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Ionization of many-electron atoms by the action of two plasma models

Michael-Adán Martínez-Sánchez, César Martínez-Flores , Rubicelia Vargas, and Jorge Garza*

División de Ciencias Básicas e Ingeniería, Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa,
San Rafael Atlixco 186, Col. Vicentina, 09340 Iztapalapa, México City, México

Remigio Cabrera-Trujillo
Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Avenida Universidad S/N,

Cuernavaca, Morelos 62210, México

K. D. Sen †

School of Chemistry, University of Hyderabad, Hyderabad 500 046, India

(Received 19 December 2020; accepted 22 March 2021; published 9 April 2021)

The Hartree-Fock equations for many-electron atoms embedded in a plasma medium are solved using two
different plasma models: (a) Debye-Hückel screening (DHS) potential and (b) exponential cosine screened
Coulomb (ECSC) potential. Roothaan’s approach is implemented for these models after solving the inherent
difficulties to evaluate integrals where screening appears explicitly. A corresponding computer code was de-
veloped using the method of global basis sets (GBS). The reliability of this approach was verified by solving
the Hartree-Fock equations through implementation of the finite-differences and finite-element grid methods
and applied to two-electron atoms, yielding excellent agreement with the Roothaan-GBS (RGBS) method. The
RGBS method was used to study the energy evolution and ionization threshold of several closed- and open-shell
many-electron atoms embedded either in weak or strong DHS or ECSC plasma conditions. In all cases, a critical
value of the screening length is obtained for which ionization is achieved, being systematically larger for DHS
conditions, indicating the effect of a more repulsive ECSC potential. For He-like atoms in the ground state,
we report a comprehensive set of accurate total energy data as a function of the screening constant using
the Lagrange mesh method, which includes the electron correlation effects. The electron correlation energy
is estimated using this data with reference to the RGBS estimates of energy as the Hartree-Fock energy. The
variation of correlation energy as a function of screening constant under the different plasma potentials is
rationalized in terms of a conjectured comparison theorem. Finally, a discussion on the effect of plasma strength
on localization or delocalization of the electronic density derived from the RGBS method is presented in terms
of changes in the Shannon entropy, yielding consistent results for delocalization close to the ionization threshold.
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I. INTRODUCTION

The study of the electronic structure of atoms immersed
in a plasma is important in several fields of physics where
the systems are submitted to extreme conditions [1–4]. For
this purpose, there are some plasma models to solve the cor-
responding Schrödinger equation. Under the dilute plasma
environment, the Debye-Hückel screening (DHS) potential
[5] has been used to model the screened Coulomb potential
by introducing a short-range exponentially decaying function
in to the electron-electron and electron-nucleus interaction. A
variant of this potential, suitable for the dense plasma environ-
ment, is obtained by including a cosine function to obtain the
exponential cosine screened Coulomb (ECSC) potential [4,6].
These two potentials are representative in plasma studies.
These potentials are used to build the Hamiltonian for an atom
immersed in a plasma and the solutions to the corresponding
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Schrödinger equation are sought. Within a given plasma po-
tential, interesting effects of its depth (given by the nuclear
charge) and the width (represented by a screening constant)
on the electronic density and energy of the atomic states
needs to be accurately assessed. Understanding the process of
electronic charge transfer, including the behavior of electron
density near the ionization threshold under different model
potentials, is of fundamental importance in the theory of
electronic structure and its applications. Considering that the
experimental first ionization potential for all neutral atoms in
the periodic table is bracketed just within ≈1 eV and the elec-
tron affinities are covered within ≈0.5 eV, it becomes essential
to develop computational methods to solve the Schrödinger
equation with high degree of numerical accuracy. To the best
of our knowledge, the plasma model potentials have been
mostly applied on atoms and molecules containing only a
small number of electrons [7,8]. For example, for two-electron
atoms there are reports of energy orbitals, cross sections,
or ionization energies as function of a screening parameter
[9–14]. Some of these studies rest on accurate or approximate
methods. However, all of them show difficulties in evaluating
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some integrals where the screening appears explicitly [15].
This is the main reason why there are no reports on the
electronic structure of many-electron atoms in the periodic
table in the presence of the DHS and ECSC potentials.

Hartree-Fock (HF) [16] and Kohn-Sham (KS) [17] are two
of the main computational methods to address the problem
of the electronic structure of systems involving a Coulomb
screening. In our opinion, the main issue is related to the
evaluation of integrals where the screening is involved and
its corresponding implementation in computational codes. It
is worthwhile to develop reliable and robust computational
methods to solve HF or KS equations in the presence of the
Coulomb screening potential, which can be useful to obtain
the wave function or electron density and estimate other prop-
erties of an electronic system. In particular, for the study of
the electron correlation energy defined as the the difference
between the exact and HF total energies, Eexact − EHF, the
code development to implement the HF model assumes a
special significance within the wave functional theory.

The aim of this article is twofold. First, we solve the
HF equations when DHS and ECSC potentials are used as
plasma models, to show how the Roothaan’s approach is
implemented for these problems. Further, we report accurate
numerical results including the electron correlation for the He,
Li+, and Be2+ atoms in the ground state under the DHS and
ECSC potentials using the Lagrange mesh method (LMM).
We employ the corresponding HF energies using the RGBS
method to estimate the electron correlation energy as a func-
tion of screening parameter for these atoms under the different
plasma potentials. We show that the general trends in the
variation of total energy between the two model potentials can
be rationalized in terms of a recently proposed conjecture [13]
for the multielectronic atoms derived from the comparison
theorem of quantum mechanics. Finally, in the second part, we
present a HF (RGBS) study of the multielectron atoms Li, Be,
Ne, Na, Ar, and K as they approach the threshold ionization.
For these atoms, the response of the electron density under
the two different model screening potentials is in terms of
the critical screening constant b, electron density difference
at the nucleus, and the difference in Shannon information
entropy. Atomic units (a.u.) are used throughout our work,
unless physical units are stated explicitly.

II. THEORY

The Hamiltonian, Ĥ , considered in this work, for many-
electron atoms has the form

Ĥ =
N∑

i=1

(
−1

2
∇2

i

)
+

N∑
i=1

v(ri ) +
N∑

i> j

N∑
j=1

V (ri, r j ), (1)

where N represents the number of electrons in the system. In
this article, we do use two models for the interaction between
charged particles. The first one is the DHS potential where

v(ri ) = −Z

ri
e−bri , (2)

and

V (ri, r j ) = 1

|r j − ri|e−b|r j−ri|, (3)

with b = 1/λ, λ is the screening length, and Z represents the
nuclear charge.

The ECSC potential is another plasma model considered in
this article; for this model, we have

v(ri ) = −Z

ri
e−bri cos(bri ) (4)

and

V (ri, r j ) = 1

|r j − ri|e−b|r j−ri| cos(b|r j − ri|). (5)

For the DHS potential, the Debye screening length, λ, is
related to the density of the plasma electrons, temperature, and
effective charge of the ions in the embedded plasma [5,18,19].
For the ECSC potential, λ is related to the electron wave num-
ber and the electron plasma frequency [4,20]. In this work, we
use b as a parameter to describe the screening length for DHS
and ECSC potentials and we will discuss its connection with
the ionization potential.

A. Hartree-Fock approach

Within the Hartree-Fock (HF) approach, the wave function
is modeled by a Slater determinant, which is built by spin
orbitals. Each spin orbital represents an electron from the
definition χ (x) = ψ (r)σ (ω), with σ (ω) being the α(ω) spin
or β(ω) spin wave function. The total energy associated to this
wave function is obtained from

E = T + Vne + Vee, (6)

with

T =
N∑

i=1

〈
χi

∣∣∣∣−1

2
∇2

∣∣∣∣χi

〉
, (7)

Vne =
N∑

i=1

〈χi|υ|χi〉, (8)

and

Vee = 1

2

N∑
i=1

N∑
j=1

〈χiχ j ||χiχ j〉. (9)

The integrals involved in these expressions have the following
definitions:〈

χi

∣∣∣∣−1

2
∇2

∣∣∣∣χi

〉
=

∫
dxχ∗

i (x)

(
−1

2
∇2

)
χi(x),

=
∫

drψ∗
i (r)

(
−1

2
∇2

)
ψi(r), (10)

〈χi|υ|χi〉 =
∫

dxχ∗
i (x)v(r)χi(x) =

∫
drψ∗

i (r)v(r)ψi(r),

(11)

〈χiχ j ||χiχ j〉 = 〈χiχ j |χiχ j〉 − 〈χiχ j |χ jχi〉, (12)

with

〈χiχ j |χiχ j〉

=
∫∫

dx1dx2χ
∗
i (x1)χ∗

j (x2)χi(x1)χ j (x2)V (r1, r2)

=
∫∫

dr1dr2|ψi(r1)|2|ψ j (r2)|2V (r1, r2), (13)
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and

〈χiχ j |χ jχi〉

=
∫∫

dx1dx2χ
∗
i (x1)χ∗

j (x2)χ j (x1)χi(x2)V (r1, r2)

=
∫∫

dr1dr2ψ
∗
i (r1)ψ∗

j (r2)ψ j (r1)ψi(r2)V (r1, r2)

×
∫

dω1σ
∗
i (ω1)σ j (ω1)

∫
dω2σ

∗
j (ω2)σi(ω2). (14)

Orbitals that minimize the total energy must satisfy the HF
equations [16](

−1

2
∇2

1 + v(r1) +
N∑

a=1

[Ja − Ka]

)
χi(x1) = εiχi(x1), (15)

with

Ja(x1)χi(x1) =
[∫

dx2χ
∗
a (x2)χa(x2)V (r1, r2)

]
χi(x1) (16)

and

Ka(x1)χi(x1) =
[∫

dx2χ
∗
a (x2)χi(x2)V (r1, r2)

]
χa(x1).

(17)

Thus, we must solve Eq. (15) for each χi and the resulting
orbitals are used to evaluate the total energy from Eq. (6).

B. The Lagrange mesh method

From Eqs. (1), (2), and (3), the helium-like atom under the
DHS potential is given by the Schrödinger equation

ĤDHS = − 1

2

(∇2
1 + ∇2

2

) − Z

(
exp(−br1)

r1
+ exp(−br2)

r2

)

+ exp(−br12)

r12
. (18)

We have employed the Lagrange-mesh method (LMM)
[21–24] in which the Schrödinger equation, under the fully
correlated electron-electron interactions, is placed into a
nonuniform inhomogeneous lattice defined by zeros of clas-
sical orthogonal polynomials, using a basis of Laguerre
functions and the associated Gauss quadratures. The details of
this accurate computational procedure along with its diverse
applications have been extensively reviewed in Ref. [25]. Very
recently, LMM calculations have been reported for He-like
atoms under a screened Coulomb potential, providing the ac-
curate estimates of the critical nuclear charge [13,26,27]. The
numerical calculations reported in the present work have been
performed using the perilag code originally written by Baye
and coworkers [21–25] for the three unscreened Coulomb
charges. Here, the wave function is expressed in terms of the
perimetric coordinates [28,29],

x = −r1 + r2 + r12,

y = r1 − r2 + r12,

z = r1 + r2 − r12,

which are all defined over [0,∞]. Our version of the perilag
code employs the JADAMILU program for fast diagonalization

of large sparse matrices [30]. The particular choice of the
perimeric coordinates makes the perilag code easily adaptable
to a continuous and analytic potential function, for example,
the DHS potential. The straightforward modifications of the
code to implement the DHS potential involves replacing the
original unscreened potential with the exponential screening
terms in all the three Coulombic interactions involving the ra-
dial variables r1, r2, and r12 as given in Eq. (18). We note here
that the presently calculated LMM energies for He atom in the
presence of the DHS potential agree up to six decimal places
with those reported using a 308-term expansion in Hylleraas
coordinates [13,26]. In addition, wherever available, the LMM
energies are in quantitative agreement with the other accurate
values for He reported in the literature [9,10]. For the Li+

and Be2+ atoms, the presently reported values of energy, to
our knowledge, present the most accurate values. For Li+, our
results are more accurate than those reported earlier [31].

III. TECHNICAL DETAILS

A. Hartree-Fock computation

To solve Eq. (15), it is convenient to use a spin-free equa-
tion by integration of the variable ω1. Besides, for atoms, it is
useful the following representation for each spatial orbital

ψi(r) = Ri(r)Y mi
�i

(�), (19)

where Ri(r) is the radial contribution and Y mi
�i

(�) represents
the spherical harmonic functions. In this way, Eq. (15) is
transformed into

− 1

2
Ôr1 Ri(r1) + �(� + 1)

2r2
1

Ri(r1) + v(r1)Ri(r1)

+
∫

d�1Y
mi∗
�i

(�1)
∫

dω1σ
∗
i (ω1)[Ja − Ka]

× σi(ω1)Ri(r1)Y mi
�i

(�1) = εiRi(r1), (20)

with

Ôr = ∂2

∂r2
+ 2

r

∂

∂r
. (21)

For the Coulomb part, we have∫
d�1Y

mi∗
�i

(�1)
∫

dω1σ
∗
i (ω1)Jaσi(ω1)Ri(r1)Y mi

�i
(�1)

=
[ ∫

dr2ψ
∗
a (r2)ψa(r2)V (r1, r2)

]
Ri(r1). (22)

For the exchange contribution, the corresponding expression
for Ka depends on the electron configuration defined for an
atom since some of these integrals are zero. In summary, we
have to solve Eq. (20) to obtain Ri(r). The integrals involved
in this solution are an important issue in this procedure.

In our group, we have developed the MEXICA-C code to
study confined many-electron atoms [32]. This code is based
on the Roothaan’s approach [16], where a global basis set
(GBS) is used,

Ri(r) =
k∑

μ=1

ci
μ fμ(r) =

k∑
μ=1

ci
μNμrnμ−1e−ζμr, (23)
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TABLE I. Total and orbital energies in a.u. for the ground
state (1s2) of He, Li+, and Be2+ without presence of the plasma
environment.

He Li+ Be2+

EHF −2.86168000 −7.23641520 −13.61129943
−2.86168000a −7.23641520a −13.61129942b

ε1s −0.91795540 −2.79236449 −5.66711560
−0.91795555b −2.79236440b −5.66711560b

ELMM −2.90372438 −7.27991341 −13.65556624
−2.90372438a −7.27991341a −13.65556623c

aRef. [33]; bRef. [34]; cRef. [35].

which yields an algebraic problem to find the set of coeffi-
cients {ci

μ}. In Ref. [32], the reader can find details related to
its implementation for confined atoms. Expressions of the in-
tegrals involved with DHS and ECSC potentials can be found
in the Appendix. All these integrals have been implemented
in MEXICA-C code to obtain the corresponding HF results.

B. The Lagrange mesh method computation

We have employed the lattice parameters [30] Nx =
Ny = 50, Nz = 40, and the scaling parameters hx = hy = 0.8,
hz = 0.5.

IV. RESULTS

A. Two-electron atoms under plasma models

To check our implementation, we studied two-electron sys-
tems: He, Li+, and Be2+. The case of the helium-like ions
allows one to show in detail the effects of the plasma medium
on the ground-state energy and understand the multielectronic
results found in this work. The results obtained by HF and
LMM for He, Li+, and Be2+ are reported in Table I for
unconfined atoms, i.e., b = 0. From these results, we study
the effect of the plasma on these atoms.

1. Hartree-Fock results for two-electron atoms
embedded in a plasma

The results obtained for HF energy, EHF, are summarized
in Fig. 1. Specific values of EHF as a function of the screening
parameter b can be found in Table II.

We observe from Fig. 1 that the impact of the screening
parameter of both plasma models is similar over the total
energy when b is small (free case, no plasma environment).
However, the cosine function involved in the ECSC potential
induces an additional repulsive force, which is evidenced on
the behavior of the total energy where the ECSC potential
gives an energy above the results produced by the DHS model.
Thus, the ECSC increases the total energy more quickly than
the DHS potential for high values of b and consequently EHF

reaches zero more quickly with the ECSC potential.
Plasma effects are observed also over orbital energies, as

evidenced in Fig. 2, where the orbital energy, ε1s, is presented
as a function of b. From this figure, we appreciate that for a
fixed ε1s, the DHS potential needs a b bigger than that pre-
sented by the ECSC potential to account for the same orbital
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Li +

Be 2+
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F 
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.u
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b (a.u.)

FIG. 1. Hartree-Fock total energy (EHF), in atomic units, for He,
Li+, and Be2+ considering two plasma models: (a) DHS (solid lines
with crosses) and (b) ECSC (dashed line with circles).

energy. Thus, for this property, we corroborate the repulsive
character of the cosine function involved in the ECSC plasma
model. Within the HF method, the interpretation of the highest
occupied atomic orbital, ε1s, is given by Koopmans’ theorem
to estimate the ionization potential, I , through the relation

-6

-5

-4

-3

-2

-1

 0

 0.01  0.1  1  10

Li +

Be 2+

He

ε 1
s (

a.
u.

)
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FIG. 2. 1s occupied atomic orbital energy (εH ), in atomic units,
for He, Li+, and Be2+ considering two plasma models: (a) DHS
(solid lines and crosses) and (b) ECSC (dashed line and circles).
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TABLE II. Hartree-Fock (EHF) and Lagrande mesh method
(ELMM) energies in a.u. for He, Li+, and Be2+ atoms embedded in two
plasma models: (a) Debye-Hückel screening (DHS) potential and (b)
exponential cosine screened Coulomb (ECSC) potential.

DHS ECSC

b EHF ELMM EHF ELMM

He
0.00 −2.86168000 −2.90372438 −2.86168000 −2.90372438
0.01 −2.83179695 −2.87383879 −2.83168078 −2.87372513
0.02 −2.80214627 −2.84418058 −2.80168624 −2.84373033
0.05 −2.71456596 −2.75654881 −2.71177590 −2.75381581
0.10 −2.57304480 −2.61485295 −2.56242532 −2.60443557
0.20 −2.30582711 −2.34700618 −2.26731385 −2.30911417
0.30 −2.05835487 −2.09862877 −1.97969172 −2.02101851
0.40 −1.82924600 −1.86845055 −1.70224716 −1.74285188
0.50 −1.61731891 −1.65540132 −1.43720300 −1.47695782
0.60 −1.42153378 −1.45855793 −1.18644936 −1.22546957
0.70 −1.24095212 −1.27710900 −0.95162140 −0.99043071
0.80 −1.07470790 −1.11033009 −0.73413066 −0.77390048
0.90 −0.92198643 −0.95756547 −0.53515646 −0.57805164
1.00 −0.78200897 −0.81821418 −0.35560267 −0.40526123

Li+

0.00 −7.23641520 −7.27991341 −7.23641520 −7.27991341
0.01 −7.18654470 −7.23004184 −7.18641579 −7.22991399
0.02 −7.13693203 −7.18042597 −7.13641991 −7.17991804
0.05 −6.98962383 −7.03309572 −6.98648788 −7.02998485
0.10 −6.74911134 −6.79250671 −6.73698462 −6.78047319
0.20 −6.28616252 −6.32926775 −6.24078692 −6.28421255
0.30 −5.84619377 −5.88884627 −5.75059269 −5.79386079
0.40 −5.42802377 −5.47008214 −5.26875708 −5.31174355
0.50 −5.03062137 −5.07196244 −4.79731188 −4.83987293
0.60 −4.65307483 −4.69359111 −4.33804460 −4.38002450
0.70 −4.29456922 −4.33416683 −3.89256451 −3.93380128
0.80 −3.95436946 −3.99296642 −3.46235785 −3.50268728
0.90 −3.63180712 −3.66933195 −3.04883503 −3.08809382
1.00 −3.32626993 −3.36266070 −2.65337235 −2.69140135

Be2+
0.00 −13.61129943 −13.65556624 −13.6112994 −13.6555662
0.01 −13.54143456 −13.58570078 −13.5412999 −13.5855667
0.02 −13.47183905 −13.51610351 −13.4713031 −13.5155699
0.05 −13.26465510 −13.30890741 −13.2613565 −13.3056228
0.10 −12.92461213 −12.96882195 −12.9117486 −12.9560115
0.20 −12.26371301 −12.30775948 −12.2147816 −12.2590182
0.30 −11.62746051 −11.67124775 −11.5226947 −11.5668640
0.40 −11.01484162 −11.05828309 −10.8375089 −10.8815551
0.50 −10.42494849 −10.46796597 −10.1610137 −10.2048693
0.60 −09.85696075 −09.89948343 −09.4948064 −09.5383953
0.70 −09.31013171 −09.35209544 −08.8403282 −08.8835682
0.80 −08.78377754 −08.82512416 −08.1988952 −08.2416997
0.90 −08.27726853 −08.31794528 −07.5717250 −07.6140050
1.00 −07.79002187 −07.82998099 −06.9599607 −07.0016262

I ≈ −ε1s [36]. In this context, Fig. 2 gives important informa-
tion about the ionization of two-electron systems. From this
figure, we observe the impact of a plasma environment over
the ionization potential, which is reduced when b is increased;
in fact, there is one value of b where ε1s = 0, indicating that
under this circumstance the atom is ionized. This critical value

TABLE III. Critical screening parameter, bcrit, for ionization
threshold of several atomic systems embedded in a plasma with DHS
and ECSC screening. Corresponding values of change in informa-
tion entropy, �Sρ , and change in electron density, �ρ(0), are also
reported (see text). All quantities in a.u.

DHS ECSC

Atom bcrit �Sρ �ρ(0) bcrit �Sρ �ρ(0)

Be2+ 4.72 21.22 −33.92 2.87 24.68 −33.83
Li+ 3.55 23.77 −13.56 2.15 22.37 −13.35
He 2.33 17.36 −3.51 1.42 17.02 −3.40
Li 0.47 6.94 −0.58 0.26 6.07 −0.14
Be 0.78 14.07 −2.65 0.43 12.07 −0.99
Ne 1.10 12.68 −9.71 0.77 7.32 0.43
Na 0.40 7.33 −2.35 0.23 5.09 −0.28
Ar 0.74 14.38 −15.23 0.49 7.70 2.21
K 0.29 4.46 −9.73 0.17 2.17 −6.37

of the screening parameter, bcrit, is reported in Table III. From
Table III, we observe an important difference between DHS
and ECSC screening models; the cosine function involved
in the ECSC is more repulsive than DHS and consequently
the corresponding bcrit is bigger in DHS potential than that
presented by the ECSC potential. We are now presenting a ra-
tionalization of these trends by invoking a conjecture based on
the comparison theorem of quantum mechanics [13] valid for
the multielectronic atoms. This will be followed by a similar
analysis of the correlation energy obtained as the difference
between the energy calculated using the LMM and the HF
method, ELMM − EHF.

2. The correlation energy in the DHS and ECSC potentials:
Ground state He-like atoms

The elementary comparison theorem of quantum mechan-
ics states that if two spherically symmetric one-electron
potentials are ordered, v(1)(r) � v(2)(r), then their corre-
sponding pairs of eigenvalues, for all n, �, are ordered,
E (1)

n,� � E (2)
n,� . For nonrelativistic Hamiltonians bounded from

below, this theorem is a direct consequence of the variational
characterization of the eigenspectrum [37–39]. Generalized
comparison theorems have been proposed [40,41] which ad-
mit the two potential curves to cross over in a controlled
fashion while maintaining a definite ordering of the respec-
tive eigenvalues. Refined comparison theorems applicable to
the relativistic Dirac Hamiltonian have been also reported
[42–44].

A concise summary of the work done on the comparison
theorem is available in Refs. [45,46]. The conjectured compar-
ison theorem obtained [13] in a series of plasma potentials as
applied in the present context leads to EDHS < EECSC. We note
here that this relative ordering of energy levels holds good
for both the HF and LMM estimates. The numerical results
for the HF data have been already presented in Fig. 1, which
validate the conjectured comparison theorem. In Fig. 3, we
have similarly compared the LMM estimates of energy for
the He, Li+, and Be2+ atoms in their ground state, and the
corresponding data are reported in Table II. It is found that
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FIG. 3. Lagrange mesh method total energy (ELMM), in atomic
units, for He, Li+, and Be2+ considering two plasma models: (a) DHS
(solid lines with crosses) and (b) ECSC (dashed line with circles).

the relative ordering of the energy levels is given by EDHS <

EECSC. A direct consequence of the trends observed in Figs. 1
and 3, namely the difference EDHS − EECSC in the HF case is
found to be below that of the LMM estimates, gives rise to
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FIG. 4. ELMM-EHF energy difference, in atomic units, for He, Li+,
and Be2+ considering two plasma models: (a) DHS (solid lines) and
(b) ECSC (dashed line).

 0
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 2.33

 0  2.31  6.01  10.01  15  19.52

b c
rit

 (
a.

u.
)

I/ Z1/3  (eV)

FIG. 5. Linear relationship bcrit = mIZ−1/3 + k, with I as the ion-
ization potential and Z as the nuclear charge. (a) DHS model (solid
line) with m = 0.1125 au/eV, k = 0.0837 au, and correlation coef-
ficient of 0.9928. (b) ECSC model (dashed line) with m = 0.0708
au/eV, k = 0.0438 au, and correlation coefficient of 0.9960. Free
atom values of the ionization potential values from NIST Atomic
Spectra Database Ionization Energies Form [47].

the ordering of the electron correlation energy, ECorr, defined
as ELMM − EHF, according to ECorr−ECSC < ECorr−DHS. This is
vindicated by the plot of correlation energy versus b shown
in Fig. 4. Furthermore, we observe that as b increases, the
difference becomes larger, that is, correlation effects are more
important for stronger plasma, as well as when the electrons
reach the ionization threshold.

B. Ionization by the action of a plasma in many-electron atoms

The effects presented by two-electron atoms when they
are immersed in a plasma are also observed in many-electron
atoms. In the same Table III, we do report the bcrit for sev-
eral noble gases, alkali atoms, and Be. We must mention
that MEXICA-C has implemented the unrestricted HF (UHF)
method to solve the corresponding HF equations for open-
shell atoms, e.g., alkali atoms. All atoms considered in this
article exhibit the same difference between DHS and ECSC
potentials; ECSC induces b smaller than DHS. We found an
important result: balkali

crit < bnoble gases
crit . This result is connected

with the ionization potential presented by alkali atoms and
noble gases in the periodic table, since this behavior is mapped
over values of b to eject an electron in a plasma. We observe
that the neutral K atom presents the lowest bcrit and He the
highest one. The behavior delivered by bcrit in this table sug-
gests a relationship between this quantity and I reported for
free atoms. Thus, by considering the periodicity of I through
the coefficient Z−1/3 [47], we have a nice linear relation-
ship between IZ−1/3 and bcrit, as corroborated in Fig. 5. In
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FIG. 6. Radial distribution function as obtained by the GBS ap-
proach for free beryllium atom (dot-dot-dashed line) and considering
two plasma models: (a) DHS (solid lines) and (b) ECSC (dashed
lines).

conclusion, bcrit is connected with I . We have included results
for alkali and noble gas atoms since they are representative of
the ionization potential in the periodic table. Therefore, in this
table we are reporting upper and bottom bounds for b for some
periods in the periodic table. Naturally, the linear relationships
from Fig. 5 are useful. For example, the NIST Atomic Spectra
Database Ionization Energies Form [48] reports for magne-
sium I = 7.65 eV; from the linear relationships of Fig. 5, we
predict that bcrit = 0.46 au and 0.28 au for DHS and ECSC
models, respectively. We must mention that the exponent’s
optimization in the basis set for Roothaan’s approach is com-
putationally expensive, and for that reason, we do not report
bcrit for the whole periodic table.

We have included the beryllium atom in Table III since this
atom presents interesting characteristics when it is confined
by a constant potential, which induces ionization for particular
confinement values. For this reason, we think it is convenient
to analyze this atom under the action of the plasma models
considered here. We present the radial distribution function
(RDF) of the electron density in Fig. 6 for several values of b.
By using the free atom as the reference, we observe that the
most external maximum decreases when b is increased. The
behavior of this local property is quite similar to that found in
our laboratory for beryllium confined by a finite potential. For
both plasma models, we found that for confinements where
the atom is almost ionized, the electron density is spread out
over the whole space. This effect is mapped also over the
electron density evaluated at the nucleus, ρ(0), through the
difference �ρ(0) = ρPlasma(0) − ρfree(0), which is reported in
Table III. Thus, we observe that when the atom is almost

 32.74

 33.5

 34

 34.34

 35.38

 0  0.2  0.43  0.78
ρ(

0)
b (a.u.)

FIG. 7. Electron density evaluated at the origin of the beryllium
atom considering two plasma models: (a) DHS (solid lines) and
(b) ECSC (dashed lines).

ionized by a plasma, the electron density presents a reduction
at the nucleus since part of this charge distribution has been
delocalized. This is true for the DHS model for all atoms. For
the ECSC model, there are two exceptions of this behavior, Ne
and Ar; for these atoms, the electron density is localized close
to the nucleus. Therefore, the confinement imposed by ECSC
model predicts different results than those found by using the
DHS model or a constant potential.

We have tracked the behavior of ρ(0) as a function of b.
This behavior is presented in Fig. 7 for the beryllium atom
embedded in the DHS and ECSC plasma models. This fig-
ure reveals an important difference between ECSC and DHS
models. For the DHS model, ρ(0) always decreases when b
is increased. However, for the ECSC model, ρ(0) increases
for some values of b. This result indicates that for some
values of b the ECSC model localizes the electron density.
In contrast, the electron density always is delocalized when b
is increased in the DHS model. This result confirms that the
ECSC potential is more repulsive than that imposed by the
DHS potential.

Localization or delocalization of the electron density for
confined atoms [49–53] has been studied through the Shannon
entropy [54], defined as

Sρ = −
∫

ρ(r) ln ρ(r)dr. (24)

We consider that this quantity, useful in information the-
ory field, is appropriate to measure the localization or
delocalization of the electron density when atoms are confined
[51,53], in particular by a plasma. The Shannon entropy for
beryllium confined by DHS and ECSC potentials is presented
in Fig. 8. For this plot, we used the spherical average of the
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FIG. 8. Shannon entropy difference of the beryllium atom as a
function of the plasma screening parameter as obtained by consider-
ing two plasma models: (a) DHS (solid lines) and (b) ECSC (dashed
lines).

electron density, as in other reports [55]. In previous works,
the difference �Sρ = Sconf

ρ − Sfree
ρ has been used as a measure

of localization, �Sρ < 0, or delocalization �Sρ > 0 of the
electron density [51,53]. We observe, from Fig. 8, that �Sρ

grows up rapidly when b is close to bcrit, indicating that for
these values of b the electron density is delocalized. �Sρ for
bcrit is reported in Table III for the atoms considered in this
article. From here, it is evident that this quantity is large when
an electron is almost ejected from an atom by the action of a
plasma.

V. CONCLUSIONS

In this article, we studied several closed- and open-shell
atoms embedded in a plasma by means of two plasma mod-
els: the Debye-Hückel and an exponential cosine screened
Coulomb potential. For both cases, the Hartree-Fock equa-
tions were solved by using a global basis set through the
Roothaan’s approach. The coupling strength associated to the
plasma environment was varied until each atom was ionized.
We found that this critical coupling strength has a direct rela-
tionship with the experimental ionization energy of each atom.
Such a relationship is able to predict the critical coupling
strength of neutral atoms from their corresponding ionization
potential. We found that within a plasma when an atom is
almost ionized, its electron density is delocalized and this be-
havior is corroborated by using the Shannon entropy since this
property is increased rapidly under this circumstance. Finally,
the theoretical estimates of electron correlation energy for the
He-like atoms in the ground state are found to be ordered as
the exponential cosine screened Coulomb potential staying
below the corresponding Debye-Hückel screening potential,

in validation of a conjectured comparison theorem for the
multielectronic atoms.
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APPENDIX: MATRIX ELEMENTS
OF ROOTHAAN’S APPROACH

Because of the electron interaction with the plasma
medium, the screening potential V (r1, r2) adds an angular
dependence. For example, for the DHS potential, Eq. (3) is
rewritten as [4,11,15]

V (r1, r2) = 1

|r1 − r2|e−b|r1−r2|, (A1)

= −b
∞∑

�=0

(2�+ 1) j�(ibr<)h(1)
�

(ibr>)P�(cos θ ), (A2)

where r< = min(r1, r2), r> = max(r1, r2), θ is the angle be-
tween r1 and r2, P�(x) are the Legendre polynomials, j�(x)
are the spherical Bessel functions, and h�(x) are the Hankel
functions of first kind for a given angular momentum number
�. In the case of ECSC potential, Eq. (5), the cosine term is
expanded as a function of a sum of two exponential terms
using Eq. (A1) twice [15].

Integrals in the HF method can be separated into radial
and angular contributions. For the angular contribution, we
used the Clebsch-Gordan coefficients and for the radial part
we found integrals with the expression

IDHSP =
∫

dr
rp

1 rq
2 e−αr1 e−βr2 e−|r2−r1|/λ

|r2 − r1| , (A3)

I (�,b)
αβpq =

∫ ∞

0

∫ ∞

0
rp

1 rq
2 e−αr1−βr2 j�(ibr<)h(1)

�
(ibr>)dr1dr2,

(A4)

and

IECSCP =
∫

dr
rp

1 rq
2 e−αr1 e−βr2 e−|r2−r1|/λ

|r2 − r1| cos(|r2 − r1|/λ),

(A5)
where q and p are integers and α and β are real. In this case,
the integral I (�,b)

αβpq has a closed form

I (�,b)
αβpq = H (�,b)

αβpq + G(�,b)
αβpq (A6)
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with

H (�,b)
αβpq =

�∑
m=0

(� + m)!

2mm!(� − m)!bm+1

�∑
κ=0

(� + κ )!(p − κ − 1)!

κ!(� − κ )!(2b)κ+1

×
[

(q − m − 1)!

(β + b)q−m

(
(−1)κ

(α − b)p−κ
+ (−1)�+1

(α + b)p−κ

)

−
p−κ−1∑

s=0

(q + s − m − 1)!

s!

(
(−1)κ

(α − b)p−s−κ (α + β )q+s−m

+ (−1)�+1

(α + b)p−s−κ (α + β + 2b)q+s−m

)]
, (A7)

and

G(�,b)
αβpq =

�∑
m=0

(� + m)!

m!(� − m)!(2b)m+1

×
�∑

κ=0

(� + κ )!(p − κ − 1)!

2κκ!(� − κ )!bκ+1(α + b)p−κ

×
q−κ−1∑

s=0

(α + b)s(q + s − m − 1)!

s!

(
(−1)m

(α + β )q+s−m

+ (−1)�+1

(α + β + 2b)q+s−m

)
. (A8)
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