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Deviations from Poisson statistics in the spectra of free rectangular thin plates
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The counterintuitive fact that wave chaos appears in the bending spectrum of free rectangular thin plates is
presented. After extensive numerical simulations, varying the ratio between the length of its sides, it is shown that
(i) frequency levels belonging to different symmetry classes cross each other and (ii) for levels within the same
symmetry sector, only avoided crossings appear. The consequence of anticrossings is studied by calculating the
distribution of the ratio of consecutive level spacings for each symmetry class. The resulting ratio distributions
disagree with the expected Poissonian result. They are then compared with some well-known transition distri-
butions between Poisson and the Gaussian orthogonal random matrix ensemble. It is found that the distribution
of the ratio of consecutive level spacings agrees with the prediction of the Rosenzweig-Porter model. Also, the
normal-mode vibration amplitudes are found experimentally on aluminum plates, before and after an avoided
crossing for symmetrical-symmetrical, symmetrical-antisymmetrical, and antisymmetrical-symmetrical classes.
The measured modes show an excellent agreement with our numerical predictions. The expected Poissonian
distribution is recovered for the simply supported rectangular plate.
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I. INTRODUCTION

To understand quantum systems whose semiclassical limit
is integrable or chaotic, during the last 50 years, several tools
such as the theory of periodic orbits [1], spectral statistics [2],
and the random-matrix theory (RMT) [3] have been devel-
oped. As a result of the research carried out, it was found
that the main difference between wave systems with inte-
grable or chaotic ray limit is the absence and or presence of
avoided crossings also known as anticrossings. In an avoided
crossing, close energy levels repel each other as a function
of some externally controlled parameter. The appearance of
avoided crossings can be measured as level repulsion in the
spectrum, and the central paradigm of quantum chaos relies
upon the association of chaotic quantum systems with level re-
pulsion. Those results are captured by two conjectures [4–6]:
the Berry-Tabor conjecture establishes that the spectral fluc-
tuations of quantum systems, whose semiclassical limit is
integrable, are the same as those of the Poisson distribution.
The Bohigas-Giannoni-Schmit conjecture states that the spec-
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tral fluctuations of chaotic quantum systems are the same as
those predicted by the Gaussian orthogonal ensemble of RMT.

The level repulsion is commonly quantified using the near-
est neighbor spacing distribution P(s), which measures the
probability that s is the distance between two consecutive
levels. A simple approximate expression is the Wigner sur-
mise PW(s) = aβ sβ exp (−bβ s2 − cβ s), where aβ , bβ , and
cβ are some explicitly known constants and β is the level
repulsion parameter that holds for β = 0, 1. When β = 0,
there is no level repulsion at all, and the distribution of the
spectrum follows the Poisson law. According to the Berry-
Tabor conjecture this happens in integrable systems. Chaotic
systems which are invariant under time reversal, in agree-
ment with the Bohigas-Gianonni-Schmidt conjecture, present
linear repulsion (β = 1). For mixed systems, intermediate
values of this parameter can be found using some well-known
models [7–9]. These results have been tested in diverse quan-
tum, mesoscopic, and classical undulatory systems [3,10–12].
Among these chaotic systems, two-dimensional (2D) billiards
are the most studied systems in wave chaos. In those billiards,
typically, the Helmholtz equation with Dirichlet boundary
conditions holds. The Sinai billiard [13] and Bunimovich sta-
dium [14] are examples of chaotic systems, whereas the circle
and the rectangle are integrable. Those billiards have been
extensively studied theoretically [15], numerically [4,16–20],
and experimentally [11,21,22].
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There is a plenitude of studies on vibrating plates, espe-
cially in the engineering literature [23–25]. There are some
works in a wave chaos context [21,26–31]. Despite all efforts
made so far, the precise nature of wave chaos in rectangular
plates has remained an open question for many years. Poisson
statistics are being assumed for rectangular plates without
further ado. In this paper, the influence of the boundary con-
ditions in the out-of-plane spectra of a rectangular plate is
addressed. As it will be shown below, avoided crossings ap-
pear within each symmetry class of the bending spectrum for
thin rectangular plates with free boundary conditions. Thus,
deviations from the Poissonian statistics are obtained. In the
next section, the bending solutions of the rectangular plate are
discussed. Then in Section III, using finite elements simula-
tions, the level dynamics of the out-of-plane spectrum for thin
rectangular plates with all its borders free is analyzed. The
numerical results presented here extend the von Neumann-
Wigner theorem [32], for the out-of-plane vibrations of a free
rectangular thin plate. Levels corresponding to different sym-
metry classes intersect each other, whereas this is impossible
for levels within the same symmetry sector. Thus, it is shown
that level repulsion appears in the frequency spectrum of the
plate within each symmetry class. In the same section the
effect of the level repulsion on the spectrum is character-
ized by the ratio of consecutive level spacings distribution.
Since this ratio is independent of the local density of states
analyzing its distribution has the advantage that unfolding, a
very delicate process, is unnecessary. In Section IV, by testing
different heuristic transition models between Poisson and the
Gaussian orthogonal ensemble (GOE), it is shown that the
Rosenzweig-Porter model best fits the numerical results. Then
in Section V wave amplitudes, whose eigenvalues are involved
in the avoided crossing, are measured experimentally using
acoustic resonant spectroscopy, a technique which has been
successfully applied to study bending vibrations on integrable
and chaotic plates [33,34]. As expected, the vibrational modes
exchange their identities as they pass through the avoided
crossing.

II. BENDING WAVE SOLUTIONS FOR THE
RECTANGULAR PLATE

To start with, let us consider a thin rectangular plate with
length L, width C, and thickness h, as seen in Fig. 1(a). Within
the classical thin-plate theory, or Kirchhoff-Love theory [35],
the out-of-plane displacement w(x, y, t ) satisfies

D∇4w = −ρh
∂2w

∂t2
, (1)

where ∇4 = ∇2
⊥∇2

⊥ represents the biharmonic operator with
∇2

⊥ = ∂2/∂x2 + ∂2/∂y2 as the 2D Laplacian. Here, D =
Eh3/12(1 − ν2) is known as the plate’s flexural rigidity
with E and ν the Young’s modulus and Poisson’s ratio, re-
spectively. Looking for standing wave solutions w(x, y, t ) =
W (x, y)e−iωt , one gets

(∇4 − k4)W (x, y) = 0, (2)

where k2 = ω
√

ρh/D. In what follows, two types of bound-
ary conditions for the plate will be considered. On the
one hand, when all plate edges are free, the boundary

FIG. 1. (a) Rectangular plate of length L, width C and thick-
ness h; it has flexural rigidity D and density ρ. (b) Eighth bending
mode at frequency f8 = 308.28 Hz, showing its absolute vertical
displacement for a simulated, free vibrating rectangular plate, where
L = 800 mm, C = 0.355 m, h = 0.00635 m, E = 69 GPa, ν = 0.33
and ρ = 2700 kg/m3.

conditions [36] read ∂2W/∂x2 + ν ∂2W/∂y2|x=0,L = 0 and
∂3W/∂x3 + (2 − ν) ∂3W/∂x∂y2|x=0,L = 0. On the other hand,
when the edges are simply supported, the boundary conditions
are W |x=0,L = 0 and ∂2W/∂x2 + ν ∂2W/∂y2|x=0,L = 0. Inter-
changing x and y, the corresponding expressions for boundary
conditions on the x axis at y = 0, C are obtained. Consider
now a bending traveling wave impinging at a border of a plate,
as is shown in Fig. 2. The solution is given by [15,35]

W (x, y) = A1 ei(kxx−kyy) + A2 ei(kxx+kyy) + A3 e−ζyeikxx (3)

with ζ 2 = k2 + k2
x and k2

y = k2 − k2
x . For simply supported

boundary conditions at the border y = 0, just one reflected
wave into the bulk of the plate A2 = −A1 appears, and the
contribution from the exponential decaying term, A3 = 0,
is absent. In contrast for the free boundary case the expo-
nentially decaying term is not zero, A3 �= 0, generating a
contribution from an evanescent wave that travels along the
border as drawn in Fig. 2(b). This is the main difference
between a free and a simply supported plate.

Due to the D2 rectangle’s symmetry and because the
boundary conditions have the same symmetry, the solutions
to Eq. (2) can be classified into four symmetry classes: when
modes are symmetric with respect to both x and y axes, they

FIG. 2. Reflected bending waves on (a) a simply supported
boundary and (b) a free boundary.
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FIG. 3. Bending spectrum of the rectangular plate with (a) free
boundary conditions and (b) with simply supported boundary con-
ditions. The SS symmetry class (see the text) is drawn as thicker
magenta lines, SA as thick green lines, AS thin blue, and AA modes
as thinner red lines.

will be called symmetric-symmetric, W SS . When the wave
amplitude is antisymmetric on the x axis and symmetric on the
y axis, W AS , it will be called antisymmetric-symmetric. The
reverse W SA, will be called symmetric-antisymmetric. Finally,
when modes are antisymmetric with respect to both axes, they
will be called antisymmetric-antisymmetric W AA.

On the one hand, for the plate with free boundary con-
ditions, an analytical solution of Eq. (2) remains unknown.
Then the bending spectrum and eigenfunctions have to be
found numerically. Figure 1(b) shows a typical bending
normal mode wave amplitude in which exponential (evanes-
cent) and sinusoidal solutions can be observed. On the other
hand, for simply supported boundary conditions Eq. (2)
has normal mode analytical solutions [36], with frequen-
cies given by ωnm = (π/L)2√D/hρ[m2 + n2(L/C)2]. Here
n, m = 1, 2, . . . label the modes; n and m odd (even) indi-
cates a symmetric (antisymmetric) mode along the x axis
and y axis, respectively. The corresponding simply supported
bending normal mode wave amplitudes are given by Wnm =
N sin (

√
λnm − π2m2 y/L) sin (mπ x/L), being N a normal-

ization factor with λnm = ωnmL2√hρ/D. Note that the wave
amplitudes in the simply supported case do not present
evanescent components.

III. AVOIDED CROSSINGS IN THE FREE RECTANGULAR
PLATE AND ITS QUANTIFICATION

Figure 3 shows the out-of-plane normal mode frequencies
as a function of the length of the plate, keeping its width
fixed. For the free plate, 70 normal mode frequencies were
calculated using COMSOL Multiphysics for 200 lengths from
400 to 800 mm; this software solves the 3D equations of linear
elasticity, also known as Navier-Cauchy equations. Frequen-
cies for the 400-mm length lie below 19 kHz, whereas those
for 800-mm fall below 11 kHz. For the simply supported plate,
we used the already discussed analytical normal mode fre-
quencies. In the same figure, all symmetry classes have been
distinguished by colors. In the plate with all their boundaries
free, when the symmetry classes are considered indepen-
dently, one can observe the presence of avoided crossings. In
contrast, only crossings appear for the simply supported plate.

FIG. 4. Profile histograms for free (orange) and simply supported
(black) plate, for the ratio of consecutive level spacings within the
interval r ∈ [0, 2], compared with Poisson (cyan), GOE (blue) and
semi-Poisson (thick red) distributions. (a) SS symmetry, (b) SA sym-
metry, (c) AS symmetry, and (d) AA symmetry class.

The observed avoided crossings can be understood since the
free rectangular plate is not separable [37]. The appearance of
evanescent waves [Eq. (3)] which travel along the boundary
is a kind of ray splitting mechanism much slower than expo-
nential [38]. This mechanism is well known in the quantum
chaos community; the new appearing orbits are called non-
Newtonian orbits [39,40]. Therefore, weak avoided crossings
are expected in the free rectangular plate.

The effect of the avoided crossings in the spectrum might
be quantified using the probability distribution P(r) of the ra-
tio of two consecutive level spacings rn = ( fn+1 − fn)/( fn −
fn−1). Here { fn} is the set of ordered normal-mode frequencies
of the plate. The distributions of the ratio of two consecutive
level spacings for the rectangular plate are shown in Fig. 4
within the interval r ∈ [0, 2], and compared with the expected
Poisson distribution given by PP(r) = 1/(1 + r)2. Theoretical
results for the Wigner surmise, a very good approxima-
tion to that of the Gaussian orthogonal ensemble, PW(r) =
(27/8)(r + r2)/(1 + r + r2)5/2 and for semi-Poisson statis-
tics PSP(r) = 6r/(1 + r)4, are also given [41,42]. As can be
seen in Fig. 4, the simply supported case results agree with the
Poisson ensemble’s theoretical prediction; this is the expected
result. Intriguingly, the result for the plate with free boundary
conditions disagrees with the expected Poisson distribution.
Neither the result for GOE nor semi-Poisson, seem to match
the rectangular plate histograms when each symmetry class is
independently considered. Then the free bending vibrations of
the rectangular plate are neither fully integrable nor chaotic.
Also from Fig. 4, it is clear that the Poisson distribution does
not correctly predict the free bending histograms in particular
for r < 0.2. The difference in this region suggests that the
chaotic contribution, coming from the avoided crossings, is
small but significant for r → 0.

IV. RMT TRANSITION MODELS FITS FOR THE
DISTRIBUTION OF THE RATIO BETWEEN

CONSECUTIVE LEVEL SPACINGS

The behavior of the distribution of the ratio between con-
secutive level spacings for the rectangular plate with free
boundary conditions opens up the possibility of exploring the
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FIG. 5. Average histogram profile for all symmetry classes
of the free plate (orange) compared with the best fit of RMT
transition models: Brody-Atas (dotted blue), Izrailev (green) and
Rosenzweig-Porter (thick magenta); also the average profile his-
togram distribution for the simply supported plate is shown (black).

agreement with transition models between Poisson and GOE.
Although there are many heuristic models to explain such
a transition [7,43,44], only three models will be considered
here. Let us first take the phenomenological attempt given by
Brody-Atas (BA) [41,45]

PBA(r, β ) = 1

Zβ

(r + r2)β

(1 + r + r2)1+(3/2)β
, (4)

where Zβ is obtained from the normalization; Z1 = 8/27 for
GOE (β = 1). As mentioned before, β indicates the level
repulsion parameter. Another transition model considered is
the Rosenzweig-Porter (RP) model initially built to adjust
nuclear spectra halfway between Poisson and GOE distribu-
tions [46]. The RP model considers that the physical system
under study has a Hamiltonian Hλ that shows an integrable
behavior (Poisson) plus a chaotic behavior (GOE) through the
variation of a continuous parameter λ [47,48]:

Hλ = H0 + λV√
1 + λ2

, (5)

where H0 represents a diagonal matrix with d(=10 000) in-
dependent Gaussian variables centered on zero and variance
equal to 1; V represents a GOE matrix with independent
Gaussian variables centered at zero and variance equal to
σ 2 (except the diagonal elements where its variance is 2σ 2).
For λ = 0 this model reveals Poisson type statistics and for
λ → ∞ it shows GOE statistics [49]. The last distribution
considered in this work is PI(r) based on the Izrailev transition
model [8] that generalizes the Wigner surmise for any value
of β between 0 and 1. The procedure to build up PI (r) from
Pβ (s) is described as follows. A set of spacings {si} is created
from the Izrailev’s distribution

Pβ (s) = A

(
1

2
πs

)β

exp

[
− β

16
π2s2 −

(
B − π

4
β
)

s

]
, (6)

with parameters A and B found from the conditions∫ ∞
0 Pβ (s) ds = 1 and

∫ ∞
0 s Pβ (s) ds = 1. Then, a set of ratios

{ri} is built and its distribution P(r) is obtained. Note that
the previous procedure can be applied to any transition model
given its nearest-neighbor spacing distribution.

The best fits obtained for the BA, RP, and Izrailev models
are shown in Fig. 5. For BA and Izrailev ensembles, we fitted

TABLE I. Fit comparison of RMT models and the average his-
togram over all symmetries, for the free rectangular thin plate.
Number of bins = 30.

Distribution Parameters Error (%) χ 2/(bins-1)

Poisson · · · 30.93 0.032
Semi-Poisson · · · 24.37 0.023
GOE · · · 36.65 0.058
Brody-Atas β = 0.3459 20.30 0.016
Izrailev β = 0.25 18.68 0.015
Rosenzweig-Porter λ = 0.00585 12.17 0.008

the level repulsion parameter β. For the RP model, the pa-
rameter λ was fitted. Table I contains the comparative results
for all fitted distributions using Pearson’s chi-squared (χ2)
test. The mean absolute percentage error within the interval
r ∈ [0, 2] for the models in descending order are 20.3 %,
18.6 %, and 12.1 % for BA (β = 0.3459), Izrailev (β = 0.25),
and RP (λ = 5.85 × 10−3), respectively. The RP model with
a small λ shows a better agreement. The BA and Izrailev
best fits report almost the same repulsion parameter around
β ∼ 0.3. It is well known that the value of β depends on
the missing levels [50–52] which are not considered in the
statistics. In our case, by checking in detail the out-of-plane
modes we found very few missing levels, representing at most
0.26 % of any symmetry class. Therefore, this small number
of missing levels does not affect the reported β. The GOE and
Poisson distributions (not shown in Fig. 5) have even bigger
errors, 36.6 % and 30.9 % respectively.

V. WAVE AMPLITUDE MEASUREMENTS THROUGH
AVOIDED CROSSINGS

Avoided crossings are the fundamental and differentiating
effect that appears in the free-bending vibrations of the rect-
angular plate. Thus, in what follows, measurements that prove
the existence of avoided crossings for three of the four sym-
metry classes are reported. A generalization of the resonant
acoustic spectroscopy technique [34,53] was used to verify the
shape of the predicted stationary patterns “before” and “after”
an avoided crossing. Three aluminum plates with identical
mechanical properties were used in the experiments, with a
width of 355 mm, thickness of 6.35 mm, and lengths of 400,
500, and 800 mm. These lengths were selected considering
the numerical predictions shown in Fig. 3 in order to observe
the avoided crossings within each symmetry class. To rest the
plate, nylon threads in cross shape were held. The weight of
the plate tensions the threads. This assembly allows almost
free-boundary vibration of the plate that is weakly disturbed
in four points by the threads. More details can be found in
Refs. [34,53].

The left-hand side of Fig. 6 shows the sequence of bending
wave amplitudes obtained numerically, through an avoided
crossing, for the SA symmetry of the plate. Colors for these
stationary patterns obey the color scale of Fig. 1(b), indicating
the nodes by green and the maxima or minima by red. The
upper sequence illustrates the evolution from a stationary 2D
pattern A to a quasi-1D pattern B. Pattern A has four nodal

043004-4



DEVIATIONS FROM POISSON STATISTICS IN THE … PHYSICAL REVIEW E 103, 043004 (2021)

FIG. 6. Left: the frequency spectrum as a function of the length
L for the SA symmetry pointing a sequence of bending wave am-
plitudes numerically calculated, through an avoided crossing, for the
free rectangular plate. The colors follow the same scale as in Fig. 1,
indicating the nodes by green and maxima by red. Right: comparison
between measured modes (darker) and their corresponding simulated
ones (brighter). Modes A and C correspond to a 500-mm length plate,
while modes B and D to an 800-mm length plate.

lines (green color) in one direction and one nodal line in the
perpendicular direction, while pattern B has three nodal lines
along this last direction. The lower sequence shows in turn
an inverse evolution, that is, the amplitude C evolves until
it becomes pattern D. Note that B and C are practically the
same patterns, as well as A and D. At the right-hand side
of Fig. 6, a comparison between numerical calculations and
experimental realizations for each one of the four stationary
patterns associated with the avoided crossing is made. Each
image is an x − y plane projection of the absolute vertical out-
of-plane wave amplitude. The smooth and continuous images
(second and fourth columns) correspond to simulation, in con-
trast to experimental patterns (first and third columns) whose
mapping is less intense and defined. The agreement between
experiment and numerics is remarkable for all patterns. The
error in frequency between the experimental and numerical
predictions was at most 3.2 % for all measured modes within
each symmetry sector.

In Fig. 7 a comparison of stationary patterns for the AS
symmetry through an avoided crossing, similar to that of
Fig. 6, is given. As can be seen, the interchange of both
patterns before and after the anticrossing is observed. For this
symmetry a 2D normal mode indicated by C was chosen to
be measured. A plate with L = 400 mm was used since it
was difficult to distinguish experimentally the upper mode A
before the avoided crossing for L = 500 mm. The compari-
son between experimental stationary patterns A, B, C, and D
versus the numerical ones shows an excellent agreement and
one-to-one correspondence.

Figure 8 shows the evolution across an avoided crossing
for the SS symmetry. An apparent discrepancy is observed

FIG. 7. Evolution through an avoided crossing for the AS sym-
metry class. The figure is ordered as in Fig. 6. Mode A is for a plate
with L = 400 mm and mode C for L = 500 mm; modes B and D
correspond to L = 800 mm.

between equivalent numerical patterns A and D before and
after the anticrossing. Pattern D was chosen to be measured
experimentally but as we can see from the lower branch evo-
lution, a plate with L = 700 mm would be more appropriate
to check the similarity to pattern A. More experiments around
this length have to be performed to get a better agreement. In
general, the comparison between numerical predictions and
experiment reveals good agreement.

FIG. 8. Evolution through an avoided crossing for the SS sym-
metry class. The figure is ordered as in Fig. 6. Modes A and C
correspond to a plate with L = 500 mm; modes B and D are for
L = 800 mm.
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VI. CONCLUSIONS

The generic presence of avoided crossings in the bending
spectrum of freely vibrating rectangular thin plates has been
reported. This was done numerically up to 20 kHz and verified
experimentally for low frequencies. The avoided crossings
are responsible for non-Poissonian behavior in the spectrum
statistics characterized by the ratio of consecutive level spac-
ings distribution. In the rectangular free plate, the Berry-Tabor
conjecture does not apply due to the following reason. When a
bending ray arrives at a free boundary, apart from the reflected
ray, a new ray that travels only along the boundary appears.
This ray splitting implies weak avoided crossings. The Pois-
sonian statistics are recovered for simply supported boundary
conditions since evanescent waves on the boundary are not
present. Several RMT transition models were tested, and the
one that best fits the spectrum statistics of the free plate is
the RP model. The present work opens the door to a plethora

of developments in wave chaos since only two of 21 different
boundary conditions of a rectangular vibrating plate have been
analyzed.
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