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Spontaneous knotting of a flexible fiber in chaotic flows
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We consider the problem of an inextensible but flexible fiber advected by a steady chaotic flow, and ask the
simple question of whether the fiber can spontaneously knot itself. Using a one-dimensional Cosserat model, a
simple local viscous drag model and discrete contact forces, we explore the probability of finding knots at any
given time when the fiber is interacting with the ABC class of flows. The bending rigidity is shown to have a
marginal effect compared to that of increasing the fiber length. Complex knots are formed up to 11 crossings,
but some knots are more probable than others. The finite-time Lyapunov exponent of the flow is shown to have
a positive effect on the knot probability. Finally, contact forces appear to be crucial since knotted configurations
can remain stable for times much longer than the turnover time of the flow, something that is not observed when
the fiber can freely cross itself.
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I. INTRODUCTION

Knots are fascinating objects that not only are part of our
daily life but also lead to an incredibly rich branch of mathe-
matics known as knot theory [1,2]. Before being mathematical
entities, knots first became the object of scientific interest
with Lord Kelvin’s theory on vortex atoms [3,4]. Since then,
knots have reappeared in various forms in a wide variety of
scientific fields. In biophysics [5], their possible functions
and the mechanisms by which they originate in DNA and
proteins [6] and in other long polymers [7,8] are actively being
studied. Topology in chemical synthesis is becoming more
important as molecules can be synthetically knotted [9,10]. In
material sciences, knots have been formed using colloids [11],
elastic fibers [12–14], or chains [15–17]. Finally, knots can
also be found in more surprising fields, from optics [18,19] to
quantum gravity [20].

Another field where knots, and more generally topology,
are important is fluid dynamics [21–23]. Helicity, the corre-
lation between velocity and vorticity, is an invariant of the
Navier-Stokes equations [24,25] that is ultimately related to
the knottedness of vortex lines in high Reynolds number flows
[26,27]. Knotted vortices have even been created experimen-
tally [28] and are conjectured to be an important aspect of
turbulence in superfluids [29].

In this paper, we combine the study of knots with fluid
dynamics by considering the simple case of a long flexible
fiber viscously coupled with an incompressible fluid flow. The
interaction between a flexible object and a fluid flow leads to a
wealth of interesting phenomena [30,31] and the deformations
of flexible particles by various flows have been the focus of
several recent studies [32–37]. It is natural to wonder whether
knots can spontaneously form in that situation. While most
applications involve the interactions of many fibers, from
paper-making industries [38] to natural agregates [39], we
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focus on the simpler case of a single object interacting with
itself. The objective of this paper is to study a simplified
model of an inextensible and flexible fiber viscously coupled
to an incompressible fluid flow, and quantify the spontaneous
formation of knots along the fiber. By contrast with past
studies where inertia was the dominant factor leading to the
spontaneous formation of knots [16,40], this paper explores
the possibility of spontaneous knotting in the low inertia limit
for which the viscous coupling between the fiber and the fluid
dominates [32,41].

The paper is organized as follows. We start by describing
our idealized model and numerical methods to generate the
fiber conformation and detect whether knots are present in
Sec. II. The probability of finding knots as a function of the
bending rigidity and the length of the fiber is discussed in
Sec. III. Section IV is focused on the specific types of knots,
while Sec. V compares different flows. We finally discuss the
role of the contact forces and the observation of tight knots in
Sec. VI before our conclusions in Sec. VII.

II. MODEL AND NUMERICAL METHODS

A. Cosserat model and hydrodynamic forces

We consider an elastic fiber of length L f in the slender body
limit a � L f , where a is the typical radius of the fiber section.
At rest, the fiber is assumed to be perfectly straight. Focusing
on the dynamics of the center line and neglecting extensibility
and torsion effects, we model the dynamics of the fiber using
the Cosserat equation [42–44]

σ
∂2X
∂t2

− ∂

∂s

(
T

∂X
∂s

)
+ B

∂4X
∂s4

= Fh + Fc , (1)

where X (s, t ) is the position of the fiber center line and s ∈
[0, L f ] is the curvilinear coordinate. σ and B are the linear
density and the bending modulus of the fiber respectively, all
assumed to be constant along the fiber. T is a tension term
acting as a Lagrange multiplier in order to ensure the fiber
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inextensibility given by ∣∣∣∣∂X
∂s

∣∣∣∣ = 1 . (2)

Fh are the hydrodynamic forces acting on the fiber while Fc

are the contact forces resulting from the interaction of the
fiber with itself. The latter are detailed below in Sec. II C 2.
We impose free-end boundary conditions which correspond
to T = 0, ∂2

s X = 0, and ∂3
s X = 0 on both ends s = 0 and

s = L f .
Assuming that Re � 1, where Re is the Reynolds number

based on the diameter of the fiber, the hydrodynamic forcing
term becomes anisotropic and depends on the relative orien-
tation of the vector tangent to the fiber centerline and the slip
velocity [43,45–47]:

Fh = 8πμ

c
D

(
u − ∂X

∂t

)
, (3)

where c = −[1 + 2 ln(a/L f )] � 1 for the slender body ap-
proximation to be valid, u is the local fluid velocity, and
μ is the dynamical viscosity of the fluid. The anisotropic
projection tensor is defined as

D = I − 1

2

(
∂X
∂s

)(
∂X
∂s

)T

, (4)

which leads to a reduced viscous drag when the slip velocity
u − ∂t X is aligned with the tangent vector ∂sX .

Using the characteristic length scale of the flow Lu and
the characteristic flow velocity U as references, and without
introducing new notations for the dimensionless variables, a
dimensionless version of Eq. (1) is

St
∂2X
∂t2

− ∂

∂s

(
T

∂X
∂s

)
+�

∂4X
∂s4

=D

(
u− ∂X

∂t

)
+Fc . (5)

The fiber dynamics depends on three dimensionless parame-
ters, the Stokes number

St = cσU

8πμLu
, (6)

which compares the inertia to the forcing viscous term, the
dimensionless rigidity

� = cB

8πμUL3
u

, (7)

which compares the bending term to the viscous drag, and the
length scale ratio

λ = L f

Lu
. (8)

In the rest of the paper, we focus on the case of negligible
inertia by fixing St = 10−2 while systematically varying the
bending rigidity and the length of the fiber.

B. ABC flows

We now discuss our choice of chaotic flows to advect and
deform the fiber. The first major assumption of our approach
is to assume that the fiber does not have any effect on the flow

TABLE I. Parameters for the different ABC flows used in this
study. We focus on particular flows with

√
A2 + B2 + C2 = 1 and

unit length scale. Most of our results are obtained with the L7 flow,
but we also use more classical ABC flows such as the A = B = C
case labeled 111 and the Roberts flow label RF. The results discussed
in Sec. III have been obtained with the flow L7.

Label A B C φ ψ

RF 0 1/
√

2 1/
√

2 π/4 π/2
111 1/

√
3 1/

√
3 1/

√
3 π/4 arctan(

√
2)

L1 0.9823 0.1325 0.1325 π/4 0.06π

L2 0.7501 0.4676 0.4676 π/4 0.23π

L3 0.9354 0.2499 0.2499 π/4 0.115π

L4 0.8526 0.3695 0.3695 π/4 0.175π

L5 0.2181 0.6901 0.6901 π/4 0.43π

L6 0.1253 0.7015 0.7015 π/4 0.46π

L7 0.9603 0.1973 0.1973 π/4 0.09π

L8 0.5358 0.5970 0.5970 π/4 0.32π

L9 0.8090 0.4156 0.4156 π/4 π/5
L10 0.8838 0.3309 0.3309 π/4 0.155π

L11 0.8763 0.4479 0.1773 0.12π 0.16π

L12 0.4540 0.8800 0.1394 0.05π 0.35π

itself, thus focusing our attention on one-way coupling. As
will become apparent later, the spontaneous knotting of the
fiber is a rare event in the sense that the probability of finding
a knot on the fiber at any given time is very low (typically
between 10−5 and 10−2; see Fig. 2 below), thus requiring very
long temporal integration to gather reliable statistics. Solving
the Navier-Stokes equations for such an extended period of
time would be computationally very demanding and we thus
choose a simpler approach based on analytical flows. In ad-
dition, in order to simplify the problem as much as possible,
we focus on steady flows with a single well-defined length
scale. This means that the flow itself does not introduce new
control parameters into the problem and that the only relevant
parameter is the ratio λ = L f /Lu between the fiber length and
the flow characteristic scale. For all these reasons, we choose
to focus our attention on the well-known Arnold-Beltrami-
Childress or ABC flows, which are simple analytical flows
with chaotic particle trajectories [48,49].

Following Ref. [50], the ABC family is defined as follows:

ux = A sin(2πz) + B cos(2πy),

uy = C sin(2πx) + A cos(2πz),

uz = B sin(2πy) + C cos(2πx), (9)

where u = (ux, uy, uz ) is the velocity field which has a char-
acteristic length scale of unity. We recall that the flow velocity
is our reference unit so that we impose

√
A2 + B2 + C2 = 1.

The parameters A, B, and C can then be parametrized using
two polar angles φ and ψ [50]:

A = cos(ψ ),

B = sin(ψ ) cos(φ),

C = sin(ψ ) sin(φ). (10)

Most of the following results have been obtained for three
particular flows, labeled L7, L11, and 111 in Table I. The main
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reason behind this arbitrary choice is the ability of the partic-
ular flow L7 to form knots, which is much more efficient than
the more classical 111 flow for example (which corresponds
to the particular case A = B = C; see Table I). This is further
discussed in Sec. V below, where we compare the ability of
different ABC flows to spontaneously form knots.

C. Numerical methods

1. Elasticity

For the elasticity part of the problem, we solve Eq. (5)
using a numerical scheme directly inspired from previous
studies on flexible fibers [41,51–53]. Spatial derivatives are
approximated using sixth-order finite differences on a nonuni-
form grid and we use a semi-implicit backward difference
temporal scheme of third order [54], the bending term being
solved implicitly while the other terms are solved explicitly.
We typically use between 256 and 1536 grid points to dis-
cretize the center line of the fiber. The inextensibility of the
fiber leads to a Poisson-type equation on the tension T , which
is solved at each time step. When deriving the equation for
the tension, the time derivative of the exact inextensibility
condition (2) is replaced by the approximate relation

∂

∂t

∣∣∣∣∂X
∂s

∣∣∣∣ = K

(
1 −

∣∣∣∣∂X
∂s

∣∣∣∣
)

, (11)

which penalizes length errors if present [51]. Note that the
role of this artificial term is only to prevent the accumulation
of numerical errors over time, while the actual inextensibility
condition is enforced by the computation of the physical ten-
sion term in Eq. (5). We have checked that the value of the
arbitrary constant K does not affect our results (we typically
use K = 103). The relative error on the total fiber length is
typically smaller than 10−3 at all times and for all cases
discussed here, even when the fiber is tangled and contact
forces become important.

2. Contact forces

It is natural to assume that contact forces between different
part of the fiber will significantly contribute to the formation
of knots. There exists a wide variety of contact models in the
literature, but we again focus our attention on the simplest
description. Here we use a model whose only objective is to
prevent the fiber centerline from intersecting itself. We there-
fore neglect lubrication forces between two elements of the
fiber as they get close to each other [55] and the flow generated
by the motion of the fiber itself. We also neglect any tangential
forces resulting from the contact. The only objective of the
contact forces is therefore to prevent the interpenetration of
two distant elements of the same fiber.

Following previous studies on flexible fibers in fluid flows
[55–57], the following discrete contact force model is used:

F i j
c =

⎧⎨
⎩

0, if |d i j | > 2r0

F0

(
1 − |d i j |

2r0

)2 d i j

|d i j | , otherwise
, (12)

where d i j is the vector joining two distant grid points along
the fiber. This model introduces two constants: the magnitude
of the contact force F0 and the dimensionless fiber radius

r0 = a/Lu. In the rest of the paper, the maximum force is fixed
to F0 = 103 while the radius of the fiber is fixed to r0 = 10−2.
We have checked that these parameters prevent the fiber from
crossing itself at all times while the numerical scheme remains
stable even for very tangled conformations. Note that we fix
the radius of the fiber while varying its length, so that the
aspect ratio is not constant. The constant c in Eq. (3) does not
significantly vary over the range of fiber length considered and
remains much greater than one (10 � c � 13 for 2 < L f < 12
with r0 = 10−2), so that we consider it constant here even
though the aspect ratio varies. We have additionally checked
that varying the radius does not quantitatively alter the re-
sults discussed in the following; see the Appendix for more
details. Note finally that the particular quadratic dependence
used in Eq. (12) is irrelevant and we have checked that other
expressions, such as linear or exponential [55,56], do not
quantitatively affect our results.

3. Finding knots

There are several algorithms available to determine
whether a three-dimensional curve is knotted. Knot theory
classically considers a closed loop since an open loop can
always be unknotted [1,2]. To circumvent this issue, several
algorithms have been developed. Here we use the Kymoknot
library [58], which is using the minimally interfering closure
[59] to circularize both linear chains and chain portions. The
Kymoknot library identifies knots based on their Alexander
determinant [60]. Since we consider relatively short fibers in
this study, the resulting knots are relatively simple and rarely
exceed eight crossings, so that they can be unambiguously
identified using simple invariants such as the Alexander de-
terminant. Note that we have also used the recent TOPOLY

PYTHON library [61], which can compute more complex knot
invariants. However, we did not find significant differences
between the two libraries except on rare pathological configu-
rations for which the closure scheme or the choice of invariant
can affect the results. These libraries have been used to study
knots in polymer chains [62] and our model can be viewed as
the macroscopic version of this problem [32].

Each fiber conformation X (s, t ) is tested using multiple
realizations of the same algorithm, where only the initial ran-
dom seed is changed. We found that all realizations gave the
same results when applied to the same conformation, giving us
confidence that the knots are correctly identified. To illustrate
the output of the Kymoknot algorithm, we show in Fig. 1 an
example of the knots identified versus time for a simulation
representative of the cases discussed below. Using a top-down
approach, the algorithm is able to identify which portions of
the fiber can be considered knotted at any given point in time.
A knot always starts from one of the fiber extremities and then
gradually propagates inward until it eventually disappears as
the fiber recovers its initially unknotted configuration. In this
paper, we do not consider the size of the knot nor do we make
the distinction between loose and tight knots. In fact, tight
knots are very rarely observed for the parameters explored
in this study (see Sec. VI B below for a more detailed dis-
cussion). From these data, we are then able to compute the
knot probability as the fraction of time spent in a knotted
configuration (see Sec. III), irrespective of the size of the knot
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FIG. 1. (a) Example of three fiber conformations. The fiber is colored in blue when it is not locally knotted while the red portion corresponds
to the knotted part, when present. (b) Arc length along the fiber vs time where the red color indicates the portion of the fiber that is knotted.
Time is scaled with the flow turnover time Lu/U . The three arbitrary conformations shown in panel (a) correspond to the arbitrary times
indicated by the vertical dotted lines. Parameters are λ = 6, � = 10−3, and St = 10−2. The ABC flow used for this example is labeled L7
in Table I.

or its type. The Alexander polynomial is also stored for each
knotted conformation, which allows us to discuss the different
types of knots using standard classification (see Sec. IV).

III. KNOT PROBABILITY

In this section, we focus on the particular flows labeled
as L7, L11, and 111 in Table I. We consider the particular
flow L7 as it appears to be quite efficient at generating knots
(see Sec. V for more details), thus reducing the numerical
cost to reach statistical convergence. The two other cases
are considered to assess the robustness of the results when
considering different flows from the ABC class. We recall
that all the results discussed here correspond to cases with a
Stokes number of St = 10−2, thus nearly neglecting inertia.
We also focus on fibers typically longer that the correlation
length scale of the flow so that λ = L f /Lu > 1. Flexible fibers
shorter than the characteristic scale of the flow are known
to deform and buckle [35,63] and eventually knot in certain
circumstances [64], but we do not consider this regime in
this study.

For all three flows, the knot probability is estimated as fol-
lows. The fiber is initially straight, with a random orientation
and at rest. We then follow its trajectory and deformations for
104 turnover times Lu/U of the flow and save 4 × 104 confor-
mations (four per turnover time). Each of these conformations
is assumed independent in the following. In order to reach
statistical convergence, the process is typically repeated over
up to 512 independent realizations initialized with different
initial orientations and positions of the fiber. Each conforma-
tion is then tested to identify whether a knot is present, its
Alexander polynomial, and its location along the fiber. An
example of a particular realization is shown in Fig. 1 and a
movie showing the temporal evolution of a fiber conformation

is available in the Supplemental Material [65]. For the longest
fiber with λ = 12 and for each realization, solving Eq. (5)
for 104 turnover times takes approximately 64 h on a single
processor while computing all the knot properties for the
4 × 104 conformations takes approximately 6 h.

A. Varying the bending rigidity

A fiber is almost rigid when its bending rigidity is large
enough to dominate over the viscous drag applied by the
surrounding fluid [31,32]. Some deformations are obviously
required to allow for the initially straight fiber to fold on
itself and eventually form a knot. We therefore first focus
our attention toward the transition from an unknotted almost
rigid conformation to the more flexible regime where knots
are expected to spontaneously form. We consider the partic-
ular case of a dimensionless fiber length λ = L f /Lu = 4 and
systematically vary the bending rigidity. The knot probability
as a function of the dimensionless bending rigidity � is shown
in Fig. 2(a) for the three flows considered in this section. For
large values of �, no knots have been observed as expected
since the fiber deformations are either negligible or too small
to allow for two distant portions of the fiber to interact with
one another and eventually for a knot. Here, since the fiber
length scale is comparable with that of the flow, the fiber
typically starts to bend around � ≈ 1 when the viscous drag
is comparable with the elastic forces. For all three flows dis-
cussed here, the first knots are obtained for � ≈ 10−2, two
orders of magnitude below the first transition from a rigid to
a flexible object. The knot probability then rapidly increases
as the bending rigidity decreases. An exponential behavior is
observed for which the knot probability can be approximately
fitted by exp(−β�2) with β some fitting parameter [see the
insert in Fig. 2(a)]. After this rapid increase of the knot
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FIG. 2. (a) Knot probability as a function of the bending rigidity � for a fixed dimensionless length λ = Lf /Lu = 4. The insert shows the
same data plotted as a function of �2 in lin-log scale. The dashed lines indicate an exponential decay of the form α exp(−β�2) (a best fit
leads to α = 2.6 × 10−3 and β = 9.6 × 104 for the flow L7, α = 1.4 × 10−3 and β = 2.4 × 104 for the flow L11, and α = 4.2 × 10−4 and
β = 2.1 × 104 for the flow 111). (b) Knot probability as a function of the dimensionless fiber length λ for a fixed bending rigidities � = 10−3.
The dashed lines indicate a power law increase of the form ∼(λ − λc )δ (a best fit leads to λc = 2.1 and δ = 2.9 for the flow L7, λc = 1.6 and
δ = 4.2 for the flow L11, and λc = 1.8 and δ = 2.8 for the flow 111). Error bars are computed from the variance of a binomial distribution.

probability as � decreases, it saturates and stays roughly con-
stant irrespective of the bending rigidity, which is varied here
across nearly four orders of magnitude. Qualitatively similar
behaviors are observed for all three ABC flows considered
here. The exponential behavior at high bending rigidities ap-
pears robust but the exponent acting on � is observed to vary
depending on the flow.

Decreasing the bending rigiditiy even further leads to
very complex fiber conformations characterized by large
curvatures and multiple contacts which became numeri-
cally unstable using the current model. While our results
suggest that the knot probability eventually becomes indepen-
dent of �, the regime of vanishingly small bending rigidity
characteristic of inextensible chains [15,40] remains to be
characterized.

B. Varying the fiber length

We now explore the effect of systematically varying the
length of the fiber. In this section, we fix the bending rigid-
ity � = 10−3 and we systematically vary the dimensionless
fiber length from λ = 1 up to λ = 12. Results are shown
in Fig. 2(b). We observe a power law increase of the knot
probability which is well fitted by (λ − λc)δ for all three
flows considered here. The critical length below which no
knots have been observed, λc, is similar for all three flows
with 1.6 � λc � 2.1. We cannot exclude the possibility of
rare knotting events below this critical length, but we did not
observe any knots for λ < 1.5 even after analyzing 5 × 106

independent conformations. Note that the power exponent
δ is also similar for the three flows considered here with
3 � δ � 4.

Obviously, the power law behavior of the knot probability
observed here will eventually saturate for very long fibers.
Note that we cannot at this stage increase the fiber length
further since the resolution needs to be increased at least

linearly with the fiber length, leading to prohibitive numerical
costs both to evolve the fiber conformations and to detect
whether they are knotted. The rapid increase of the knot
probability with the fiber length is consistent with results ob-
tained with agitated inertial strings [15–17]. However, in that
case, a sigmoidal function of the form N0/(1 + (λ/λ0)β ) has
been suggested [16]. The accuracy of such a fit when applied
to our data remains moderate since we could not increase
the fiber length to reach the eventual saturation of the knot
probability. In addition, the existence of a critical length in
our problem is confirmed by plotting the probability versus
the distance to the critical length λ − λc, as in the insert of
Fig. 2(b), where the power law is observed over nearly two
decades. Note finally that an exponential behavior has been
observed for self-avoiding random walks [66,67]. Contrary to
the simpler case of self-avoiding walks, our model involves
bending rigidity, memory effects, and spatial correlation in
the fluid forcing, which could be responsible for the power
law behavior observed here.

Finally, while the critical fiber length λc appears to de-
crease with � (not shown), the vanishing bending rigiditiy
limit could not be systematically explored with the current ap-
proach. In particular, fibers much shorter than the flow length
scale are known to buckle [35] and it would be interesting to
explore the knot probability in the regime λ � 1 and � → 0.

IV. KNOT TYPES

We now discuss the different types of knots observed for
the particular flow L7, which appears to be very efficient at
forming knots compared to the two other cases considered in
the previous section. In knot theory, knots are distinguished
by their crossing number, which is the minimum number of
crossings on any diagram of the knot [1,2]. The classical
trefoil knot has three crossings, is the only knot in that case,
and is therefore denoted by 31. The figure-eight knot has
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FIG. 3. (a) Examples of knots observed on a fiber with λ = 6 and � = 10−3 and for the flow L7. The fiber is colored in blue when it is
locally not knotted while the red portion corresponds to the knotted part. The labels correspond to the standard classification based on the
number of crossings [1,4]. (b) Ratio between the number of knots with a given crossing number and the total number of knots for � = 10−3

and varying the fiber length λ. The subscript x denotes all knots with a given number of crossings. Error bars are computed from the variance
of a binomial distribution. (c) Ratio between the number of knots of a particular type and the total number of knots having the same crossing
number. The dimensionless fiber length is fixed at λ = 10 and the bending rigidity is � = 10−3. The number at the top of the histogram boxes
indicates the unknotting number of each particular knot [1]. The insert shows the fraction of knot as a function of the unknotting number
for all crossing numbers up to nine (boxes) and for knots with seven, eight, and nine crossings (yellow, blue, and red symbols respectively)
independently.

four crossings and is again alone in that category, leading to
the notation 41. After four crossings, there are several knots
for each crossing number, which are distinguished using the
subscript: 51, 52, 61, 62, etc. This tabulation dates back to
the 19th century [4] and has not significantly changed since.
The Kymoknot library [58] used in this paper can unambigu-
ously distinguish knots with up to eight crossings, which is
enough for our application. The knots are classified based on
their Alexander polynomial [60]. Examples of various knots
observed on a fiber with λ = 6 and � = 10−3 are shown in
Fig. 3(a). Although we only show the most famous knots,
from the trefoil to the figure-eight or cinquefoil knots, all 14
independent knots with seven crossings or fewer have been
obtained in our simulations, and knots up to 11 crossings were
observed, although simply using the Alexander polynomial is
not sufficient to unambiguously identify these complex knots.

We plot the ratio between the number of knots of a particu-
lar crossing number and the total number of knots in Fig. 3(b).
Results are plotted at a fixed bending rigidity � = 10−3 and
varying the fiber length λ, which corresponds to the results
already shown in Fig. 2(b). It is found that the most probable
knot for all cases considered is the classical trefoil knot, clas-
sically labeled 31. It is always the first knot to appear as one
gradually increases the fiber length or decreases its bending
rigidity. Knots with increasing crossing numbers generally

become more probable as the fiber length is increased. While
this is presumably flow dependent, it indicates that knots with
large crossing numbers involving many topological transitions
are less likely to be observed that topologically simpler knots.
While this is true for the results discussed here, the regime of
very long fibers λ � 1, inaccessible to our approach for now,
remains to be explored. We also see that knots with seven
crossings appear as probable as knots with eight crossings
for all fiber lengths explored. Additionally, in some cases, the
probability of seeing knots of a particular crossing number is
eventually decreasing with the fiber length, as seen in Fig. 3(b)
for knots with six or 10 crossings. The question of the distri-
bution of different knot types in the limit of large fiber length
thus remains open.

We now distinguish between different knots with the same
crossing number, starting with knots with five crossings (there
is only one knot with four crossings, the figure-eight knot
41) and up to eight crossings. For each crossing number,
we plot the ratio between the number of knots of a given
type and the total number of knots with the same crossing
number in Fig. 3(c). Since the ordering of the classification is
arbitrary, we do not expect the subscript to play any role in the
probability of occurrence of a given knot. We observe large
differences in the probabilities of seeing a given knot even
when considering knots with the same crossing number. This
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observation might not be specific to our particular model but
might be more profoundly rooted in the topological properties
of some of these knots.

It is interesting to note that for each crossing number, the
most probable knot has always an unknotting number of one.
The unknotting number is the minimum number of times a
knot must cross itself to become unknot [1]. It can be seen
as a measure of the topological complexity of the knot. The
cinquefoil knot 51 has an unknotting number of two and is less
observed that the 52 knot, which has an unknotting number
of unity. The same can be said of the more probable 72 knot
versus the 71 knot. The insert in Fig. 3(c) shows the fraction of
knots with a crossing number of nine or less as a function of
their unknotting number. The probability to observe a given
knot clearly rapidly decreases with the unknotting number.
However, there are some exceptions to this otherwise robust
trend. All knots with six crossings have a unit unknotting
number, but the 61 knot is nevertheless far more probable than
the other two knots. Some knots with an unknotting number
of one remain very rare, such as the 77 or 814 knots, for
example. Finally, even though the probability of observing a
knot globally decreases with its unknotting number, it is not
true for each crossing number taken individually. The sym-
bols in the insert of Fig. 3(c) show the evolution of the knot
probability as a function of the unknotting number for knots
with seven, eight, and nine crossings (boxes correspond to all
crossing numbers up to nine). While a monotonous decrease
is observed for knots with seven and eight crossings, knots
with nine crossings and an unknotting number of two are more
probable than those with an unknotting number of one. This
shows that while the topological complexity of a given knot,
as measured by its unknotting number, is indeed an important
aspect, it is not the only ingredient. In particular, the properties
of the fluid flow used to advect the fiber probably plays a role
in favoring some knots compared to others, independent of
their topological complexities.

Let us finish this section about knot types by discussing
a particular mechanism by which the flow can form specific
complex knots. It is well illustrated by the knot 72 shown
in Fig. 3(a). Clearly, it is initially formed by a twisted loop,
which is not a knot by itself [see the middle panel in Fig. 1(a)],
until one of the fiber extremities is crossing the surface
enclosed by the loop. Depending on the number of twists
forming the loop, the knot will be of increasing complexity
while the mechanical process leading to it remains relatively
simple. These knots are called twist knots [2] and always
have an unknotting number of one (cutting the loop open is
sufficient to remove the knot). A loop with three (respectively,
five) twists will eventually lead to the 52 (respectively, 72)
knot, which is much more probable than the 51 (respectively,
71) knot. A loop with with four twists will eventually leads to
the 61 knot, which is much more probable than the 62 knot.
The same mechanism can also explained the prevalence of the
81 knot but not of the 820 knot, whose formation mechanism
remains to be identified. Note finally that the spontaneous
formation of these twisted loops and their stability clearly de-
pend on the details of the contact model used. Further analysis
involving more refined contact models, including lubrication
[55] and friction forces [12], is therefore required to confirm
the preferential formation of these twist knots.
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FIG. 4. Knot probability as a function of the finite-time Lya-
punov exponent (computed in Ref. [50]) for different ABC flows (see
Table I). Error bars are computed from the variance of a binomial
distribution. Other parameters are λ = 4 and � = 2 × 10−3.

V. DEPENDENCE ON FLOW PROPERTIES

All of the results discussed above naturally depend on
the flow considered. We recall that the flows considered up
to this stage are the particular cases labeled L7, L11, and
111 in Table I. While it would be premature to consider
more complex unsteady or multiscale flows, it is natural to
wonder if similar flows lead to similar knot probabilities. We
explore this possibility in this section by considering different
ABC flows with the same length scale and root mean square
velocity.

Since the formation of knots implies relative displacements
of distant portions of the fiber, it is intuitive to assume that the
Lyapunov exponent of the flow is potentially linked with its
ability to spontaneously form knots. To verify this hypothesis,
we consider the following set of parameters: λ = 4, � = 2 ×
10−3, and St = 10−2 as in the rest of the paper. We compare
different ABC flows chosen for their finite-time Lyapunov
exponents (FTLE), which were computed in Ref. [50]. These
flows have the same velocity amplitude and characteristic
length scale and only differ by their coefficients A, B, and C;
see Table I for the details. Figure 4 shows the knot probability
for 14 different ABC flows. Although the velocity amplitude
is the same for all of these cases, the knot probability varies
by more than one order of magnitude. If we now plot the
same knot probability as a function of the FTLE computed by
Ref. [50], we clearly observe a positive correlation between
the FTLE and the knot probability. It is clearly not the only
relevant parameter though. The Roberts flow (labeled RF) is
able to form knots even though its FTLE is zero, being a two-
dimensional flow (with three velocity components though).
Therefore, Lagrangian chaos is not mandatory to form knots,
although it does appear to help. We also observe that the ABC
flow with the maximum FTLE, as computed by Ref. [50]
and labeled L10 in Table I and Fig. 4, does not correspond
to the maximum knot probability. The maximum actually
corresponds to the flow L7, which was used in Secs. III and IV
for that exact reason, even if its FTLE is comparatively low.
While a large FTLE seems to favor the formation of knots,
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FIG. 5. (a) Knot probability as a function of the fiber length λ, for � = 10−3 and for the flow L7. Results with and without contact forces
are shown. Dotted lines correspond to the best fit (λ − λc )δ with λc = 2.1 (respectively, λc = 2.35) and δ = 2.9 (respectively, δ = 1.98) with
(respectively, without) contact forces. (b) Probability density function of a knot lifetime for λ = 12 and � = 10−3. We recall that time is scaled
by the turnover time of the flow Lu/U .

it is only one of the ingredients behind this topology, and
other local or nonlocal statistics should be explored in future
studies.

VI. DISCUSSIONS

A. Role of contact forces

Up to now, we have considered a physical fiber which
cannot intersect itself. While more realistic, it is interesting
to compare it with the idealised case of a “ghost” fiber for
which intersections are allowed. This can still lead to knotted
configurations, but the statistics are expected to change.

We consider here the parameters � = 10−3 and we vary
the fiber length. We compare the results already shown in
Fig. 2(b) for the flow L7 with the same results but without
contact forces Fc defined in Sec. II C 2. As can be seen in
Fig. 5(a), the knot probability is clearly reduced when the
contact forces are neglected, except for the short fibers λ < 7
for which the knot probability is increased. A power law is
observed in both cases, but the exponent is reduced from 2.88
to 1.98 when contact forces are neglected [see the insert in
Fig. 5(a)]. However, the critical length λc below which no
knots have been observed is actually increasing from λc =
2.07 when contact forces are included to λc = 2.35 when
contact forces are neglected.

The overall reduction in the knot probability for long fibers
can appear surprising since the ability of the fiber to cross
itself allows for otherwise forbidden topological changes,
which could in turn increase the knot probability. However,
it also reduces the typical lifetime of a knot, while contact
forces will tend to keep a knot stable for awhile before the
hydrodynamic forces can eventually unknot the fiber. While
this is perhaps a little premature to discuss such dynamical
effects, we can nevertheless quantify this tendency by com-
paring the probability density function of the lifetime of knots,
with and without contact forces. This is shown in Fig. 5(b)
for the particular case λ = 12, where we can clearly see the
emergence of a wide tail for the case with contact forces:
Once formed, some knots remain stable for a very long time,

a phenomenon not observed in the case of an idealized ghost
fiber which can freely cross itself. In the latter case, knots very
rarely survive for times much longer than the turnover time
of the flow. This was in fact illustrated in Fig. 1, where a 31

knot survives for tens of turnover time [see Fig. 1(b) from
t = 525 to t = 580], which would not be the case without
contact forces.

B. To tie or not to tie?

This question has already been asked by the polymer
community [68]. Up to now, we have discarded the problem
of the knot size and the possibility for the knot to become tied.
The vast majority of the knots obtained previously are loose in
the sense that contacts between different sections of the fiber
remain very localized and the knot size remains comparable
with the length of the fiber. The Kymoknot library allows
for the identification of knots on portions of the fiber so that
the actual size of the knot can be computed. The probability
density function of the knot size for different fiber lengths are
shown in Fig. 6(a). While most knots have a size comparable
with the fiber length (the maximum of the probability density
function actually occurs for knot sizes close to half the fiber
length), the probability to observe very small knots increases
with the fiber length. Of course, there is a lower bound and
knots cannot have an arbitrarily small size. The minimal rope
length required to form a given knot is a classical problem in
knot theory, and it is known that the minimum rope length
required to form a trefoil knot is at most 16.372r0 [69].
This lower bound is indicated by the vertical dotted line in
Fig. 6(a) and is far from being reached. Our knots are therefore
far from being perfectly tight, which again indicates that a
more refined contact model is probably required to explore
this limit.

We show an example of such a transition in Fig. 6(b)
for λ = 6 and � = 10−3. A movie is also available in the
Supplemental Material [65]. These particular cases, which
we only observed for sufficiently long fibers, typically λ > 5,
and sufficiently small bending rigidity often led to numerical

043101-8



SPONTANEOUS KNOTTING OF A FLEXIBLE FIBER IN … PHYSICAL REVIEW E 103, 043101 (2021)

(a)

10−2

10−1

100

0 2 4 6 8 10

P
ro

ba
bi

lit
y

de
ns

it
y

fu
nc

ti
on

Knot size

λ = 3
λ = 4
λ = 6
λ = 8

λ = 10

(b)

FIG. 6. (a) Probability density function of the knot size for differ-
ent fiber lengths λ and � = 10−3. The vertical dashed line indicates
the minimum rope length for the trefoil knot equal to 16.372r0 [69].
(b) Fiber conformation at three successive times. Time is increasing
from top to bottom and each snapshot is separated by approximately
10 turnover times. The knotted portion of the fiber is shown in red.
Parameters are λ = 6 and � = 10−3. A movie of the transition is
available in the Supplemental Material [65].

instability as the curvature along the knot becomes large and
the simple contact model used here eventually breaks down.
This leads to the interesting question about when and how a
knot becomes tight. Once a knot is formed, the two unknotted
extremities need to be advected in opposite directions until
the knot eventually becomes tight. The overall positive role
played by the FTLE on the knot probability might also apply
on the transition to tight knots. However, while this secondary
transition is obviously more important in practice, since it will
ultimately determine the fraction of long-lived mechanically
stable knots, a detailed statistical description remains out of
reach of the current modeling approach.

VII. CONCLUSIONS

Using a highly idealized numerical model, we have shown
that flexible fibers can spontaneously knot when interacting
viscously with a chaotic steady flow. We have focused our
attention on the regime where the fiber length is larger that
the characteristic scale of the flow. In that case, we observed
a transition between nearly rigid unknotted fibers to flexible

knotted fibers as the bending rigidity is decreased. This tran-
sition is characterized by an exponential behavior before the
knot probability appears to saturate once the bending rigidity
is small enough. In some cases, we even observed a slight
decrease in the knot probability as the rigidity is decreased
even further. This phenomenon remains unexplained but could
be related to the emergence of buckling events which could
reduce the effective fiber length. In any case, the asymptotic
regime of vanishing bending rigidity remains to be character-
ized. Similarly to self-avoiding random walks, a rapid increase
of the knot probability is observed as the length of the fiber is
increased, although we robustly observe a power law increase
above a critical length scale instead of an exponential behav-
ior. We have observed all types of knots up to seven crossings,
but some knots are much more probable than others. While
the most probable knots all have an unknotting number of
unity, the topological complexity of a given knot is not the
only ingredient contributing to its probability of occurrence.
Some flow-dependent mechanisms, which remain to be fully
identified, are also at play and probably depend on specific
spatiotemporal correlations. For example, the formation of
twist loops leading to so-called twist knots has been largely
observed but remains to be dynamically described. Addition-
ally, we observe a significant positive correlation between
the finite-time Lyapunov exponent and the knot probability,
although it is clearly not the only ingredient since the largest
knot probability was not observed for the flow with the largest
FTLE. Finally, we have quantified the role played by the
contact forces in this problem. The knot probability is overall
increased when contact forces are present, which is explained
by the emergence of long-lived knots.

Much remains to be explored in this problem and some
fascinating questions remain unanswered after this rather
phenomenological description. For example, while a large
Lyapunov exponent does seem to favor the spontaneous knot-
ting of the fiber, the specific properties a flow must possess
to increase the knot probability are far from clear. The ABC
flows considered in this study are maximally helical in the
sense that the velocity is everywhere colinear with the vor-
ticity. This is therefore a very particular type of flow, called
Beltrami flow, and it is natural to wonder whether this prop-
erty is in part responsible for the knot probability reported
here. We recall that helicity is itself associated with the tangle-
ment of vortical structures [26,27]. Dynamo action, the ability
of an electrically conducting fluid to sustain a magnetic field,
also relies on the helicity of the flow in certain cases [70,71].
The so-called stretch, twist, and fold mechanism [72] is a
simple topological procedure that can enhance the magnetic
flux of an existing loop by twisting and folding it. Finally,
in the absence of magnetic diffusion, the evolution equations
for the magnetic field and for an oriented material line are
identical [71]. For all these reasons, we believe it is worth
quantifying the potential role of helicity, a cornerstone in
fluid dynamics and magnetohydrodynamics, in our problem.
In that respect, our single-scale steady Beltrami flow appears
too simple to fully unveil the dynamical mechanisms by which
a fiber can knot itself in a fluid flow. An obvious improvement
of this work should be to consider more realistic, helical as
well as nonhelical, flows. Note finally that the transition to a
knotted conformation is probably a nonlocal effect, for which
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FIG. 7. Composite knot 31#52 corresponding to the successive
formation of a trefoil knot 31 (colored in red) and a 52 knot (colored
in green). The blue portion of the fiber is unknotted. Parameters are
λ = 7, � = 10−3 and the flow is L7 as defined in Table I.

spatiotemporal correlations of the flow might play a crucial
role.

Our model assumptions should also be critically discussed,
and our results might be quantitatively modified by the inclu-
sion of lubrication forces and more realistic elasticity models
[73,74] and fluid drag. The role of inertia is also unclear.
While inertial chains have been shown to spontaneously knot
[17], our problem is very different since the knot probability
crucially depends on the choice of flow. While the rigorous
inertialess regime (St = 0) could also be investigated, we have
observed that the fiber can reach stable limit cycles when St <

10−2, which is why we kept a finite Stokes number instead
of neglecting inertia completely. This problem could be also
prevented by considering unsteady flows for which periodic
solutions are less likely. Studying the large Stokes limit also
appears as a promising avenue. All of the limitations of the
current model could also be addressed using an experimental
approach, since three-dimensional (3D) reconstruction of flex-
ible objects in fluid flows is now possible [41,75]. However, it
remains to be seen whether such methods can unambiguously
reconstruct complex knotted conformations.

Knot theory also does not reduce to the basic concepts
used in this paper. We have, for example, focused our atten-
tion solely on prime knots. However, while rare compared to
prime knots, composite knots have also been observed in some
cases. The 31#52 composite knot has been observed several
times and for different fiber lengths. An example is shown in
Fig. 7. A trefoil knot, colored in red, is formed first and later
followed by a 52 knot, colored in green. Surprisingly, the sim-
plest composite knots, the so-called granny and square knots,
have not been observed. They are formed by combining two
successive trefoil knots of identical or opposite chirality [2].
While it might just be due to a lack of statistical convergence
(these knots remain much less probable than regular prime
knots), the emergence of composite knots versus more regular
prime knots therefore remains to be studied. Another related
question concerns the transition between different knots. For
example, it is known that the transition from an unknot to
a 51 knot is more topologically complex and therefore rare
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FIG. 8. Knot probability as a function of the dimensionless ra-
dius r0. Error bars are computed from the variance of a binomial
distribution. Other parameters are λ = 4 and � = 10−3. We use the
ABC flow L7 as defined in Table I.

than the transition from a 31 to a 52 knot [76,77]. We have
also observed that the knot 820 is the most probable knot with
eight crossings even if it is not a twist knot [see Fig. 3(c)].
This might be related to the fact that this particular knot,
sometimes called the Ashley’s stopper knot [78], is composed
of a trefoil knot around a loop, which might explain its rela-
tively large occurrence compared to other knots of comparable
topological complexity. The importance of these topological
transitions between different knots, or structures eventually
leading to knots, is a dynamical aspect that needs further
considerations.

Let us conclude by saying that, while the spontaneous
knotting of a single fiber remains a fundamental problem at
this stage, it is plausible that the macroscopic behavior of long
flexible fiber suspensions [31] could crucially depend on the
formation of knots on single fibers or, more likely, on links
between different fibers.
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APPENDIX: DEPENDENCE ON THE FIBER RADIUS

The dimensionless radius of the fiber has been arbitrarily
fixed to r0 = 10−2 in the main text. We justify here this
particular choice by varying the fiber radius. We consider
the particular case λ = 4, � = 10−3, and St = 10−2. The L7
flow is used as defined in Table I. The knot probability as
we vary the radius is shown in Fig. 8. We observe a rapid
decrease of the knot probability as the radius increases. As
we decrease the fiber radius, the knot probability tends to
a constant. This indicates that our results, obtained for the
particular case r0 = 10−2 indicated by the vertical gray line
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in Fig. 8, have reached the asymptotic regime where the knot
probability does not depend on the radius of the fiber anymore.
Note that increasing the radius too much would be unrealistic
since the Cosserat model is derived under the assumption
of an asymptotically small aspect ratio. The numerical cost,

however, increases rapidly as we decrease the radius since
we scale the grid spacing with the radius of the fiber. We
have chosen the particular case r0 = 10−2 as a compromise
between these numerical considerations and the constraint
that large radii would be unrealistic in our simple framework.
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