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Anomalous diffusion in a bench-scale pulsed fluidized bed
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We present our analysis on microrheology of a bench-scale pulsed fluidized bed, which represents a weakly
confined system. Nonlinear gas-particle and particle-particle interactions resulting from pulsed flow are asso-
ciated with harmonic and subharmonic modes. While periodic structured bubble patterns are observed at the
mesoscale, particle-scale measurements reveal anomalous diffusion in the driven granular medium. We use
single-particle tracks to analyze ergodicity and ageing properties at two pulsing frequencies having remarkably
different mesoscale features. The scaling of ensemble-averaged mean-squared displacement is not unique. The
distribution of time-averaged mean-squared displacements is non-Gaussian, asymmetric, and has a finite trivial
contribution from particles in crowded quasistatic surroundings. Results indicate weak ergodicity breaking,
which along with ageing characterizes the nonstationary and out-of-equilibrium dynamics.
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I. INTRODUCTION

Multiphase flows contain a broad range of spatiotemporal
scales corresponding to complex nonlinear dynamics [1–6].
Fluidization is a notable example in which particles are sus-
pended by an incoming stream of fluid, whereby they exhibit
fluidlike behavior. Traveling kinematic waves manifest as
bubbles which create spatial inhomogeneities in solids con-
centration. In particular, pulsed fluidized beds (PFBs) are
characterized by recurring bubble patterns resulting from dy-
namical structuring and suppression of chaos compared to
fluidized beds having nonperturbed inflow. PFBs have shown
improved hydrodynamics by reducing or eliminating chan-
neling or clumping of particles and enhanced heat and mass
transfer properties while being nonintrusive. Prior studies
on PFBs are mostly restricted to meso- and macroscale ob-
servations [7–12]. Pulsing excites several interacting modes,
and particle-level description is pivotal in elucidating some
of the observed features. Trajectories of fluidized particles
evolve depending on multiple factors such as external forcing,
momentum exchange with carrier phase, interactions with
neighbors, material properties, and confinement, and transi-
tion through different states. For instance, particles in the
vicinity of bubble wakes experience a greater acceleration
compared to those near the distributor or other quasistatic
regions.

Previous studies [13–17] have examined velocity fluctu-
ations and reported deviations from ideal Brownian motion.
The simplistic assumption of Maxwellian distribution breaks
down quite easily in multiparticle systems and results in
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anomalous diffusion where the ensemble-averaged mean-
squared displacement (MSD) is described by

〈x2(�)〉 ∼ �γ . (1)

The process is subdiffusive for γ < 1 and superdiffusive for
γ > 1, both of which are observed in nature and engineering
applications [18–25], while γ = 1 describes Brownian dif-
fusion. There also exist diffusive environments which cannot
be described by a unique value of γ and involve transition
of regimes discussed above. Different sources of anoma-
lous diffusion have been studied in the past, which include
continuous-time random walk (CTRW), fractional Brown-
ian motion (FBM) and the motion governed by fractional
Langevin equation (FLE), scaled Brownian motion (SBM),
transport on a fractal support, and heterogeneous diffusion
processes (HDP). Previous analyses also include combining
these parent processes such as CTRW-FLE [26] and SBM-
HDP [27], the latter termed the generalized diffusion process
(GDP), where diffusivity follows,

D(x, t ) ∼ (1 + β )D0|x|αtβ. (2)

The above equation combines spatial and temporal depen-
dence from the underlying HDP and SBM, respectively. GDP
is subdiffusive (γ < 1) when α > 2β + 4.

Based on the physics of PFB [10–12,28], we hypothesize
the system hosts a combination of parent processes discussed
above, as will be shown in the remainder of this article. We
also study the effect of ageing, i.e., time lapse after initializing
experiments. It must be noted that PFB does not represent
confinement in a strict sense. Boundaries or walls are present
in the lateral directions which reflect particles after inelastic
collisions, while the streamwise transport is constrained by
balance between drag exerted by the carrier phase and gravity.
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FIG. 1. Schematic of the PFB setup used in this study. The
zoomed-in image and inset show the frontal view and a rough sketch
of fractal distributor (not drawn to scale).

Hence, we describe the PFB as a weakly confined system. In
addition, our unit is quasi-two-dimensional (quasi-2D), since
the depth-wise extent is comparable to the size of bubbles,
further verified by high-speed videos which reveal their span.

II. EXPERIMENTS

The setup used for experiments (Fig. 1) consists of a bench-
scale test section with a cross-sectional area of 50 × 5 mm.
The unit was filled with 18 g of glass particles having a
Sauter mean diameter of 394 μm and a density of 2.5 g/cm3,
classified under Geldart group B [29]. The resulting static
height was 50 mm. Flow rate at the inlet was pulsed in the
form of a sine wave,

Q(t ) = A + B sin(2π f t ), (3)

where the base flow rate was A = 2.6 l/min. The correspond-
ing velocity is higher than the minimum fluidization velocity

Um f , which denotes the minimum velocity required to support
the weight of solids. Details regarding the measurement of
Um f can be found in Vaidheeswaran et al. [30]. The amplitude
B is set to 2.1 l/min, and two pulsing frequencies are used,
f = 4 and 6 Hz. A fractal distributor was 3D printed using
a high-precision ultraviolet curing printer. High-speed videos
were recorded at 300 Hz over a duration of 20 s using a
120-mm Nikon lens and Fastex IL5L sensor, and the unit
was back-lit with an LED light source. The resulting spatial
resolution was 0.71 × 0.71 mm. Glass particles were tracked
using an in-house code, PTVRESEARCH [31], based on optical
flow equations. Optical distortions were removed using cali-
brated grid and dewarping [32], and outliers were detected by
proper orthogonal decomposition [33]. In a recent effort [34],
our method was cross-validated with other particle tracking
algorithms when applied to a fluidized bed system, and the
predicted velocities compared well. We remark on a few note-
worthy limitations of our apparatus. Particle tracks are lost
when they enter bubbles, where they become out of focus
due to back-lighting. Only particles tracked during the entire
duration of our experiments are considered for statistics to
avoid unintended bias. Also, the unit is prone to slugging from
tight confinement along its depth, which prohibits exploring
higher pulsing frequencies and amplitudes as well as using
unperturbed flow at the inlet. Further details regarding the
experiments can be found in Higham et al. [12].

Mesoscale responses to pulsing conditions are shown in
Fig. 2. Kinematic waves originate as one-dimensional planar
disturbances and transition into structured bubbles as a con-
sequence of interactions between harmonic and subharmonic
modes. The recurring patterns are sustained provided their
wavelength, λ fit the lateral dimension. Bubbles shift by λ/2
between successive cycles. We notice λ, associated with bub-
ble size, reduces while changing f from 4 to 6 Hz. At 4 Hz,
bubbles are larger and switch sides every half cycle. Wakes

FIG. 2. Structured bubble patterns at (a) f = 4 Hz and (b) f = 6 Hz.
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FIG. 3. Sample trajectories at (a) f = 4 Hz and (b) f = 6 Hz.

experience a greater compressive stress when defluidized,
which makes bubbles less stable and deformed as they prop-
agate upward. The pattern changes to a bubble at the center
and two simultaneous bubbles along the walls at 6 Hz, having
a smaller size and a more distinct interface.

III. RESULTS

Sample trajectories (Fig. 3) indicate nonuniform diffusion
in the PFB. We notice a few particles transported over much
shorter distances during the entire measurement period. Even
if a single-particle track is considered, the motion is altered
significantly depending on instantaneous location. Particles in
the wake of bubbles take longer steps, while they undergo
much shorter displacements in quasistatic regions. Their mo-
tion is confined by walls in the lateral direction, and the
balance between gravity and interphase drag governs their
streamwise transport. The dynamics are strongly coupled to
the fluidizing medium, a mechanism neither trivial nor ex-
plicitly modeled while describing anomalous diffusion. It is
worth mentioning that the effect of drag was included in the
generalized Langevin equation [35] to derive kinetic theory,
more appropriate for fluidized granular media, albeit con-
tinuum modeling efforts have failed to reproduce structured
bubbles in PFBs [11]. Stress fields in granular mediums is
not adequately represented by the existing frictional models,
which is critical to sustain the recurring pattern. We also
notice spiral trajectories, possibly due to strongly correlated
directional changes [36]. In our case, this is caused by a
combination of unidirectional forcing, lateral confines,and
preferential movement of bubbles. Momentum transfer from
particle interactions is subdued compared to anisotropic wake-
induced transport, which breaks the symmetry in turning
angle and forms clockwise or counterclockwise patterns close
to walls. However, diffusion characteristics vary spatially, and
spiraling motion is not present throughout the domain.

Next we look at autocorrelation, ρ, between displacements
in the Cartesian directions. We use the following definition,

ρ(�) = E[�x j (t )�x j (t + �)]√
Var[�x j (t )]Var[�x j (t + �)]

, (4)

where � and �x j are lag time and particle displacement. This
is ensemble-averaged to obtain 〈ρ〉 shown in Fig. 4. Again, we
notice dominant harmonic and subharmonic responses at both

FIG. 4. Autocorrelation of displacements, �x and �y at (a) f =
4 Hz and (b) f = 6 Hz.

pulsing frequencies. Lateral steps show a rapid decay of 〈ρ〉 at
f = 4 Hz, while the two components reveal comparable per-
sistent memory at f = 6 Hz. This occurs in conjunction with
redistribution of energy between harmonic and subharmonic
modes as explained using proper orthogonal decomposition in
our previous study [12]. The long-range correlation observed

FIG. 5. MSD from experiments at (a) f = 4 Hz and (b) f =
6 Hz. Dashed lines represent �1 scaling.
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FIG. 6. (a) Ergodicity breaking parameter (EB) vs measurement
time (T) at f = 4 Hz and 6 Hz, where �=0.017 s. Dashed lines
represent different slopes for guidance. (b) Variation of alternative
ergodic parameter (EB) with lag time (�) at f = 4 Hz and 6 Hz.

in the collective behavior of particles follows the idea of Kac
[37], wherein determinism evolves in multiparticle systems
governed by individual stochastic differential equations.

We then examine the behavior of MSD, typically used
to study diffusion processes. At this point, ergodicity is not
known, and we use two different measures of MSD. First, is
the ensemble-averaged MSD, defined as

〈x2(�)〉 = 1

N

N∑
i=1

|xi(�) − xi(0)|2, (5)

where N is the total number of tracked particles. The second
measure is given by

〈δ2(�)〉 = 1

T − �

∫ T −�

0
〈|x(t + �) − x(t )|2〉dt, (6)

which involves both time averaging and ensemble averag-
ing, and T is the total duration of experiments. 〈x2〉 has a
nonunique scaling exponent (Fig. 5). Dynamically ordered
bubbles result in spatially varying diffusion which may not
be apparent while probing the ensemble behavior. 〈δ2〉 has a
sublinear exponent initially followed by a crossover to a linear
trend at long timescales similar to diffusing insulin granules
[38]. More tracked particles participate in wake transport
over longer periods. Propagation of bubbles separates such

FIG. 7. Amplitude scatter distribution φ(ξ ) at (a) f = 4 Hz and
(b) 6 Hz.

entrained particles from crowded surroundings, and their dis-
placements become increasingly uncorrelated in time. This
could cause an antipersistent motion leading to subdiffusion
at short timescales with a gradual transition to memoryless
diffusion typical of a CTRW. The final crossover to ∼�0 for
� → T is due to confinement as reported for GDPs and SBMs
[27,39], in contrast to purely subdiffusive CTRWs, where
plateaus are not present for time-averaged MSDs. Detailed
measurements such as turning-angle distributions [36,40,41]
may be required to formulate a model describing these trends
in 〈x2〉 and 〈δ2〉.

Besides, we notice significant difference in scaling be-
tween 〈x2〉 and 〈δ2〉, indicating weak nonergodicity [39,42–
44]. This eliminates the possibility of ensemble diffusion in
PFB governed by transport on a fractal support, which is
ergodic by definition. 〈x2〉 and 〈δ2〉 show the same limiting
behavior at �/T → 0 and �/T → 1. The latter is apparent
from Eq. (6), which has a singularity for � → T , thus placing
the constraint, 〈x2〉 = 〈δ2〉. Also, the linear scaling in 〈δ2〉
is prevalent for an appreciable period at both values of f ,
previously observed for sub- and superdiffusive unconfined
HDPs [39]. This might lead to a false impression of Brow-
nian motion unless supported by complementary statistical
measures.
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FIG. 8. Variation of time-averaged MSD 〈δ2〉 with measurement
time (T ) at (a) f = 4 Hz and (b) f = 6 Hz.

To elucidate nonergodic dynamics in PFB, we define the
ergodicity-breaking parameter (EB) as

EB(�) = 〈δ2(�)
2〉

〈δ2(�)〉2
− 1. (7)

EB represents dispersion in δ2, and we examine its variation
with T to identify deviation from ergodic behavior. EB for
a Brownian motion follows lim�/T →0 EBBM(�) = 4

3
�
T , in-

dicated by the curve ∝ T −1 in Fig. 6. We observe a more
gradual change in EB approaching a finite value for �/T → 0
as reported for anomalous stochastic processes governed by
HDPs and CTRWs [45]. To further investigate the nature of
ergodicity breaking, we use an alternative ergodic parameter
EB following the definition of Godec and Metzler [46], given
by

EB(�) = 〈δ2(�)〉
〈x2(�)〉 . (8)

At short timescales, there is a pronounced scatter in EB.
Particles reside in a given state for a duration determined
by the spatiotemporal evolution of the system. As measure-
ment time increases, more particles transition between states
and the change in EB becomes more moderate. We notice
EB �= 1 at intermediate timescales, confirming deviation from
ergodic dynamics. We also find EB = 1 for �/T → 1 due to

FIG. 9. Variation of ageing factor (�) with dimensionless ageing
time (ta/T ) at (a) f = 4 Hz and (b) f = 6 Hz for different values of
� as indicated.

confinement, which is not indicative of ergodicity though it
mathematically represents a necessary condition. A sufficient
condition for ergodicity is EB → 0 for �/T → 0, which is
clearly not satisfied here.

In addition, we examine the spread in δ2 (Fig. 7) using the
nondimensional parameter ξ , defined as

ξ = δ2(�)

〈δ2(�)〉
. (9)

The distribution φ(ξ ) is Gaussian centered at 1 (ξ = 1
represents ergodicity) for a Brownian walker. For �/T �
1, φ(ξ ) has distinct peaks at ξ > 1 ( f = 4 Hz) and ξ < 1
( f = 6 Hz). We notice a significant scatter in ξ for growing
lag times while deviating from ergodic dynamics. φ(ξ ) is
finite at ξ=0 for all values of �, as observed for subdiffusive
CTRWs [47]. The contribution from quasistatic particles is
more prominent for longer lag times at f = 4 Hz. These find-
ings corroborate combination of parent stochastic processes
dictating the underlying anomalous diffusion. Weak ergod-
icity breaking essentially results from information content
in single-particle trajectories which are not retained while
ensemble averaging. Besides, wake transport is not truly re-
producible, and distances over which it occurs could vary,
leading to nonequilibrium relaxation.
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Finally we look at ageing characteristics, which along with
ergodicity breaking determine the (non-)stationary nature of a
stochastic process. 〈δ2〉 shows a monotonic drop as a function
of T (Fig. 8) for different values of �. This is indicative of a
collective subdiffusive anomalous process. Analogous ageing
behavior in a subdiffusive environment is found in other in-
stances, including plasma membranes [23] and fibrin matrices
[48]. As a consequence, the system appears less diffusive as
it evolves longer. More and more particles transition through
quasistatic regions which overpopulate the tails of wait-time
distributions. If the on-off response of particles switching be-
tween wake transport and interaction with neighbors (through
friction and collision) is considered, the occurrence and du-
ration of these events appear random at short timescales.
Upon prolonged measurements, occasionally long on and off
states are obtained, characteristic of nonstationary and out-of-
equilibrium dynamics [49,50]. This in essence results in the
observed ageing behavior. But individual motion of particles
could vary depending on localized states. We further quantify
the ensemble behavior using ageing factor [39] defined as

�(ta,�) =
〈
δ2

a (�)
〉

〈δ2(�)〉
, (10)

where δ2
a refers to the time-averaged MSD considering the

ageing time, ta, given by

δ2
a (ta) = 1

T − � − ta

∫ T −�

ta

〈|xi(t + �) − xi(t )|2〉dt . (11)

The above expression is ensemble averaged while calcu-
lating � for different values of ta shown in Fig. 9. There

is a steady drop in � even for �/T � 1 due to continued
localization of particles in quasistatic regions, again indica-
tive of subdiffusive behavior. Even though the mesoscale
response (bubble pattern) is completely different at f = 4
and 6 Hz, similar anomalous diffusion characteristics are
observed.

IV. CONCLUSION

We analyzed anomalous diffusion in PFB having a spa-
tiotemporal dependence using single-particle tracking and
found traits from a combination of parent stochastic processes.
PFB represents a driven granular system having complex non-
linear interactions. Finite memory or long-range correlations
stem from individual stochastic motions, in line with the
ideas of Kac surrounding propagation of chaos [37]. Time-
averaged and ensemble-averaged MSDs deviate indicating
weak ergodicity breaking. MSDs approach a plateau similar to
constrained GDPs or SBMs, although our setup is weakly con-
fined wherein the streamwise transport is balanced between
interphase drag and gravity. The distribution of amplitude
scatter is wide, non-Gaussian, asymmetric, and has a finite
contribution at zero stemming from particles in quasistatic
surroundings, a feature prevalent in CTRWs. The system
also exhibits ageing as more traps are encountered over a
prolonged duration. The ageing factor decays monotonically,
suggesting an overall subdiffusive process at the two pulsing
frequencies having a different mesoscale response altogether.
We expect structured flow patterns in PFBs while lowering
the effective diffusivity compared to fluidized media having
an unperturbed inflow, which needs to be verified.
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