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Internal circulation and mixing within tight-squeezing deformable droplets
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The internal flow and mixing properties inside deformable droplets, after reaching the steady state within
two types of passive droplet traps, are visualized and analyzed as dynamical systems. The first droplet trap
(constriction) is formed by three spheres arranged in an equilateral triangle, while the second consists of two
parallel spherocylinders (capsules). The systems are assumed to be embedded in a uniform far-field flow at
low Reynolds number, and the steady shapes and interfacial velocities on the drops are generated using the
boundary-integral method. The internal velocity field is recovered by solving the internal Dirichlet problem,
also via a desingularized boundary-integral method. Calculation of 2D streamlines within planes of symmetry
reveals the internal equilibria of the flow. The type of each equilibrium is classified in 3D and their interactions
probed using passive tracers and their Poincaré maps. For the two-capsule droplet, saddle points located on
orthogonal symmetry planes influence the regular flow within the drop. For the three-sphere droplet, large regions
of chaos are observed, embedded with simple periodic orbits. Flow is visualized via passive dyes, using material
lines and surfaces. In 2D, solely the interface between two passive interior fluids is advected using an adaptive
number of linked tracer particles. The reduction in dimension decreases the number of required tracer points,
and also resolves arbitrarily thin filaments, in contrast to backward cell-mapping methods. In 3D, the advection
of a material surface, bounded by the droplet interface, is enabled using an adaptive mesh scheme. Off-lattice
3D contour advection allows for highly resolved visualizations of the internal flow and quantification of the
associated degree of mixing. Analysis of the time-dependent growth of material surfaces and 3D mixing numbers
suggests the three-sphere droplet exhibits superior mixing properties compared to the two-capsule droplet.
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I. INTRODUCTION

As droplets are used for increasingly precise tasks, such as
microreactors in microfluidic systems, it has become more im-
portant to understand how the confinement geometry affects
their internal flow. For example, certain microfluidic designs
include arrays of static droplet traps to enable reactive mixing
for a set residence time before releasing the drops by reversing
the flow direction [1]. Interesting optimization questions arise:
Do certain droplet-trap shapes increase the degree of mixing?
What is the effect of introducing asymmetry into the droplet
trap? Computational tools have the potential to screen a large
number of geometries to help answer these questions, both to
estimate the amount of mixing and for precise determination
of properties of the internal velocity field, such as the topology
and complexity of the flow.

Mixing is notoriously slow in the low-Reynolds-number
(Stokes) regime, at which most microfluidic devices operate,
but chaotic advection has been shown to greatly increase mix-
ing [2]. Aref et al. [3] provided a recent comprehensive review
of chaotic advection, including methods to characterize such
a flow, quality-of-mixing metrics, and its application in flows
from microfluidics to oceanographic scales [3]. Subjecting a
flow to time-dependent perturbations provides a straightfor-
ward way to introduce chaos, as traditionally demonstrated
by the blinking vortex model [4,5]. However, chaos has also
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been demonstrated to occur in steady flows, such as the ABC
flow originally reported by Arnold [6,7], and the character-
ization of steady chaotic advection remains an active topic
of research. For example, the Lagrangian flow topology in
cavity flows was recently shown to react to nonlinear ef-
fects according to universal mechanisms within domains of
a given symmetry [8]. An important feature of such flows is
the Kolmogorov-Arnold-Moser (KAM) torus; KAM tori that
are stable to perturbations define persistent barriers within
a flow. In the Stokes regime, Bajer and Moffatt [9] demon-
strated a quadratic flow within a spherical domain that exhibits
stretch-twist-fold chaotic dynamics. Subsequently, Stone et al.
[10] provided a simpler example of chaos inside a spherical
droplet subject to linear Stokes flows. Chaos has since been
demonstrated in many other systems relevant to microfluidics,
such as channel and emulsion flows, and chaotic advection
is critical to the effectiveness of micromixers [11]. Proper-
ties of these flows can be quantified within the mathematical
framework of dynamical systems. The traditional tool used to
visualize the flow of these systems is the Poincaré section,
which is the intersection of a trajectory with a plane. More
recently, other numerical tools (e.g., topological structure) as
well as additional measures from chaos theory (e.g., Lyapunov
exponents, see Boffetta et al. [12] and Wiggins and Ottino
[13]) have become prevalent. The numerical determination of
topological structures, such as equilibria (stagnation points)
and periodic orbits, and the relationships between them, can
be derived from discrete Morse theory [14] or by analysis of
the gradient field [15].
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More direct dynamic visualizations of mixing are impor-
tant both for experimental and numerical studies. Microfluidic
drops can be mixed during flow by serpentine channels
[16,17] or by introducing irregular obstructions into the chan-
nel [18]. Internal flows are often visualized by the passive
advection of dye, e.g., initially filling one-half of the drop
[19,20], or by particle image velocimetry [21,22]. More
advanced techniques allow for fully 3D tracking of tracer
particles, which enables the delineation of completely new
types of coherent structures and more direct comparison with
simulation [23]. Visualizations of numerical simulations bor-
rowed these ideas directly: passive tracers are used to plot
3D trajectories and map out Poincaré sections [24] or blobs
of passive dye are simulated by advecting material volumes
[25]. An issue arises when these material volumes are com-
posed of many passive particles imagined to have finite size.
Although the blob initially appears contiguous, eventually the
constituent particles will separate enough that the blob no
longer appears connected, even when the Hamiltonian nature
of the flow technically prevents such a topological transforma-
tion. Even though, given sufficient tracer particles, this simple
method often provides an adequate picture of the flow and can
even mirror experimental images due to the breakup of thin
filaments under capillary instability, more exacting methods
are required to maintain high resolution at longer times [26].
For example, the backward Poincaré cell-map method utilizes
fixed cells instead of mobile tracers and results in considerably
less noise during material advection when applied to chaotic
systems [27].

Arbitrary resolution can be achieved by explicitly tracking
the evolving interface, e.g., with a line or surface of con-
nected tracers. This concept seems to have been introduced
independently in application to inviscid flows, where it is
known as contour advection [28–30], and for creeping flow in
application to a driven cavity, where it is known as a material
surface [31,32]. A potentially significant drawback, even with
modern computing power, is that material surfaces in chaotic
flow grow exponentially [33,34]. On the other hand, this hall-
mark of chaos can therefore be arbitrarily resolved and readily
computed using the material surface method. For example, the
rate of growth of material lines and surfaces is related to useful
measures such as the topological entropy [35,36]. Retain-
ing connectivity between tracers can also reveal topological
properties of the flow in a robust manner [37,38]. From a
numerical standpoint, the local resolution of a material surface
can be maintained by simply inserting an additional tracer
between nodes that exceed a prescribed separation or by more
advanced methods that account for curvature of the surface or
allow for splitting and reconnection (surgery) [39,40].

Advection of a passive dye, or material blob, provides
quantitative information about mixing efficiency when a mea-
sure for the degree of mixing is defined. Many such measures
to quantify mixing have been proposed. Metrics include thick-
ness of the striated layers of the dye or fractal dimension of its
interface [2], stretching statistics or particle spread [41,42], or
the average distance between each point in one fluid dye to the
other [43]. Perhaps this last metric is particularly suited for
simple analysis of either experimental or numerical images
that can be converted into two-color images, where pixels
provide a natural discretization of the field. In all cases, the

goal is to convert a time series of flow snapshots (typically
assumed to be nondiffusive) into a scalar that is indicative
of how well mixed the fluid is, i.e., how quickly diffusion
can result in a completely homogeneous fluid. Finn et al.
[44] provided a direct comparison between many classes of
mixing metrics and demonstrated that they are not always
well correlated, which emphasizes that determining a suitable
measure often requires a case-by-case evaluation.

In the present paper, we use many of the above tools
to provide a comprehensive picture of the internal flow and
mixing in deformable droplets trapped in two simple types of
constrictions, one comprised of solid capsules with twofold
symmetry, and the other one of solid spheres with three-
fold symmetry. The configurations of these constrictions are
provided in Sec. II. The desingularized boundary-integral for-
mulation used to solve the internal Dirichlet problem and
recover the internal velocity field is presented in Sec. III.
Numerical and technical details regarding how passive tracers
and material lines and surfaces were advected and visual-
ized are given in Sec. IV. Particular technical challenges
were presented when the material surface, advected in three
dimensions, was assumed to be bounded by an arbitrary,
dynamic loop on the droplet interface. The explicit 3D ad-
vection and visualization techniques presented herein offer
high-resolution qualitative and quantitative insight into the
internal dynamics of these confined systems. In Sec. V, the
internal flow within a drop trapped in the two types of con-
strictions is analyzed from a dynamical systems standpoint
and visualized using passive tracers and dyes, and the relative
strength of each constriction as a passive droplet mixer is
characterized. Concluding remarks are provided in Sec. VI.

II. PROBLEM FORMULATION

Consider a deformable droplet in Stokes flow that has en-
tered a constriction composed of solid particles and become
trapped indefinitely. The system properties (notably the cap-
illary number) required for such an occurrence have been the
subject of previous work, assuming that the droplet is neu-
trally buoyant, was initially spherical, and freely suspended
in a uniform flow u∞ far away from the solid particles (and
aiming at the constriction center), and both the drop and
carrier fluids are Newtonian Stokes flows,

−∇p + μ∇2u = 0, ∇ · u = 0, (1)

where p is pressure and μ is viscosity. The solid particles
are fixed in space [45,46], and the trapped state is generated
by a long-time boundary-integral dynamical simulation, the
ultimate interfacial fluid velocity u on the drop surface being
a part of the solution. Once this interfacial velocity is known,
the flow inside the trapped drop can be recovered through
the solution of an additional boundary-integral problem and
happens to be non-trivial (see Sec. III for more detail). The
analysis of this internal flow, its mixing, and topological prop-
erties is the major goal of the present paper.

Two simple constrictions with specific geometries are con-
sidered (leading to vastly different mixing behaviors), one
composed of equisized spheres with threefold symmetry and
another one made up of parallel capsules and having twofold
symmetry. These systems are well-defined from a theoretical
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FIG. 1. Side and top views of two trapped-droplet systems embedded in a far-field flow (of uniform velocity u∞) and with characteristic
length L. (a) A droplet (̃a = 0.6) trapped between three spheres (Ca = 0.9, λ = 4, ε = 0.25). (b) A droplet (̃a = 0.5) trapped between two
capsules (Ca = 0.7, λ = 4, ε = 0.5, L = 6).

standpoint, being completely described by nondimensional
parameters and embedded in an infinite domain with uniform
far-field flow, but result in a complex steady-state flow typical
of passively trapped drops in microfluidics and porous media
[1,47]. The characteristic length L of a system is the radius
of the sphere or capsule, respectively, as shown in Fig. 1.
The constriction gap ε (set to 0.25L for the three-sphere and
to 0.5L for the two-capsule constriction) is defined as the
minimum surface clearance between the solid particles. The
capsule length L for the two-capsule construction is L = 6L.
The nondeformed drop radius ã is chosen to be 0.6L for the
three-sphere and 0.5L for the two-capsule constriction. The
drop-to-medium viscosity ratio λ is set to 4 for both cases.

The capillary number is defined as

Ca = μe|u∞|
σ

ã

L
, (2)

where μe is the external medium viscosity and σ is the
constant surface tension of the drop interface S. For the three-
sphere constriction and the above parameters, the critical
capillary number (below which the drop becomes trapped)
was determined to be Cacrit ≈ 1, using the boundary-integral
method as discussed at length by Zinchenko and Davis [45].
At the subcritical Ca = 0.9 chosen herein for the three-sphere
constriction, the resulting trapped drop is shown in Fig. 1(a)
after slowing to a migration velocity of less than 10−4|u∞|.
The solid-particle mesh resolution (total number of triangles
comprising the surface) is N̂� = 11 520, and the drop reso-
lution is Ñ� = 20 480. This resolution for the drop is higher
than those used by Zinchenko and Davis [45] and was chosen
to increase the accuracy of the computed internal velocity
field. A plot of drop velocity versus time for a (clean) drop
at this resolution prior to trapping is provided by Gissinger
et al. [48], Fig. 8 therein. For the two-capsule constriction
and the above parameters, a capillary number of Ca = 0.7 was

found to be subcritical [46] and chosen for the present study;
the corresponding trapped state is shown in Fig. 1(b). Addi-
tional simulation details for the three-sphere and two-capsule
constrictions are provided in Zinchenko and Davis [45] and
Gissinger et al. [46].

As a fraction of the vertical distance from the bottommost
point of the drop to the topmost, the trapped drop center is
at 0.56 for the three-sphere constriction and at 0.52 for the
two-capsule case. Notably, the Poincaré sections used herein
are defined as the intersection of trajectories with the plane
parallel to (x, y,0) and passing through these drop centers.
Here and below, the drop center is understood as the surface
centroid:

xc = 1

S

∫
S

x dSx. (3)

III. CALCULATION OF THE INTERNAL
VELOCITY FIELD

The steady-state droplet configurations used herein were
dynamically approached, with high accuracy, using a desin-
gularized boundary-integral algorithm. For both systems, the
suite of desingularization methods detailed by Zinchenko and
Davis [45] was used, with analytical desingularization inte-
grals replaced by semianalytical integrals in the case of the
two-capsule system [46]. The Hebeker representation is used
for solid-particle contributions, and the interfacial stress is
desingularized for both droplet self-interactions and drop-
solid interactions. The result is a system of Fredholm integral
equations of the second kind that are well-behaved for tight-
squeezing or indefinitely trapped droplets. In the trapped state,
there remains a nonzero, although very small (on the order of
1% of L) drop-solid surface clearance due to the flow-induced
pumping mechanism [49,50]; this pumping would be absent
for gravity-induced trapping.
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Once a trapped state is simulated with the interfacial ve-
locity uS on the drop surface, the next task is to restore the
fluid velocity field inside the drop. The matching viscosities
case is much simpler in this respect, since for λ = 1 the
original boundary-integral solution is valid for the entire fluid
domain, thus providing the velocity field within the droplet.
For a general λ �= 1, though, the fluid velocity inside the drop
must be recovered from an additional solution of the internal
Dirichlet problem for Stokes flow with prescribed boundary
values u = uS on S.

Following the general theory [51–54], the flow strictly
inside the drop can be sought as a double-layer potential,

u(y) = 2
∫

S
Q(x) · τ(r) · n(x) dSx, (4)

where Q is an unknown density function. Upon taking the
limit y → S and the substitution (Wielandt’s deflation for a
container) Q = W − W ′/2 (where prime indicates rigid-body
projection conveniently calculated by the recipe in Zinchenko
et al. [55]), a fully deflated boundary-integral equation is
obtained for W ,

W (y) = − 2
∫

S
W (x) · τ(x − y) · n(x) dSx + W ′

− n(y)

S

∫
S

W · n dS + uS (y) for x, y ∈ S, (5)

with the unique solution and the spectral radius less than one,
suitable for an iterative solution by the simplest method of
successive substitutions.

In numerical implementation, standard desingularization
of the double-layer integral in (5) is achieved with the sub-
traction

−2
∫

S
W (x) · τ(r) · n(x) dSx

= −2
∫

S
[W (x) − W (y)] · τ(r) · n(x) dSx − W (y), (6)

valid for y ∈ S. The tolerance for iterative solution of (5) was
set to 10−8|u∞|. Once W and Q are obtained, the internal flow
u(y) is computed using the regularized form of (4),

u(y) = 2
∫

S
[Q(x) − Q(x∗)] · τ(r) · n(x) dSx + 2Q(x∗), (7)

valid for y strictly inside S. Here, x∗ is the mesh node on S
closest to the observation point y. Unlike in (6), regularization
(7) alleviates but does not completely remove the singular
behavior of the double-layer integral, when y is close to S.
The more powerful high-order near-singularity subtraction
of Zinchenko and Davis [45] could not be used for Eq. (4)
because it would require the droplet to be of a specific shape
(sphere, spheroid, or general axisymmetric shape [46]).

IV. VISUALIZATION OF THE
INTERNAL VELOCITY FIELD

A. Numerical methods

All reported values are made nondimensional using the
far-field velocity and characteristic length of each system.

The velocity and timesscales are |u∞| and L/|u∞|, respec-
tively. Passive tracers were advected using the fourth-order
Runge-Kutta method with a time step of �t = 1. Note that the
maximum dimensionless velocity within either trapped drop
is ≈0.01. Using a time step two orders of magnitude smaller,
�t = 0.01, with either Runge-Kutta or a simple Euler inte-
gration, resulted in visually indistinguishable trajectories, e.g.,
for the complex orbits discussed in Sec. V. When advecting a
material line, a line of tracers, connected in serial by edges
of length le = 0.01, was initialized between two given points,
e.g., on the drop interface. When any edge length exceeded le,
the edge was bisected by adding another tracer. When an edge
length dropped below le/2, its two nodes were merged. When
the material line was supposed to lie on a plane of symmetry,
all the nodes were projected onto the plane after every time
step to correct for numerical drift.

Advection of a material surface closed by an arbitrary
boundary, in this case confined to the droplet interface, pre-
sented several technical challenges, some of which were
unique to using a boundary-integral method for tracer advec-
tion. Here, we outline the method at a conceptual level. First,
the closed loop that forms the material surface’s boundary
was advected by interpolating the interfacial velocity field
(alternatively, the boundary-integral problem could be solved
for points located on the surface). This loop and the interior
material surface were bridged (triangulated) in such a way that
interior points did not approach too near to the surface, which
would have caused instability due to the singular nature of
the boundary-integral formulation. The resolution of the 1D
boundary loop was maintained in the same manner as the
material line described above and the quality of the entire
material surface mesh was also maintained adaptively using
a simple edge-length based criteria, similar to that employed
by Branicki and Wiggins [39] (see Fig. 6 therein). Edges
were bisected (and additional edges and triangles created to
maintain a triangulated mesh) if they exceeded 2le and edge
nodes were merged if within le/2. This simple adaptive mesh
scheme does not enforce a limitation on the number of edges
per node, but in practice it resulted in a maximum edges per
node of about ten. Since there were no per-node quantities
to calculate for this passive mesh, there was no technical
requirements regarding a minimum or maximum number of
first neighbors. Finally, the advected material surface must be
visualized, keeping in mind that the aspect of interest is the
interaction between the two volumes that it separates within
the drop. As shown in Fig. 2, at any given time step, we have
a surface that is bounded by the drop interface. The surface is
used to carve out two distinct volumes (a feature available in
the open source software BLENDER V2.78). These two parts of
the drop interior can then be rendered with different colors to
mimic translucent dye.

B. Potential sources of error

Studying possibly chaotic dynamical systems numerically
is always subject to the degrading effect of round-off errors
over long times. However, additional systematic errors can
arise when the boundary conditions (herein, the shape and ve-
locity of the drop interface) are also not known analytically. In
the present case, e.g., symmetry breaking (see Sec. V, Fig. 8)
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FIG. 2. Summary of how an advecting material surface bounded by the drop interface is visualized. At any given time step, we begin with
a material surface (yellow) within a droplet volume (transparent grey). The material surface is used to divide the volume into separate parts
(one of which shown in opaque grey). Finally, the two parts can be rendered separately to mimic translucent dyes (red and blue).

can occur, caused by slight offsets of the droplet from the
center of symmetric systems, which developed as the droplet
approached the particles from its initial upstream position (see
Gissinger et al. [46] for a discussion of how such effects
were mitigated). Additionally, although the boundary-integral
equations can be solved with arbitrarily high precision, their
singular nature becomes problematic as tracers approach the
drop interface. Without refinement of the Ñ� = 20 K resolu-
tion droplet meshes used above, small but clearly nonphysical
perturbations of trajectories occur within distances of ≈0.005
of the interface [using the simple singularity subtraction in
Eq. (7)]. These singularity perturbations can have subtle but
important effects when calculating dynamics; if tracers al-
ways tend to be kicked away from the interface at a given
point, apparent periodic orbits can be observed that are, in
fact, numerical artifacts rather than representative of the exact
system dynamics. For example, an apparent limit cycle in the
symmetry plane of the three-sphere droplet could not be ad-
equately resolved due to this issue. It was not uncommon for
trajectories to switch between regions separated by symmetry
planes. Reducing the time step by two orders of magnitude,
�t = 0.01, did not reduce or promote this behavior. This
basin hopping was likely caused by small numerical asym-
metries in the boundary conditions due to the finite drop and
solid particle triangulation.

Finally, a boundary integral method was used to obtain
these droplet configurations dynamically, and was subject to
a convergence tolerance of 1 × 10−5 when solving for inter-
facial velocities. The trapped state of the droplet is subject to
this tolerance as well; in other words, the final droplet velocity
is small but nonzero (≈1 × 10−5). Therefore, there exists a
finite divergence through the interface, i.e., surface integral
of the normal component of interfacial velocity, when the
interface is assumed to be stationary (for example, divergence
is −2.9 × 10−5 for the two-capsule drop). This can cause un-
physical behavior of tracers when observed over long enough
durations. For example, the apparent KAM torus in Fig. 5(d)
spirals slowly inward when observed for durations >1 × 105.
The divergence through a sphere of radius 0.03 at the center
of this spiral is ≈1 × 10−6. The overall divergence through
the drop surface may be artificially eliminated by subtracting
the velocity component orthogonal to the interface. Solving
for the internal velocity using this artificial interfacial velocity
field significantly decreases the rate of inward trajectory, but

the reported qualitative features of the flow are not affected by
this perturbation to the interfacial velocity field.

V. NUMERICAL RESULTS

A. 2D streamlines and equilibria on symmetry planes

Streamlines for the internal velocity field of droplets
trapped in three-sphere and two-capsule constrictions are
shown in Fig. 3. Planes of symmetry were used to create
cutaways of each drop for visualization; a quadrant and a sixth
are sliced out of the two-capsule and three-sphere constric-
tions, respectively. Planes of symmetry are good candidates
for equilibria (stagnation points) of the 3D velocity field,
and one equilibrium is observed on each of the cutaway
faces in Fig. 3 (highlighted with colored dots). The max-
imum interior dimensionless velocity is ≈0.01 and occurs
at the drop interface and away from solid-particle surfaces.
For both drop-solid configurations, equilibria appear near the
lower perimeter of the dimpled near-contact region (formed
by lubrication interactions with the solid surface), and near the
drop interface. Also, equilibria appear away from the interface
in the upper half of each drop. However, these apparently
similar pairs of equilibria interact very differently in each of
these systems. Not shown are equilibria that exist on the drop
interface itself; for example, assuming perfect symmetry, an
obvious heteroclinic orbit (trajectory between two different
equilibrium points) within both drops is that between the
bottommost and the topmost points of each drop, consisting of
a simple vertical line along the intersection of the symmetry
planes. Small perturbations of a tracer near symmetry planes
can greatly affect its long-term dynamics, e.g., by causing it
to switch between quadrants of the two-capsule drop.

The equilibria shown in Fig. 3 can be classified by the
eigenvalues of the linearized flow. Local linearizations were
obtained using a grid centered on the equilibrium with spacing
of 0.001 between grid points to calculate velocity gradients by
finite differences; using an order of magnitude larger spacing
did not affect values within the precision provided in Table I.
In all cases, the equilibria have one real eigenvalue and a pair
of complex conjugate eigenvalues with a real part of opposite
sign. The signs of the eigenvalues confirm that both of the
identified equilibria in the three-sphere droplet are 2D unsta-
ble and 1D stable; we designate this equilibrium as a (2,1)
saddle focus. As can also be deduced from the streamlines
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FIG. 3. Cutaways of trapped drops reveal internal dynamics, with velocity magnitude shown in color. (a) A sixth, defined using planes of
symmetry, is cut from the three-sphere droplet to reveal two-dimensional streamlines and equilibria (red and blue). (b) A quadrant is cut from
the two-capsule droplet, revealing two equilibria (green and orange) on orthogonal symmetry planes.

in Fig. 3, one of the equilibria in the two-capsule is a (1,2)
saddle focus. If the system were perfectly symmetric, this
equilibrium (green in Fig. 3) would be a sink whose basin of
attraction within the drop comprises one-half of its symmetry
plane, with the drop centerline as its separatrix. As discussed
below, symmetry is broken by numerical artifacts during the
dynamic boundary-integral simulation used to create these
systems, which destroy the centerline separatrix.

B. Dynamics within the two-capsule droplet

The interactions between the (1,2) and (2,1) saddle foci
help define the topological skeleton of the velocity field. The
unstable and stable manifolds associated with each type of
saddle focus is shown schematically on the right-hand side
of Fig. 4(a). On the left-hand side of Fig. 4(a), it can be
seen that tracers originating in the two-capsule droplet near
the green point flow toward the orange point. One trajectory
(bold black curve) is shown that seems to shadow a connection
between these saddle foci, but we believe there is not a true
heteroclinic orbit between these points (see below). Note that,
with a small perturbation of the initial starting point, the tracer
could instead flow to the other (2,1) saddle focus, following a
mirror-image orbit within another quadrant. To help visualize
how this orbit influences the internal flow, the trajectories of
100 tracer particles, all starting in one quadrant but near the
drop center, are also shown in color. When observing the time
series of tracer trajectories within the two-capsule droplet,

they are most obviously characterized by loops around the
near-heteroclinic orbit within a given quadrant. However, at-
tempts to locate a heteroclinic connection between these two
equilibria were unsuccessful; instead, the unstable manifold
of the (1,2) saddle focus [shown in green and forward time
in Fig. 4(b)] nearly misses and is attracted to the unstable
manifold of the (2,1) saddle focus (located within a symmetry
plane). The stable 1D manifold of the (2,1) saddle focus is
shown in red, with the arrow indicating inverted-time flow.
Long-time trajectories of these tangled orbits are complex, in-
volving many circulations around the near-heteroclinic orbit.
Such trajectories also inevitably approach the drop interface
at times, perhaps destroying any hetero- or homoclinic orbits
due to the noise of the singular boundary-integral method
(highlighting the main drawback of dynamical systems analy-
sis using this formulation). In contrast to this system, both of
the equilibria within the three-sphere droplet are (2,1) saddle
foci and the internal dynamics are quite different, as discussed
below.

The combined Poincaré sections of 100 tracers starting
within 0.01 of each other near the center of the two-capsule
droplet are shown in black in Fig. 5(a), where 3D trajectories
are intersected with the plane parallel to (x, y,0) and passing
through the drop center. The total duration of each trajectory
is 5 × 105, resulting in >86 000 total points of intersection.
The points within the blue region result from the one-time
flow away from the (1,2) saddle focus, shown in Fig. 5(b)
(also shown in Fig. 4). Shortly thereafter, the tracers tend

TABLE I. Eigenvalues of local linearizations of the flow at stagnation points inside the drops.

System Symbola Eigenvalues (×103) Classification

Three-sphere (−3.01 + 0.00i, 1.50 + 26.1i, 1.50 − 26.1i) (2,1) saddle focus

Three-sphere (−2.72 + 0.00i, 1.36 + 18.6i, 1.36 − 18.6i) (2,1) saddle focus

Two-capsule (−4.12 + 0.00i, 2.06 + 24.7i, 2.06 − 24.7i) (2,1) saddle focus

Two-capsule (0.41 + 0.00i, −0.20 + 7.46i, −0.20 − 7.46i) (1,2) saddle focus

aSee Fig. 3.
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(a) (b)

FIG. 4. Internal flow dynamics within a quadrant of the two-capsule droplet revealed by tracers. (a) The interaction between the (1,2)
saddle focus (green) and a (2,1) saddle focus (orange) is highlighted by a trajectory (black). In addition, 100 tracers starting near the drop
center (placed randomly inside a cube of side length 0.01) are shown in color. See Fig. 3 for location of saddle points with respect to the drop
interface. (b) The nonexistence of a heteroclinic orbit between the two saddle foci is shown, with a forward-time trajectory from the green
point and reverse-time trajectory from the orange point.

toward regular orbits, as can be inferred from the Poincaré
map. One such characteristic orbit is shown in Fig. 5(c), which
shows a tracer just before entering the orbit. The orbit is
visualized over a total trajectory duration of >2.5 × 106, and
has a period of ≈1125. It consist of 12 turns but, despite
its apparent complexity, is a simple loop (i.e., an unknot, as
determined by the method of Dorier et al. [56]). Figure 5(a)
also reveals a manifold that borders the drop interface. A

(a) (b)

(c) (d)

FIG. 5. Visualizations of the flow within a quadrant of the two-
capsule drop. Axes in (b) apply to entire figure. (a) The Poincaré
section for 100 tracers starting near the droplet center, intersecting
with the xy plane that contains the drop center (shown in black).
Points within the blue section result from the trajectories shown
in (b). A KAM torus is shown in orange. (b) Another view of the
trajectories shown in Fig. 4. (c) An example of a complex periodic
orbit. (d) The orbit of a single tracer initialized near the center of the
manifold in (a). Shaded to emphasize position along the z axis. The
Poincaré section of this trajectory is shown in orange in (a).

tracer initiated in the interior of this manifold, away from its
edges, reveals an apparent KAM torus when observed over
a duration of 1 × 105, as shown in Fig. 5(d). As discussed in
Sec. IV B, over longer durations this trajectory succumbs to an
unphysical inward spiral. The Poincaré section for this orbit
over a duration of 1 × 105 is shown, in orange, in Fig. 5(a).

C. Dynamics within the three-sphere droplet

A similar analysis was completed for the three-sphere sys-
tem, with notably different results. The combined Poincaré
section for 100 tracers starting near the droplet center is shown
in Fig. 6(a). The stochastic region filling most of the cross
section is a classic indicator of chaotic behavior, suggesting
enhanced mixing for this threefold-symmetric system as com-
pared to the two-capsule drop. A large prohibited region is
also revealed within each sixth of the droplet, which con-
tains more regular orbits. One such trajectory is calculated
by randomly placing a tracer within the prohibited region,
resulting in five-sided shapes comprising its Poincaré map
[shown in Fig. 6(a) in orange]. This relatively stable trajectory
is shown in 3D in Fig. 6(b), and revealed to be contained by
a torus embedded in the upper part of the droplet, at least
within its duration. The shape of the prohibited region and
the interior trajectory suggests the existence of islands chains
but these could not be located; it is possible that they are
destroyed by the divergence or symmetry-breaking issues dis-
cussed in Sec. IV B. A trajectory within the large chaotic sea
is shown in light blue as it explores much of the surrounding
space, including passing through the center of, and around the
perimeter of, the stable loop.

For the three-sphere droplet, both of the interior saddle
points marked in Fig. 3 are (2,1) saddle foci. Tracers ini-
tialized at these points follow chaotic trajectories visually
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FIG. 6. Dynamic behavior within the three-sphere droplet. (a) In-
tersections with the xy plane containing the droplet center, for 100
tracers initialized near the droplet center, over a duration of 5 × 105

(shown in black). The Poincaré map of a single tracer initialized
outside of the large chaotic sea is also shown in orange, over a
trajectory of the same duration. Dotted green lines indicate planes of
symmetry. (b) The orbit from frame (b) is shown, colored to indicate
position along the z axis. Also shown in light blue is part of a chaotic
orbit (over a duration of 2 × 104). Two orthogonal views shown.

similar to that shown in Fig. 6(b). Observations of chaotic
tracers show that the saddle points interact with each other and
themselves. For example, a tracer may flow toward the upper
(2,1) saddle focus (the red point in Fig. 3), spiral outward
and away from its symmetry plane, and then return, with this
pattern repeating a number of times. As shown in Fig. 7, when
initializing a tracer at either of these saddles, and letting time
run backward, the tracers end up at the top of the drop, after
approaching the drop interface. Aside from the top and bottom
of the drop, other equilibria on the interface include another
point corresponding to a source within the 2D surface, located
at the center of the dimpled near-contact region, and a point of
extensional flow above the dimple (see Gissinger et al. [48],
Fig. 10(a) therein, for a visualization of this interfacial field).
Based on observing the time series of advected tracers, these
features have a less direct influence on the internal dynamics.
For example, a tracer starting near the center of dimple, and
run backward, first approaches the nearby interior saddle point

FIG. 7. Reverse-time trajectories from the two (2,1) saddle foci
located on one symmetry plane of the three-sphere droplet. In both
cases, relatively simple orbits terminate at the stagnation point at the
top of the drop, indicating a heteroclinic connection.

before flowing to the top of the drop, resulting in a trajectory
similar to those shown in Fig. 7. These backward orbits high-
light the important role of the equilibrium at the top of the
three-sphere drop, which is repelling along the drop surface
and attracting along the drop centerline (in forward time). So,
a class of common trajectories can be summarized: A tracer
that approaches the centerline and ends up near the top of the
drop may flow toward any of the six (2,1) saddle foci, with
a small perturbation. In contrast, tracers near the top of the
two-capsule droplet are directed along the axial direction of
the capsule and seem more likely to shadow the heteroclinic
connection between the top and bottom of the drop contained
within the drop surface.

D. Mixing within trapped droplets

The 2D flow within the axial symmetry plane of the two-
capsule droplet is shown in Fig. 8. Theoretically, all velocity
components should lie within the plane but, to remove nu-
merical drift from the velocity of the dye interface, which is
calculated in 3D, tracers were projected back on the symmetry
plane at each time step. The symmetry breaking between the
two counter-rotating vortices is attributed to the drop being
slightly offset from the constriction center and would be dif-
ficult to prevent for this dynamically created system. The
axial cross section shown is almost circular (eccentricity of
≈0.27), and so a qualitative similarity to the flow within a
sphere or circle is expected. For example, Fig. 8 is analogous
to the 2D flow within a circle discussed by Wang et al. [27]
(see Fig. 6 therein), despite their equations being derived for
a very different situation (fully developed flow in a slightly
curved pipe). In the present system, the interface is in motion;
the filament that forms at the bottom of the droplet becomes
arbitrarily thin over time. This embedded 2D field is not
divergence-free, as it is a cross section that contains the mani-
folds of 3D saddle foci; in this case, the unstable 1D manifold
of the (1,2) saddle focus induces stretching perpendicular to
the plane in Fig. 8, allowing the saddle foci to be attractors
within the plane.

The advection of a 2D material surface within the two-
capsule drop is shown in Fig. 9. As indicated by the
streamlines in Fig. 3, the highest surface velocity occurs
midway between the capsules, i.e., in the symmetry plane
containing the 2D flow in Fig. 8. The interfacial velocity
field pinches the boundary of the material surface toward
the circular perimeter and pushes the upper half (red dye)
of the drop first outward and downward, then inward and
upward. The lack of persistent thin layers between the two
dyes is one qualitative indication of relatively poor mixing
in the system over this time period. The material surface
closely approaches the droplet interface in several locations,
especially just above the dimpled near-contact region; selected
smoothing of the material surface is done for visualization
purposes, as a postprocessing step. Advancing beyond t ≈
650 would require additional improvements to the meshing
scheme, e.g., curvature-adaptive edge length criteria to resolve
the thin filament evolving toward the bottom of the drop.

Advection within the three-sphere droplet is shown in
Fig. 10. Upward flow occurs at the center of the drop and more
slowly in the near-contact region, and downward flow closer
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FIG. 8. Advection of a 2D passive dye within the axial symmetry plane of the two-capsule droplet, using the dye interface as a material
line. The material line is initialized at the droplet center.

to the interparticle interstices. The material surface quickly
increases in complexity, so a cross-sectional cut using one
symmetry plane is used for t > 225 to reveal the internal dy-
namics. The development of thin layers between the material
surface evidences good mixing, e.g., visible near the center
of the drop at t = 500. These persistent striations, which do
not appear in Fig. 9 over the same timeframe, would allow
for quicker diffusion between the two regions in a system
with finite Péclet number, especially as thin layers between
the material surface accrue. The stretch-and-fold motif, often

cited as a model of chaos, is more obvious for the three-sphere
droplet, with stretching of the material surface as it flows
toward the top of the drop, and folding (and stretching) as
it returns along the interface back toward the bottom. Visual
comparison of Figs. 9 and 10 suggests a significantly quicker
increase in the surface area and complexity of the interface
in the case of the three-sphere droplet; the complexity of the
system is quantifiable via topological entropy.

As discussed by Giona and Adrover [57], the growth rates
of material lines and surfaces follow the same scaling, i.e.,

FIG. 9. Advection of a passive material surface within the two-capsule droplet (solid particles hidden). The initial surface lies on the xy
plane passing through the drop center. Images are created using the procedure described in Fig. 2, which corresponds to t = 25. At t = 650,
the material surface consists of ≈48 K nodes (≈95 K triangles).
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FIG. 10. Advection of a passive material surface separating red and blue dyes within the three-sphere droplet (solid particles hidden),
where each face of the material surface is colored according to the dye with which it is in contact. The initial interface lies on the xy plane,
passing through the drop center. For t > 225, half the droplet is hidden to reveal the internal dynamics (the full droplet is shown as the smaller
image at t = 325). Visually, this threefold-symmetric system appears considerably more mixing than that of the two-capsule droplet, including
the formation of thin layers of each dye by t = 500 that could be mixed by diffusion at finite Péclet number. At t = 500, the material surface
consists of ≈150 K nodes (≈300 K triangles).

both are related to the topological entropy of the system. So,
the relative complexities of the two systems can be quantified
by the rate of increase of the material surface area: Over the
initial duration of 600, the average rate was 2.7 × 10−2 for the
three-sphere droplet and 5.5 × 10−3 for the two-capsule drop.
As shown in Fig. 11, the surface area versus time relationship
appears to be piecewise linear for t < 600. For the three-

sphere droplet, the sharp increase in the rate (t ≈ 160 − 180)
corresponds to the surface initially reaching the top of the
drop. If the material surface eventually reaches an exponential
growth regime, it is beyond the timescale reachable with our
current numerical tools; such a regime could occur when the
duration spans many stretch-and-fold cycles associated with
the sharp increase in rate of surface area growth.

(a) (b)

FIG. 11. Mixing metrics for the systems shown in Figs. 9 and 10. (a) Growth of the interfacial area as a function of time. The rate of
increase is a measure of system complexity. (b) The mixing number, a measure of how quickly a system can be mixed by diffusion, decays
faster for the three-sphere droplet, indicating superior mixing properties.
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The 3D mixing within the two systems can be directly
quantified using the mixing number proposed by Stone and
Stone [43]. This number is the average square distance from
each point in the drop to the oppositely colored dye and
can provide a direct comparison between systems when nor-
malized by the mixing number at t = 0. When the interface
between the dyes is well-defined, as by a material surface, this
metric equates to the average square distance from the inter-
face. As noted by Stone and Stone [43], the mixing number
converges quickly with respect to the number of points sam-
pled within the drop volume. For example, the three-sphere
and two-capsule results in Fig. 11(b), respectively, use ≈52 K
and ≈59 K sample points, (chosen using a 50 × 50 × 50 grid
and eliminating sample points outside the drop), but the re-
ported values are visually indistinguishable when using only
≈3 K sample points. An inverse trend is observed between
interfacial area and mixing number, supporting the idea that
topological entropy is a good indicator of the system’s mixing
capability. The faster decay of the mixing number in Fig. 11(b)
for the three-sphere drop quantifies its superior mixing quali-
ties over the two-capsule drop. The two-capsule drop reaches
≈5% of its original mixing number, while the three-sphere
drop falls to less than half that (≈2%).

VI. CONCLUDING REMARKS

The internal flows of deformable droplets after reaching
the steady state within two types of passive droplet traps,
modeled by three-sphere and two-capsule constrictions, are
examined. The systems were previously created using the
boundary-integral method, for which initial velocity data
are available solely at the drop interface. In the present paper,
the interior velocity fields were recovered by solving the in-
ternal Dirichlet problem, also with a (partially) desingularized
boundary-integral method using the double-layer formulation.
Standard tools from dynamical systems theory, such as in-
tegral curves and Poincaré maps, are utilized to reveal the
topological structure and properties of each system. Nondif-
fusive mixing within each droplet is visualized and quantified
by advection of linked tracer particles. For example, in 2D,
the material line that bounds two passive dyes is explicitly
tracked using an adaptive number of tracers. In 3D, a proce-
dure is introduced for advecting material surfaces bounded by
arbitrary, time-dependent closed curves, and this 3D contour
advection is used to visualize both chaotic and regular mixing
within droplets.

Interior equilibria on the symmetry planes of each flow
are identified to be saddle foci. In both cases, two interior
saddle points are located on each symmetry plane, with one
saddle point in the upper half of the droplet and the second

one just below the dimpled region nearly coating the solid
particles. However, these apparently similar configurations
give rise to very different flow dynamics. For the two-capsule
droplet, the upper saddle point is a (1,2) saddle focus, and
the lower is a (2,1) saddle focus. The interaction between
these equilibria influences the flow dynamics, which include
complex but regular orbits. The analogous equilibria within
the three-sphere droplet are both (2,1) saddle foci. A Poincaré
section at the center of the three-sphere droplet, created by
tracers starting near the drop center, reveals chaotic behavior
throughout most of the droplet. Finally, the mixing within both
droplets is visualized using material lines and surfaces, which
bound two passive dyes, each initially filling one-half of the
drop. Qualitative observations suggest that the three-sphere
system has greater tendency to create finely striated layers
between the dyes. The higher rate of growth of the material
surface and faster decay of the mixing number within the
three-sphere droplet versus the two-capsule droplet reinforces
the conclusion that the three-sphere configuration results in a
more effective droplet mixer.

Confined, deformable droplets swept along by a carrier
fluid are a common occurrence in the physical world. The jux-
taposition between this easily realizable, and comprehensible,
system and its complex dynamics makes for an interesting
study and its analysis is only limited by dynamical systems
theory and related fields. For example, slightly more advanced
classifications of the interior flow could include identification
of all elliptic, hyperbolic, etc. points, as well as calcula-
tion of Lyapunov exponents. Several direct extensions of the
current work are also possible. All techniques used herein
can be applied to transient drops, e.g., undergoing periodic
motion. More experimentally practical systems could include
droplets within channels. Due to the highly sensitive nature
of chaotic trajectories and their tendency to approach the
drop interface, future studies of mixing in deformable droplets
should consider more advanced desingularization or inter-
polation techniques, such as quadrature by expansion [58].
Also, a curvature-adaptive mesh resolution would be helpful,
allowing for the resolution of arbitrarily thin 3D filaments
while also decreasing the computational requirements of low-
curvature regions of the material surface.
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