behaved xi ↔ ξi mapping (once

selected, μref
e is kept fixed during the integration of the phase

diagram).
At each iteration during the MC simulation, the algorithm

decides randomly whether a particle displacement, volume
change, or identity change is attempted [and Eq. (25) is then
evaluated to decide whether the move is actually accepted]. A
standard prescription is to assign probabilities of N/(2N + 1),
1/(2N + 1), and N/(2N + 1) to attempting a particle dis-
placement, volume change, and identity change, respectively
(with this prescription, 2N + 1 attempts represent one MC
cycle) [31]. Empirically we found that assigning a probability
of 90% to ion displacements, 5% to volume changes, and 5%
to identity changes leads to a much quicker convergence of
the MC simulation. While this choice affects the particular
trajectory of the MC simulations, we have verified that it
does not influence the average energies, concentrations, and
densities extracted from the simulations.

Typically, a few thousand MC cycles are needed before
the targeted pressure and fugacity fractions are reached. After
that, a few more thousand cycles are performed in order to
accurately evaluate the average concentrations and enthalpies
needed for the integration of the Clapeyron equation (un-
certainties are estimated using the block-averaging technique
[43,44]). A series of tests designed to validate our MC code
are presented in Appendix D.

B. Numerical implementation of the MC sampler

Consider a given ionic configuration R = R3N of the N ions
in a cubic simulation box of volume V = L3 where periodic
conditions are imposed on all boundaries. The MC algorithm
necessitates the calculation of the energy Uκ (R) [Eq. (23)],
and of the all the interparticle forces − ∂Uκ (R)

∂R , which are
used to calculate the instantaneous contribution to the total
pressure. More specifically, we have

P = −∂F
∂V

= Pi + Pe, (28)

where the electronic pressure is given by Pe = − ∂Fjel

∂V and,
using Eqs. (13) and (20), the ionic pressure is

Pi = nkBT − 1

3V

〈
R · ∂Uκ

∂R

〉
− 1

3V

〈
L

∂Uκ

∂L

〉
. (29)

Because the bare Coulomb interactions between ions are
only weakly shielded by the electrons (κa ∼ 0.35, see Fig. 3),
the range of the Yukawa potential is large in the sense that one
cannot safely truncate the potential at the distance r = L/2
and make use of the usual minimum image convention and
neglect the interaction of a particle with the particles in the
periodically replicated cells. To overcome this problem we
use the Ewald summation technique to evaluate the sums over
n ∈ Z3 in Eq. (23) (e.g., see Ref. [45]). For a Yukawa poten-
tial (e.g., Ref. [46]), the interaction energy vκ (r) = e2

4πε0

e−κr

r
between two particles at distance r is represented by the sum
of a short-range (sr) and a long-range (lr) component,

v(r) = φsr (r) + φlr (r), (30)
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TABLE I. Numerical parameters used for our integration of the
C-O phase diagram.

Parameter Value

Total number of ions in each MC simulation 686
Number of MC cycles per simulation 6000
μref

e 523.7 keV
Predictor-corrector convergence criterion (γ ) 0.001

with

φsr (r) = e2

8πε0r

[
erfc

(
αr + κ

2α

)
eκr

+ erfc

(
αr − κ

2α

)
e−κr

]
(31)

and

φlr (r)= e2

ε0V

∑
n∈Z3

e−(k2+κ2
sc )/(4α2 )

k2 + κ2
sc

eik·r, (32)

where k = 2π
L n, α > 0 is the Ewald parameter (a numerical

parameter conveniently chosen to optimize the evaluation of
the previous expressions [45]), and erfc is the complemen-
tary error function. In our simulation code, the Ewald sum
is numerically evaluated with the particle-particle-particle-
mesh (P3M) method, which combines high resolution of close
encounters (the sr term is calculated using nearest-neighbor
techniques) and rapid long-range force calculations (the lr
forces are computed on a mesh using three-dimensional fast
Fourier transforms) [45]. The code is fully parallelized using
message passage interface (MPI). Compared to the standard
implementation of the P3M algorithm, here MC simulations
in the isobaric semigrand canonical ensemble require care-
fully reinitializing the algorithm to account for the changes in
the simulation box size and screening length 1/κ that occur
whenever a volume change or a particle identity change is
performed.

V. APPLICATION: THE C-O INTERIOR OF WHITE
DWARFS

A. C-O phase diagram

We now combine the MC code presented in the previous
section with the Clapeyron integration algorithm described in
Sec. II to obtain the phase diagram of a dense C-O plasma
under white dwarf conditions. As in Sec. II D, we start our
integration from a pure C plasma and we define species i = 1
as C and i = 2 as O. We perform the integration of Eq. (10)
on a grid defined by ξO = {0, 0.02, 0.04, . . . , 1} and we fix
the pressure to 1018 bars, a typical pressure for white dwarf
cores. Other numerical parameters are listed in Table I.

For the initial coexistence condition (ξ 0
O, β0), we use the

melting temperature given in Ref. [47] for Yukawa sys-
tems (here κa � 0.35, which implies �m � 178). The initial
derivative dβ

dξO
is computed as in Sec. II D and the numerical

integration of Eq. (10) is performed using the predictor-
corrector algorithm described in Ref. [31]. For each ξO value,
the liquid and solid phases are simulated simultaneously (and

0.0 0.2 0.4 0.6 0.8 1.0
xO, ξO

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

T
/T

m
,C

Eq. (10)

xs
O

xO

T (xO)

T (ξO)

FIG. 4. Clapeyron integration of the C-O phase diagram. The
black line shows the T (ξO) coexistence line that we integrate from
ξO = 0 to 1 using Eq. (10). Each point along the T (ξO) coexistence
line yields an O concentration in the liquid (x�

O) and in the solid
(xs

O) phases, tracing the liquidus and the solidus, respectively. The
temperature is shown in units of the melting temperature of a pure
C Yukawa plasma (here � = 178). Note that T (ξO) depends on our
choice of μref

e (523.7 keV here), but the T (xO) lines do not.

independently), yielding a pair of concentrations (x�
O, xs

O) for
each T (ξO) point along the coexistence line (see Fig. 4). The
evolution of one of those MC simulations is shown in Fig. 5.
For the solid phase, the C and O ions are randomly positioned
on a bcc lattice and their displacements are limited in order to
prevent the solid from melting. The bcc phase is the only solid
phase accessible to Yukawa systems near the OCP limit (large
screening length 1/κ) such as those found in white dwarf
interiors [47].

Figure 6 shows the resulting C-O phase diagram. The
smoothness of our phase diagram illustrates the high level
of accuracy achieved by our MC simulations. Moreover,
we recover the melting temperature of a pure O plasma,
Tm,O, at the end of our integration at ξO = xO = 1, Tm,O =
[Z (O)/Z (C)]5/3Tm,C � 1.62Tm,C. This result is not explicitly
enforced by the Clapeyron integration method. It can only be
achieved if the integration from ξO = 0 to ξO = 1 is accurate
enough to recover this known limit.

As pointed out in the companion paper [9], our C-O
phase diagram is close to that of Medin and Cumming [22]
(dashed lines in Fig. 6). Both have a similar azeotrope shape,
with azeotropic points at about the same concentrations. This
is a remarkable result given the approximations underlying
their phase diagram. Namely, the ion-ion interactions are not
screened and the excess energy of the liquid phase is assumed
to simply be the sum of the OCP energies of each ionic
component (but note that Medin and Cumming explore the
impact of deviations from this linear mixing rule in their
Appendix B). Our C-O phase diagram is also similar to that
of Horowitz et al. [23]. Apart from the superior sampling
made possible by our relatively inexpensive method, the main
difference is that the separation between the liquidus and the
solidus �xO is slightly larger in our case (at concentrations
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FIG. 5. Evolution of the ion excess energy (Uκ/NkBT ), O num-
ber fraction (xO), and ion density (N/V ) during one the MC
simulations used to map the C-O phase diagram. For this simulation,
the plasma is in the liquid phase, ξO = 0.7, T = 470.48 eV, and
P = 1018 bars. Other numerical parameters are specified in Table I.
The region in gray corresponds to the equilibration phase that we
ignore when we compute the average enthalpies and concentrations
needed to evaluate the Clapeyron equation.
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FIG. 6. C-O phase diagram obtained via integration of the
Clapeyron relation [Eq. (10)] using our plasma model described
in Sec. III (in red). For comparison we also show the C-O phase
diagrams of Refs. [22,23]. The temperature is shown in units of the
melting temperature of a pure C Yukawa plasma (here � = 178). A
similar figure was presented in Ref. [9].

TABLE II. Fit parameters for �m(x�
O) and �xO(x�

O) [Eq. (34)].

�m(x�
O) �xO(x�

O)

a0 178.000000 0.000000
a1 167.178104 −0.311540
a2 −3.973461 2.114743
a3 −741.863826 −1.661095
a4 876.516929 −1.406005
a5 −297.857813 1.263897

higher than the azeotrope). As briefly discussed by Horowitz
et al., �xO could be underestimated in their simulations due to
finite-size effects that cause an artificial composition gradient
across the liquid-solid interface. We can expect that their
phase diagram would converge to something closer to ours
if they used larger MD simulations.

The results shown in Fig. 6 were obtained at P = 1018 bars.
We also computed additional versions of this phase diagram
assuming different pressures. Consistent with our findings for
the OCP (Appendix D), we found that the resulting phase dia-
gram remains practically unchanged for the range of pressures
that characterize white dwarf interiors.

B. Analytic fits to our C-O phase diagram

To facilitate the implementation of our phase diagram in
white dwarf codes, we provide analytic fits to the Coulomb
coupling parameter at the melting temperature �m(x�

O), and to
the separation between the liquidus and the solidus �xO(x�

O).
The coupling parameter of the mixture is computed as

� = 〈Z5/3〉e2

aekBT
, (33)

with 〈Zα〉 = ∑
i Zα

i ni/n and ae = (3/4πne)1/3. Both �m(x�
O)

and �xO(x�
O) can be accurately fitted with a fifth-order

polynomial,

5∑
i=0

ai
(
x�

O

)i
, (34)

where the coefficients ai are given in Table II. Our fit to
�m(x�

O) is shown in Fig. 7. Note that the fit recovers the
known limits �m(x�

O = 0) = �m(x�
O = 1) = 178 for a one-

component Yukawa system with a screening parameter typical
of white dwarf interiors (κa � 0.35) [23,47,48]. Figure 8
shows our fit to �xO(x�

O). The fit is such that �xO(x�
O) = 0 in

the pure C and pure O limits, as well as at the azeotropic point
(x�

O ≈ 0.18). Both fits reproduce the simulations accurately
within the statistical noise.

VI. CONCLUSION

We have presented how the Clapeyron integration method,
in conjunction with isobaric semigrand canonical MC sim-
ulations, can be used to map the phase diagrams of dense
multicomponent plasmas. This technique has many advan-
tages compared to competing approaches: (1) all calculations
are performed directly at the coexistence conditions (no
analytic fits required and no uninteresting state points to sim-
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FIG. 7. Coulomb coupling parameter at which the C-O liquid
with a concentration x�

O crystallizes. Results from our Clapeyron
integration are shown in black and the analytic fit given by Eq. (34)
is in red.

ulate); (2) no phase transition interface needs to be modeled
(thereby greatly simplifying the mitigation of finite-size ef-
fects); (3) no particle insertions or deletions are required; (4)
all thermodynamic properties of the system at the phase transi-
tion are available at no additional cost; (5) the underlying MC
simulations allow a fine sampling of the coexistence line at
a reasonable cost; (6) the electronic background is explicitly
included; and (7) all calculations are performed at constant
pressure, as is appropriate for phase equilibrium. As an ex-
ample application, we have computed the phase diagram of a
dense C-O plasma under conditions relevant for white dwarf
interiors. Our results are in good agreement with previous
calculations and we have provided analytic fits to facilitate

0.0 0.2 0.4 0.6 0.8 1.0
xO

0.00

0.05

0.10

0.15

Δ
x

O

FIG. 8. Difference between the O concentration of the coexisting
solid and liquid phases as a function of the O concentration of the
liquid at the phase transition. In black we show the results taken
directly from Fig. 6 and, in red, we show our analytic fit [Eq. (34)].

the implementation of this new, accurate C-O phase diagram
in existing white dwarf evolution codes.

This paper has focused on applications to dense, two-
component electron-ion plasmas. However, the Clapeyron
integration method can in principle be used for a much wider
range of systems. In planetary science for instance, it could
prove useful to tackle problems such as the demixing of H/He
mixtures in the interiors of giant planets [49,50] or the melting
temperature of iron in Earth’s core [51,52]. In the near future
we plan to apply this technique to c > 2 component dense
plasmas and to generalize it to metallic alloys.
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APPENDIX A: CLAPEYRON EQUATION FOR A
THREE-COMPONENT SYSTEM

Let us start from the Gibbs–Duhem relation under its fu-
gacity form [Eq. (9)]. Assuming that P, T , and N are fixed
and remembering that the liquid-solid coexistence conditions
imply that f �

i = f s
i and ξ�

i = ξ s
i for all i = 1, 2, 3, we have the

relation

3∑
i=1

x�
i

dξi

ξi
=

3∑
i=1

xs
i

dξi

ξi
(A1)

for all coexistence states. Since by definition x1 = 1 − x2 − x3

and ξ1 = 1 − ξ2 − ξ3, we find the Clapeyron equation

dξ2

dξ3

∣∣∣∣
P,T,N

= −ξ2(1 − ξ2)
(
x�

3 − xs
3

) + ξ2ξ3
(
x�

2 − xs
2

)
ξ3(1 − ξ3)

(
x�

2 − xs
2

) + ξ2ξ3
(
x�

3 − xs
3

) . (A2)

To begin the integration of Eq. (A2), prior knowledge of one
coexistence point ξ2(ξ3) for a given T and P is needed. A prac-
tical way to do this is to first map the two-component phase
diagram of species i = 1, 2 for a given P [using Eq. (10)],
which would directly yield ξ2(ξ3 = 0) for a range of T along
the coexistence line for a fixed P. Then, the integration of
Eq. (A2) can start from this initial ξ2(ξ3 = 0) coexistence
point and proceed along a grid of ξ3 values from 0 to 1. Since
x1 = 1 − x2 − x3, each state point along the coexistence line
defined by Eq. (A2) yields a pair of compositions (x�

1, x�
2, x�

3)
and (xs

1, xs
2, xs

3). The integration of Eq. (A2) can then be re-
peated for different T in order to map the three-component
phase diagram in the full temperature-composition space.
Note that the integrations at different T are independent from
one another and can be performed simultaneously. We have
successfully applied this approach to the three-component
C-O-Ne mixture found in white dwarf cores [53].
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APPENDIX B: MODEL PARTITION FUNCTION

To derive our partition function [Eq. (20)], we start from
the total Hamiltonian of the ions and electrons. This is es-
sential to keep track of all the terms that are important when
working in the isobaric semigrand canonical ensemble. The
Hamiltonian of the ions and electrons in a cubic volume
V = L3 with periodic boundary conditions is conveniently
split in the form (see, e.g., p. 409 of Ref. [54] for c = 1, here
generalized to c > 1)

H = Hi + He + Hei. (B1)

Hi is the Hamiltonian of all ions immersed in a homogeneous
neutralizing background,

Hi =
N∑

I=1

P2
I

2MI
+ 1

2V

∑
n∈Z3

′
v(k)

[
ni(k)ni(−k) −

N∑
I=1

Z2
I

]

+ e2

8πε0

(
N∑

I=1

Z2
I

)
E , (B2)

where k = 2πn/L with n ∈ Z3, the prime means n �= 0,
v(k) = e2

ε0

1
k2 is the Fourier transform of the Coulomb poten-

tial, ni(k) = ∑N
J=1 ZJeik·RJ is the Fourier transform of the ion

charge density, and E is the Madelung energy,

e2

4πε0
E = lim

r→0

(
1

V

∑
n∈Z3

′
v(k)eik·r − e2

4πε0

1

r

)
. (B3)

He is the Hamiltonian of all electrons immersed in a homoge-
neous neutralizing background (jellium model). Finally, Hei is
the electron-ion interaction term,

Hei = 1

V

∑
n∈Z3

′
v(k)δni(k)δne(−k), (B4)

where ne(k) = Ze
∑Ne

j=1 eik·r j (with Ze = −1) is the electron
charge density and δni,e(r) = ni,e(r) − ne (with ne = Ne/V )
is the fluctuating density.

For a system of classical ions and quantum electrons, the
total canonical partition function is given by

Z (T,V, {Ni}i=1,...,c)

= 1∏c
i=1 Ni! h3Ni

∫
dR3N dP3N Tree−βH , (B5)

where R3N and P3N represent the positions and momenta of
ions, and Tre is the trace over a complete set of electronic
states in the field due to a fixed ionic configuration RN . If
Hei is treated as a perturbation (i.e., to lowest order in the
interaction Hamiltonian Hei), it is well established that the
partition function can then be expressed as [54,55],

Z (T,V, {Ni}i=1,...,c)

= 1∏c
i=1 Ni!�

3Ni
i

∫
dR3N e−βU (R3N ;ne,T ). (B6)

In other words, at this order, Z reads as the classical partition
function of the system of ions interacting according to the

effective interaction energy

U (R3N ; ne, T ) = 1

2V

∑
n

′
v(k)

[
ni(k)ni(−k)

ε(k)
−

N∑
I=1

Z2
I

]

+ e2

8πε0

(
N∑

I=1

Z2
I

)
E + Fjel[ne, T ]. (B7)

Here Fjel[ne, T ] = −kBT ln Tree−βHe is the free energy of the
homogeneous, relativistic electron gas at density ne and tem-
perature T . In this work we evaluate this term as Fjel =
Fid + Fxc, where Fid is the free energy of the relativistic
quantum ideal gas and Fxc is the exchange-correlation free
energy. For Fid, we use its well-known expression in terms
of generalized Fermi-Dirac integrals, which we compute us-
ing the parametrization of Ref. [56], and for Fxc, we follow
Ref. [57]. In Eq. (B7), ε(k) is the dielectric function of the
relativistic homogeneous electron gas model. As explained in
Appendix C, for the physical conditions of interest in
this work, the long-wavelength approximation ε(k) = 1 + κ2

k2

[where κ = kTF(1 + x2
r )1/4 is the relativistic inverse screening

length] is well justified. Under this approximation, Eq. (B7)
is conveniently written as in Eqs. (21) and (23) with the
Madelung energy

Eκ = lim
r→0

(
1

V

∑
n

′ 4π

k2 + κ2
eik·r − e−κr

r

)
. (B8)

APPENDIX C: YUKAWA POTENTIAL

In the random-phase approximation, the static dielectric
function of a relativistic electron gas in its ground state is
given by

ε(k) = 1 + k2
TF

k2
Y (k, xr ), (C1)

where kTF is the Thomas-Fermi inverse screening length,

kTF = e(12πmene)1/2

h̄kF
, (C2)

Y (k, xr ) is given in Ref. [58] (see also Appendix B of Ref. [59]
for a more convenient form), kF = (3π2ne)1/3 is the Fermi
momentum, and xr = h̄kF

mec is the relativistic parameter. For
the very dense plasmas in which we are interested (ne ∼
1030 cm−3 in white dwarf cores), the range of k values for
which Y (k, xr ) is significantly different from Y (k = 0, xr )
occurs only at large k, when k2

TF/k2 ∼ 0. Therefore, the static
dielectric function is well approximated by

ε(k) = 1 + k2
TF

k2
Y (k = 0, xr ) = 1 + κ2

k2
(C3)

and the screened interaction potential can be accurately de-
scribed by a Yukawa potential. If we use the full expression
for ε(k) [Eq. (C1)], we find a difference of <0.3% for white
dwarf conditions between the resulting potential and the much
simpler Yukawa potential, which justifies the long-wavelength
approximation used above. Taking the limit k → 0 of Y (k =
0, xr ), we obtain

κ = kTF
(
1 + x2

r

)1/4
. (C4)
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FIG. 9. Evolution of the excess ionic energy of a pure C
plasma in the liquid phase for different system sizes. The ion
density is 5 × 1029 cm−3 (which corresponds to κa = 0.36, see
Fig. 3), T = 400 eV, and NVT simulations are employed. We find
a mean Uκ/NkBT of −118.517 ± 0.021, −118.494 ± 0.008, and
−118.497 ± 0.006 for the N = 200, N = 500, and N = 1000 sim-
ulations, respectively. The first 1000 cycles (the equilibration phase)
were excluded from the calculation of the averages. As elsewhere
in this Appendix, the uncertainties correspond to 1σ confidence
intervals.

The behavior of κ as a function of the electron density is
shown in Fig. 3. Note that under white dwarf conditions, we
are not yet in the ultrarelativistic limit (xr 
 1) where κa
becomes independent of the electron density.

APPENDIX D: VALIDATION OF THE MC CODE

In this Appendix we present the different tests that we
have performed to validate our MC code. We first benchmark
our simulations in the canonical (NVT) ensemble. This is
the simplest case, as only particle displacements are allowed
in the MC simulations. Then, we add volume changes to
our simulations and perform simulations in the NPT ensem-
ble. After validating our NPT implementation, we use it to
quantify the effect of volume changes during the liquid-solid
phase transition of the OCP and of Yukawa systems. Finally,
we present calculations in the isobaric semigrand canonical
ensemble (NPT�μ). This is the most complex case, where
displacements, volume changes, and identity changes are
allowed.

1. NVT ensemble

We first verified that our code can reproduce the energy val-
ues reported in Refs. [60,61] for Lennard-Jones and Yukawa
systems, respectively. Our energy values are all consistent
(within the statistical uncertainties) with those reported in
these works.

In Fig. 9 we show how the ion excess energy fluctuates dur-
ing MC simulations of a pure C plasma (modeled as a Yukawa
system) in the liquid phase using different system sizes. The
physical conditions used here (N/V = 5 × 1029 cm−3 and
T = 400 eV) are typical of those found in white dwarf in-

teriors. Even for a very small system containing only 200 ions
the energy converges to the same average value than larger
systems, indicating that finite-size effects can be mitigated
at minimal cost. However, smaller system sizes are associ-
ated with increased statistical fluctuations that decrease the
precision of the mean. To consider this effect, we evaluate
the uncertainties of MC simulation averages using the block-
averaging technique throughout this paper.

As another validation of our NVT simulations, we evaluate
the melting temperature �m of the OCP (κ = 0). To do so, we
follow the approach of Hamaguchi et al. [47]. More precisely,
the Helmholtz free energy of each phase (liquid and bcc solid)
is computed via thermodynamic integration on the Coulomb
coupling parameter � with

F �(�)

NkBT
=

∫ �

0

Uions(�)

NkBT

d�′

�′ + Fid (�)

NkBT
(D1)

and

F s(�)

NkBT
=

∫ �

∞

[
Uth(�)

NkBT
− 3

2

]
d�′

�′ + Fharm(�)

NkBT
, (D2)

where the ideal terms Fid and Fharm are given in Hamaguchi
et al., Uions is the ion excess energy [Eq. (23)], Uth is the
thermal component of the ion excess energy (that is, the ion
energy minus the Madelung energy), � = Z2e2/(akBT ), and
a = (3/4πn)1/3. To perform the thermodynamic integrations,
Uions and Uth are modeled with the analytic interpolation func-
tions (Eqs. (11) and (18) of Hamaguchi et al. [47], see also
Refs. [40,62])

Uions(�)

NkBT
= a� + b�1/3 + c + d�−1/3 (D3)

and
Uth(�)

NkBT
= 3

2
+ A1

�
+ A2

�2
, (D4)

where a, b, c, d , A1, and A2 are free parameters that are
adjusted to the energies extracted from our MC simulations.
The NVT simulations used to compute those energies were
performed with 1024 ions and for 4000 MC cycles.

Once the Uions and Uth fits are constructed, the melt-
ing temperature is obtained by finding the temperature �m

where F �(�) = F s(�). We find a melting temperature of
�m = 174.6 ± 1.6, in excellent agreement with the modern
�m = 175 value [41]. The uncertainty on our �m value was
found by propagating the statistical uncertainties of the MC
energy values to the analytic fits, which results in a range of �

values where the liquid and solid free energies intersect.

2. NPT ensemble

Now that we have thoroughly validated our NVT simula-
tions, we add one layer of complexity and investigate NPT
simulations. Testing NPT simulations is straightforward: for
a given system and temperature, an NPT simulation should
yield the same density (or volume) as that imposed to an NVT
simulation if the pressure imposed to the NPT simulation
corresponds to the pressure obtained in the NVT simula-
tion. Figure 10 shows how this convergence is successfully
achieved for NPT calculations performed under the same con-
ditions as those used in Fig. 9. Note that the convergence of
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FIG. 10. Evolution of the ion density for a pure C plasma in
the liquid phase simulated using an NPT simulation. The target
pressure is 8.27 × 1018 bars (which corresponds to the pressure
found using NVT simulations with an ion density of 5 × 1029 cm−3),
T = 400 eV, and the screening length 1/κ is dynamically adjusted
according to the electron density. The average density in the NPT
simulation is (5.0003 ± 0.0002) × 1029 cm−3, demonstrating that
our NVT and NPT simulations are consistent.

the density can be significantly accelerated if the simulation
box is initialized with a volume close to its final value.

Using our NPT simulations, we reevaluated the melting
temperature of the OCP at constant pressure. Nearly all in-
vestigations of the liquid-solid phase transition of the OCP
and of Yukawa systems assume that the volume change �V =
V s − V � during the transition is negligible [40,47,61–66]. In
dense plasmas, this is usually justified by invoking the fact that
the pressure of the degenerate electron gas completely dom-
inates the total pressure [67]. Using this approximation, the
melting point—which normally corresponds to the tempera-
ture where the Gibbs free energies of both phases intersect—is
simply given by the temperature where the Helmholtz free
energies are equal, F � = F s. This assumption has at least
two important practical advantages: (1) simulations can be
performed at constant volume and (2) the electron jellium
can be ignored since the electronic density is the same in
both phases at the transition. Here we investigate the validity
of this approximation with a phase transition calculation that
explicitly considers volume changes.

To compute the Gibbs free energy G for given P and
T conditions, we use a thermodynamic integration method
where we vary the coupling parameter λ, which is simply a
prefactor applied to the ion-ion interaction potential. For the
liquid, the integration is performed between a reference state
corresponding to the ideal gas (λ = � = 0) and the target state
at λ = 1,

g(λ = 1) − g(λ = 0) =
∫ 1

0

dλ′

λ′ 〈uions(λ
′)〉NPT,λ′ , (D5)

where g = G/(NkBT ) and uions = Uions/(NkBT ) is extracted
from our MC simulations in the NPT ensemble for a given λ

value. The reference ideal term is given by

G(N, P, T, λ = 0) = Fid,ions(N,V, T ) + Fjel[ne, T ] + PV,

(D6)

where Fid,ion(N,V, T ) is the ideal-gas free energy (see, e.g.,
Eq. (5) of Hamaguchi et al. [66]), Fjel[ne, T ] is the electron
jellium free energy, and the volume V is found by numerically
solving

N

V
kBT − ∂Fjel

∂V

∣∣∣∣
N,T

= P (D7)

for a given total pressure P. Numerically we integrate Eq. (D5)
in two parts. For λ � 0.1, we use Simpson’s rule to evaluate
the integral using the results from 20 NPT simulations with
0 < λ � 0.1. Note that for λ = 0 the integrand of Eq. (D5) is
simply 0: in the limit of small coupling, uions(λ) ∝ λ3/2 (see
Eq. (18) of Ref. [68]). For the the 0.1 < λ � 1 interval, the
simulations are fitted to the functional form of Eq. (D3) and
the integration is performed analytically.

For the solid phase, the reference state is the harmonic
system and we have

g(λ = 1) − gh =
∫ 1

∞

dλ′

λ′

〈
uth(λ′) − 3

2

〉
NPT,λ′

. (D8)

The harmonic reference term in the above equation is
given by

Gh = Fh(N,V, T ) + Fjel[ne, T ] + PV, (D9)

where Fh(N,V, T ) is the free energy of the harmonic lattice
(Eq. (7) of Hamaguchi et al. [66]) and the volume is found by
numerically solving

− ∂ (Fh + Fjel )

∂V

∣∣∣∣
N,T

= P. (D10)

10 12 14 16 18 20
log10 P (bar)

−0.20

−0.15

−0.10

−0.05

0.00

V
ol

u
m

e
ch

an
ge

→
s

(%
)

26 27 28 29 30 31 32

log10 ne(Γ = Γm) (cm−3)

FIG. 11. Volume change of the OCP (with Z = 6) during the
liquid to solid phase transition at constant pressure. The lower hor-
izontal axis gives the pressure imposed to the OCP and the upper
axis gives the electron density at the temperature where the transition
occurs.
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FIG. 12. Melting temperature of the OCP (with Z = 6) as a func-
tion of pressure.

This time the integration is performed numerically over the
whole domain (i.e., from λ = 1 to λ → ∞, although in
practice the integration can be stopped at λ = 5 where the an-
harmonic corrections become negligible). We use Simpson’s
rule and the results from 20 simulations from λ = 1 to λ = 5,
with an increased sampling for 1 � λ � 2 where the integrand
of Eq. (D8) is more important.

Unlike in the NVT case where only � was changed from
one simulation to the other, we must now vary λ, T , and P:

10 12 14 16 18 20
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Γ
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This work

Hamaguchi et al. 1997

26 27 28 29 30 31 32
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0.67

0.45
0.36 0.34

FIG. 13. Melting temperature of a Yukawa system (with Z = 6)
as a function of pressure. The screening length 1/κ is adjusted
according to the electron density [Eq. (C4)]. For comparison, the
results of Hamaguchi et al. [66] for the corresponding κa values are
shown.

0 1000 2000 3000 4000 5000 6000
−160

−155

−150

−145

−140

U κ
/N

k
B
T

NVTΔμ

NPTΔμ

0 1000 2000 3000 4000 5000 6000

Cycles

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

x
O

FIG. 14. Evolution of the ion excess energy and of the O concen-
tration in isobaric (red) and isochoric (black) semigrand canonical
simulations of a C-O plasma. N = 686, T = 409.4 eV, ξO = 0.5,
μref

e = 523.7 keV, P = 1018 bars for the isobaric simulation and
N/V = 4.967 × 1029 cm−3 for the isochoric simulation (which cor-
responds to the final density of the isobaric simulation). Uκ/NkBT =
−153.169 ± 0.004 and xO = 0.44661 ± 0.00002 in the isochoric
simulation, and Uκ/NkBT = −153.1 ± 0.3 and xO = 0.446 ± 0.005
in the isobaric simulation.

(1) For a given T and P, we perform simulations at dif-
ferent λ values in order to obtain the Gibbs free energy
G(N, P, T ) via integration of Eqs. (D5) and (D8).

(2) Keeping P constant, step 1 is performed again at a
different T . This step is repeated until, for a given pressure,
G(T ) can be satisfactorily mapped to find the temperature at
which G�(T ) and Gs(T ) intersect.

(3) Steps 1 and 2 are repeated for different pressures. This
allows us to find the melting temperatures at different pres-
sures, thus enabling the study of the effect of volume changes
on �m.

As for the NVT case, we found that using 1024 ions and
4000 MC cycles is more than enough to achieve convergence
and sufficiently small statistical errors. All calculations pre-
sented below were obtained for a pure C plasma, but our
conclusions remain unchanged if the ionic charge is changed.
Figure 11 shows how the volume change across the phase
transition varies as a function of pressure. As expected, the
volume change is rather small and is smallest when the to-
tal pressure is very high and completely dominated by the
electron gas. Our �V values are consistent with those ob-
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tained from a C equation of state used to model white dwarf
interiors [69].

In Fig. 12 we show the melting temperature of the C
plasma as a function of pressure. Within a pressure range
that spans 10 orders of magnitude, �m is constant within
the statistical uncertainties: all our values are consistent with
�m � 178 ± 2. This value agrees with our NVT determination
(�m = 174.6 ± 1.6) as well as with modern values published
in the literature. Note that the small offset between our NVT
and our NPT �m values is likely due to the many systematic
differences between the two methods (different analytic fits,
different thermodynamic integrations, and different ensem-
bles). This numerical experiment clearly demonstrates that the
volume change can indeed be safely ignored when modeling
the OCP liquid-solid phase transition, which is consistent
with the result of Refs. [19,22]. The term P(V � − V s) is by
no means negligible, but P(V s − V �) � −(F s

jel − F �
jel ), so that

Gs − G� � F s − F �.
This exploration of the effect of the volume change on the

melting temperature is somewhat artificial since we imposed
κ = 0 for all pressures. While this test allowed us to isolate
the effect of �V , the OCP is not a good model at the lower
end of the density range we studied (see Fig. 3). We have re-
calculated the melting curve of a C plasma with κ dynamically
adjusted during the NPT simulations to obey Eq. (C4). All the
methodology presented above for the OCP remains the same,
but we note that care must be taken when computing ∂Fh/∂V
in Eq. (D10) as κ now depends on V .

Once again we find that volume changes can be neglected.
Figure 13 shows how the melting temperature changes as a
function of pressure. The variation of �m is entirely due to

the variation of κ with pressure. For comparison we show the
results of Hamaguchi et al. [66], obtained from fits to MD
simulations in the NVT ensemble. Both curves are very simi-
lar, although there is a small systematic offset in �m between
our results and theirs. This difference is not surprising as our
methods are completely different: (1) we use MC simulations
while they use MD simulations, (2) we work in the NPT
ensemble while they work in the NVT ensemble, and (3) we
use different analytic fits and thermodynamic integrations.

3. NPT�μ ensemble

Finally, we turn to the validation of our simulations in the
isobaric semigrand canonical ensemble, the ensemble needed
to use the Clapeyron integration method described in this
work. Unfortunately, very few results of such simulations are
published in the literature, but we were able to verify that our
simulations are consistent with the results presented in Table
1 of Ref. [70] for Lennard-Jones fluids.

To validate our simulations for electron-ion plasmas, we
rely on comparisons to the somewhat simpler isochoric sem-
igrand canonical simulations (NVT�μ), where only particle
displacements and identity changes are allowed. If, for a given
temperature, total number of ions, and fugacity fraction, the
volume imposed to the NVT�μ simulation is the same as
that obtained at the end of a NPT�μ, then the energies and
concentrations of both simulations should agree. Figure 14
demonstrates that it is indeed the case. Note that the con-
vergence of the simulations is slower in the isobaric than in
the isochoric case, because the parameter space to explore is
larger in the former case as the volume is allowed to vary.
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