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Three-dimensional bipedal model with zero-energy-cost walking
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We study a three-dimensional articulated rigid-body biped model that possesses zero cost of transport walking
gaits. Energy losses are avoided due to the complete elimination of the foot-ground collisions by the concerted
oscillatory motion of the model’s parts. The model consists of two parts connected via a universal joint. It
does not rely on any geometry-altering mechanisms, massless parts, or springs. Despite the model’s simplicity,
its collisionless gaits feature walking with finite speed, foot clearance, and ground friction. The collisionless
spectrum can be studied analytically in the small movement limit, revealing infinitely many periodic modes. The
modes differ in the number of sagittal and coronal plane oscillations at different stages of the walking cycle. We
focus on the mode with the minimal number of such oscillations, presenting its complete analytical solution.
We then numerically evolve it toward a general nonsmall movement solution. A general collisionless mode can
be tuned by adjusting a single model parameter. Some of the presented results display a surprising degree of
generality and universality.
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I. INTRODUCTION

Arguably, energy efficiency is one of the two most impor-
tant issues in the field of robotic locomotion [1] (the other
one—control robustness—is outside the scope of this paper).
Efficiency makes an autonomous robot proportionally more
useful, as it can run longer on a single power refill [2] (e.g.,
battery charge) and wears out its hardware more slowly. A
common measure of efficiency for mobile robots is the cost of
transport (COT)—the amount of energy spent by a traveling
robot per its weight per distance traveled.

The importance of energy efficiency is not limited to man-
made machines. As it offers a clear survival advantage, it is
natural to expect for animal gaits to be significantly shaped
by the energy efficiency requirements [3]. Indeed, optimizing
a detailed human neuromusculoskeletal model for COT pro-
duces a gait similar to a natural human gait [4].

Likewise, when anthropomorphic robots are designed with
COT optimality as the main objective, their walking gaits
often appear humanlike [5,6]. Walking motion patterns in
these robots are mostly decided by their passive dynamics. To
sustain walking, they need a relatively small energy injection,
either through joint actuation or by walking on a slight incline.

Since COT optimality plays a prominent role, it is reason-
able to ask how energy is lost during walking and how these
losses can be minimized. In this paper, we are only concerned
with mechanical losses. In general, energy is lost when the
robot’s actuators work against its passive dynamics and when
its feet interact with the ground. For a passive walker, only the
latter is of concern: energy is lost when a foot either collides
with or slides against the ground. To avoid the collision loss,
the foot velocity must vanish at the contact. For the foot then
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to stay on the ground, its acceleration must also vanish [7],
while the jerk (time derivative of acceleration) should remain
finite at the contact [8]. This type of collisionless motion
has been proposed and demonstrated in a hopper [7,8] and
a rimless wheel [9,10].

Note, if only velocity vanishes at the contact [11], an ad-
ditional mechanism (e.g., suction cups) is needed to keep the
robot in contact with the surface, as the surface reaction force
is negative (directed into the surface away from the robot)
when the contact occurs, as in brachiation [12]. If the ground
reaction force is non-negative everywhere on a walking tra-
jectory, we call such walking conventional.

For an appropriately designed walker, the collision losses
can be made to scale as the fourth power of velocity [13],
thereby COT vanishes as the third power at low velocity. From
a certain practical stand point, such elimination of COT in the
limit may be of limited utility. In this paper, we are concerned
with finding a finite-speed collisionless solution. We are also
not interested in nonphysical solutions, such as considering
massless springs, even though they trivially provide for a
lossless locomotion.

Some passive walker models require additional active
mechanisms to practically realize their walking modes. For
example, leg retraction may be needed to prevent ground
scuffing [13] or knees may need to be actively locked for a
portion of a walking cycle [14]. While technically realizable,
they add to the engineering challenge [15] and ideally should
be avoided, if possible.

In this paper, we report a three-dimensional passive walker
model with a perfectly collisionless finite-speed walking gait.
The model is free of nuisances requiring engineering inter-
vention. The ground scuffing is avoided by a rocking motion
in the coronal plane, without altering the model’s geometry.
There is no joint locking. The robot is made of articu-
lated rigid parts without use of springs. The walking gait is
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realized at finite ground friction. The existence of a collision-
less solution is demonstrated analytically. To date, to the best
of our knowledge, no collissionless finite-speed conventional
bipedal walking in a physically realistic model has been con-
clusively demonstrated by solving equations of motion, either
numerically or analytically, in either two or three dimensions.

The analytical solution is obtained via a perturbation the-
ory in the feet separation parameter, to the lowest order
necessary to establish a nontrivial (i.e., walking) collisionless
solution. This amounts to considering the sagittal and coronal
dynamics to linear order and the axial dynamics to quadratic
order. The perturbative treatment is justified under certain
conditions, which we collectively term the small movement
limit (SML). A SML solution can be numerically evolved
to a general solution using constrained gradient descent
optimization.

We showed that the number of model parameters needed
for tuning a collisionless solution is in general independent of
the model complexity and only depends on the topological
properties of the foot-ground interaction. Interestingly, our
SML solution is to a significant degree encoded by a pair
of universal functions, completely independent of the model
parametrization. It is an intriguing possibility that this univer-
sality of the collisionless solution is not coincidental to our
model but may be generalizable to other models as well.

The solution of our springless model features a peculiar
hanging torso gait. To enable a more-anthropomorphic look-
ing standing torso gait, we also considered a model endowed
with springs. We established an up-down torso duality and
exploited it to formulate the standing torso solution in terms
of the original springless model solution.

The paper is organized as follows. The biped model is
introduced in Sec. II. In Sec. III, we derive the exact equa-
tions of motion, as well as their approximate and simpler
SML form. Certain symmetry constraints are imposed on the
general solution in Sec. IV to make the solution search more
manageable. The SML solution is analytically investigated
throughout Sec. V. The found SML solution is employed as
an initial guess for a general numerical solution presented
in Sec. VI. In Sec. VII, we discuss related work and outline
directions for possible future research. Throughout this paper,
for the sake of both clarity and completeness of presentation,
many technical details have been relegated to the Appendices.

II. MODEL, TERMINOLOGY, AND NOTATIONS

In this section, we introduce the biped model, related ter-
minology, and some ubiquitous notations.

The biped model is depicted in Fig. 1. It is composed of
two rigid parts, called legs and torso, connected at the hip via
a universal joint. The endpoints of the legs coming in contact
with the ground (z = 0 plane) are called feet. The hip and feet
form an isosceles triangle (with the hip at the apex). In the
figure, the biped is shown in the upright configuration, char-
acterized by the reflection symmetries relative to the coronal
(x = 0) and sagittal (y = 0) planes.

We limit our consideration to periodic walking motion.
Walking consists of alternating single and double support
phases. In the double support phase, called phase II, both feet
are on the ground. In the single support phase, called phase I,

FIG. 1. Biped model. The figure is schematic: In general, the
depicted leg and torso links should not be regarded as indicative of
the mass distribution.

only one foot (called stance foot) is on the ground. The other
foot (called swing foot) is moved to a new location during
phase I, thereby realizing a stepping motion.

Unless stated otherwise, by collisionless walking (gait or
solution) we mean collisionless conventional walking, that is,
with both velocity and acceleration vanishing at the moment
of contact. Because a collisionless gait conserves energy, it
is time reversible. Therefore, we do not need to distinguish
between a foot strike and liftoff. We refer to both as an impact
event, foot impact, or impact for short.

Before we proceed, a few words are in order about our
matrix conventions. We use square brackets to denote a ma-
trix, commas to separate matrix elements, and semicolons to
separate matrix rows. Vectors are in column format. Due to
heavy use of sub- and superscripts, we use parentheses to
explicitly indicate vector or matrix component indices, unless
noted otherwise. A component index can be replaced by the
dot symbol to select all elements it represents. For example,
M(i·) and M(· j) are ith row and jth column of a matrix M.
Transposition is denoted MT

(i j) = M( ji). The Kronecker delta is
δi j ≡ δ(i j). An identity matrix In×m is n × m matrix In×m(i j) =
δi j ; also, I ≡ I3×3.

The contact of the stance foot can be modeled as a fictitious
spherical joint attaching the biped to the ground. The universal
and spherical joints can be viewed as two and three hinge
joints respectively, connected in series, see Fig. 1. We use
φ, θ , and ψ to denote rotation angles in the coronal, sagittal,
and axial (z = 0) planes, correspondingly. In phase I, hinge
angles qs

t = [φt , θt ]T specify the torso’s orientation relative to
the legs, and hinge angles qs

l = [φl , θl , ψl ]T specify the legs’
orientation relative to the ground. In phase II, the degrees φl

and ψl are inactive, therefore qd
l = [θl ], while qd

t = qs
t . The

model’s configuration is fully specified by the generalized co-
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ordinates qp = [qp
l ; qp

t ], where the support phase superscript
p stands for s and d in the single and double support phases,
respectively. In the upright configuration qs

(i �=3) = 0 by con-

vention. We will also refer to qφ = [φl , φt ]T, qθ = [θl , θt ]T,
and ψl subspaces as the coronal (or φ), sagittal (or θ ), and
axial (or ψ) sectors, correspondingly.

It is often convenient to work in a body-fixed frame of a
rigid body. Let us denote the ground frame, the legs’ body
frame, and the torso’s body frame as Fg, Fl , and Ft , cor-
respondingly. The ground frame Fg is shown in Fig. 1. By
convention, in the upright configuration, Fg = Fl = Ft . In gen-
eral, for vectors and matrices we may optionally use the frame
superscript (g, l , or t) to explicitly indicate the frame their
components are written in. For many quantities, we can omit
the frame superscript (unless expressly stated otherwise) when
we are not concerned with a coordinate representation or when
the ground frame is implied. The rotation matrix Rab rotates
vector coordinates from Fa to Fb, that is, ra = Rabrb for a vec-
tor r. The angular velocity of Fb relative to Fa is �̂ab = ṘabRT

ab,
where the hat notation indicates a skew symmetric matrix â
defined via the antisymmetric symbol as â(i j) = ∑

k ε( jik)a(k).
For convenience, we may introduce shorthand notations. For
example, we define R1 ≡ Rgl , Rt ≡ Rlt , �1 ≡ �gl , �t ≡ �lt ,
and �2 ≡ �gt = �1 + �t . The precise specifications of the
joints’ parametrization and hence the dependence of R and �

on q and q̇ are presented in Appendix A.
The model’s geometric and inertial parameters are speci-

fied as follows. Let O0, O1, O2, and Oh be the foot, the legs’
center of mass (COM), the torso’s COM, and the hip, respec-
tively, as shown in Fig. 1. We define r1 = −−−→

O0O1, r2 = −−−→
O0O2,

rh = −−−→
O0Oh, and rt = −−−→

OhO2. Note rl
1, rl

h, and rt
t are constants,

defined by the following parametrization:

rl
1 =

⎡⎣0
d
l1

⎤⎦, rl
h =

⎡⎣0
d
lh

⎤⎦, rt
t =

⎡⎣ 0
0

−lt

⎤⎦. (1)

At the upright configuration, r2 = rh + rt = [0, d, l2], where
l2 = lh − lt . In many cases, such as for COM’s location ri,
mass mi, and the moment of inertia Ii, we use i = 1 and
i = 2 to designate the parameters of the legs and torso, re-
spectively. The stated model symmetries (reflections in the
sagittal and coronal planes) imply that Ii are diagonal in
the respective body frames: I l

1 = diag(I1φ, I1θ , I1ψ ) and It
2 =

diag(I2φ, I2θ , I2ψ ).
Let us define a mass distribution moment function:

μna = m1ln
1 + m2ln

a . (2)

We will often be using the following shorthand notations:
μn ≡ μn2, μ̃n ≡ μnh and Iα ≡ I1α + I2α .

III. EQUATIONS OF MOTION

In this section, we first derive the exact equations of mo-
tion. These equations can only be integrated numerically. We
next derive the SML equations—an approximation to the ex-
act equations—that we analyze and solve analytically later on
in Sec. V. When solving numerically for a general collision-
less solution, we will use the SML solution as an initial guess,
which can be very helpful in a numerical solution search.

A. Exact equations

The kinetic and potential energies, written in terms of the
model part coordinates and velocities, are

T = 1

2

∑
i=1,2

(
miv

T
i vi + �T

i Ii�i
)
,

V = −gT
f

∑
i=1,2

miri,

(3)

where mi are masses, Ii are moments of inertia, ri are COM
coordinates, vi are COM velocities, �i are angular velocities,
and g f = [0, 0,−g]T is the gravitational field vector. The legs
and torso parameters are indicated by i = 1 and i = 2, corre-
spondingly. Following the Lagrangian formalism to derive the
equations of motion [16,17], we need to express T and V in
terms of the generalized coordinates q and velocities q̇, define
the Lagrangian function L(q, q̇) = T (q, q̇) − V (q), and write
down the Euler-Lagrange equations:

d

dt

∂L
∂ q̇

− ∂L
∂q

= 0. (4)

We first consider phase I, so we assume below q = qs. The
kinetic energy can be written in the form T = 1

2 q̇THq̇, where
H is called the mass matrix. It can be written as

H = S̄TH̄ S̄, (5)

where S̄ is constructed from the joint rotations R1 and Rt (and
corresponding partial rotations) and H̄ is expressed in terms
of the model constants (rl

1, rl
h, rt

t , m1, m2, I l
1, It

2) and Rt , see
Appendix B for details. Specifically, for S̄ we have

S̄ =
[

RT
1 S1 0
0 RT

t St

]
=
[

Sl
1 0

0 St
t

]
, (6)

where

S1 = [(RZ (ψl )RY (θl ))(·1), RZ (ψl )(·2), I(·3)] (7)

and

St = [RY (θt )(·1), I(·2)]. (8)

For H̄ , we have

H̄ =
[

H̄ll H̄lt

H̄t l H̄tt

]
, (9)

where

H̄ll = m1r̂l
1

T
r̂l

1 + I l
1 + Rt

(
m2r̂t

2

T
r̂t

2 + It
2

)
RT

t ,

H̄lt = H̄T
t l = Rt

(
m2r̂t

2

T
r̂t

t + It
2

)
,

H̄tt = m2r̂t
t
T
r̂t

t + It
2,

(10)

where r̂t
2 = R̂T

t rl
h + r̂t

t .
Following the standard procedure [17], we use the mass

matrix H to define the Coriolis matrix C in terms of the
Christoffel symbols 
(i jk) as

C =
∑

k


kq̇(k), (11)
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where


k
(i j) = 
(i jk) = 1

2

(
∂H(i j)

∂q(k)
+ ∂H(ik)

∂q( j)
− ∂H( jk)

∂q(i)

)
. (12)

The potential energy, written explicitly in terms of the
model constants and joint rotations, is

V = g
(
R1
(
m1rl

1 + m2
(
rl

h + Rt r
t
t

)))
(3), (13)

where g is the gravity acceleration magnitude. The potential
term G is defined as the gradient of the potential energy V (q)

G = ∇V. (14)

We are now in a position to write down the equations of
motion in the manipulator equation form [17],

Hq̈ + Cq̇ + G = 0, (15)

where H , C, and G have been defined above. These terms
are defined explicitly in terms of the model parameters, save
for differentiation with respect to q, which can be done ei-
ther symbolically (manually or with help of differentiation
software) or numerically. The equation can then be integrated
numerically.

We next consider phase II. The leg coordinates ql change
from [φl , θl , ψl ]T in phase I to [θl ] in phase II. Correspond-
ingly, R1 becomes RY (θl ) and S1 becomes I(·2). The equations
of motion in phase II can be formally written as a projection of
the phase-I equations. To that end, we introduce a projection
operator Jd that projects qs onto qd : qd = Jd qs. It is defined
as Jd

(1,2) = Jd
(2,4) = Jd

(3,5) = 1 with all other entrees equal to

zero. We also define a projection operator Js = Jd T
Jd , which

zeros out qs components that are absent in qd , namely, qs
(1)

and qs
(3). The phase I Eq. (15) can be written as Dsq = 0,

where Ds(q, q̇) = H (q) d2

dt2 + C(q, q̇) d
dt + ‖q‖−2G(q)qT. The

phase-II equations of motion Dd qd = 0 can then be obtained
by projecting

Dd = Jd Ds(Jsq, Jsq̇)Jd T
. (16)

We next consider the equations of motion in the SML approx-
imation.

B. Small movement limit

The SML is essentially a relationship between relevant
problem scales in the limit of small feet separation that jus-
tifies perturbation theory treatment in which the dynamics of
the ψ sector are decided at higher order by the (decoupled at
lower order) φ and θ sectors. To specify it precisely, we intro-
duce dimensionless parameters: dimensionless foot separation
parameter d̄ = μ0d/μ1 and dimensionless axial moment of
inertia Īψ = Iψ/μ2. We will see in this section that φ ∼ d̄ ,
θ ∼ ε and ψ ∼ d̄ε/Īψ , where ε is a free scale parameter,
independent of the model parametrization. For the consistency
of our perturbative analysis, we need 1 � φ, θ � ψ, φ2, θ2,
from where we obtain the SML specifications:

SML :

⎧⎪⎪⎨⎪⎪⎩
d̄ � 1

d̄2 � ε �
√

d̄

Īψ � max {d̄, ε}.
(17)

A more careful analysis reveals that these conditions can be
relaxed somewhat (e.g., the third line can be replaced by Īψ �
d̄2), but for the sake of simplicity we define the SML as above.
Below we expand the exact equations of motion to the lowest
order sufficient for establishing a nontrivial walking solution.

First we consider phase I. In the linear dynamics limit, the
equations of motion are

H0q̈ + G0 + G1q = 0, (18)

where H0, G0, and G1 are derived in Appendix C, (nonper-
turbatively in d̄ , i.e., correct to all orders in d̄). In this limit,
the φ sector is completely decoupled from the other sectors.
The θ sector is coupled to the ψ sector via O(d̄ ) coupling. To
the lowest nontrivial order in d̄ , (namely, to order O(1) for H0

and G1, and to order O(d̄ ) for G0, which coincidentally are
exact expressions for G0 and G1), the equations of motion in
α ∈ {φ, θ} sectors assume a similar form:

Hα =
[

μ2 + Iα −m2l2lt + I2α

−m2l2lt + I2α m2l2
t + I2α

]
,

G0α = g

[
δαφμ0d

0

]
, G1α = g

[−μ1 m2lt
m2lt m2lt

]
.

(19)

Note G0φ is O(d̄ ), while G0θ = 0. As a consequence, the scale
of φ sector motion is controlled by d̄ , while the scale ε of
θ sector motion is not determined by the model parameters,
but only needs to be ε � 1 to justify the linear dynamics
approximation.

To the considered order [as in Eqs. (19)], ψ̈l = 0 and the
solution describes a walking-in-place motion (walking with
zero step size). To capture a nontrivial motion in the ψ sector,
we need to include the terms to order O(d̄ε) in the equations
of motion, for the purpose of computing ψl . This entails
including the terms of order O(d̄ ) from H0, as well as the
order O(q) corrections to the mass matrix H and Coriolis term
C, see Appendix D for details. The equations of motion for ψl

in the SML become

Iψψ̈l + dbTq̈θ + d

dt

(
qT

φAφθ q̇θ + qT
θ Aθφ q̇φ

) = 0, (20)

where

b =
[−μ1

m2lt

]
(21)

and

Aφθ =
[

μ2 + Iθ − Iψ −m2l2lt + I2θ

−m2l2lt + I2θ − I2ψ m2l2
t + I2θ − I2ψ

]
,

Aθφ =
[ −μ2 − Iφ m2l2lt − I2φ

m2l2lt − I2φ + I2ψ −m2l2
t

]
.

(22)

These equations properly account for all the dominant terms
up to O(d̄ε), as long as the SML conditions of Eq. (17) are
satisfied.

In the SML, rather than working with relative angles (joint
angles) as generalized coordinates in α ∈ {φ, θ} sectors, we
found it convenient to work with absolute angles measured
with respect to the statically balanced single support config-
uration. (G becomes diagonal in that basis.) Therefore, we
switch to new coordinates q̃α = [α̃l , α̃t ]T, defined as

q̃α = S̃qα + cα, (23)
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where S̃ = [1, 0; 1, 1] and vector cα is chosen to cancel the
constant term G0α . Let us write the mass matrix Hα and the
potential term G1α as

Hα = S̃TH̃α S̃, G1α = S̃TG̃1α S̃. (24)

Then the equations of motion in α ∈ {φ, θ} sectors become

H̃α
¨̃qα + G̃1α q̃α = 0, (25)

where H̃α and G̃1α are

H̃α =
[
μ̃2 + I1α −m2lhlt
−m2lhlt m2l2

t + I2α

]
,

G̃1α = g

[−μ̃1 0
0 m2lt

]
,

(26)

and the term cα was set to (S̃TG̃1α )−1G0α:

cα =
[−δαφ

μ0d
μ̃1

0

]
. (27)

Note that G̃1α (and G1α) does not depend on α, but we keep
the subscript to distinguish it from G1.

Projecting the equations of motion onto phase II, (see Eq.
(16)), we find that the φ sector reduces to φt governed by the
equation (

m2l2
t + I2φ

)
φ̈t + gm2ltφt = 0, (28)

while the θ sector equations remain unchanged, and the ψ

sector is absent in phase II.

IV. SOLUTION SYMMETRIES AND CONSTRAINTS

Similarly to Ref. [11], we will impose certain symmetry
constraints on the form of the solution of Eq. (15). This will
reduce the number of equations we need to consider and
will make the problem more manageable, which is especially
important for an analytical investigation.

The model Lagrangian, and therefore the derived equations
of motion, are invariant with respect to time reversal and a
spatial reflection across a vertical plane. Therefore, a colli-
sionless solution remains valid under these transformations.
Due to the model’s sagittal and coronal plane symmetries, we
can look for a solution that is invariant to simultaneous time
reversal and spatial reflections. Specifically, we require the
invariance of the solution in phase I under (t, x) → −(t, x),
and in phase II under (t, x, y) → −(t, x, y) [where (t, x, y) are
measured relative to certain symmetry points]. We call these
symmetry points Ps and Pd , for the single and double support
phases, respectively. In terms of the generalized coordinates,
the solution is invariant under the following transformations:

Ps : (t, θl , ψl , θt ) → −(t, θl , ψl , θt ),

Pd : (t, θl , φt , θt ) → −(t, θl , φt , θt ).
(29)

The generalized coordinates and their time derivatives are
continuous functions of time at the symmetry points. There-
fore, if a coordinate flips sign in Eqs. (29), the coordinate and
its even order time derivatives must vanish at the symmetry
point. Otherwise, the odd order time derivatives vanish. Notice
also that the symmetry of Pd implies that the walker is in the
upright configuration at Pd .

Thanks to the symmetries of Eqs. (29), the complete walk-
ing cycle can be obtained from the part of the trajectory
connecting nearby points Ps and Pd that makes up a quarter of
the cycle. Thus, it is sufficient to focus on the solution between
the two symmetry points.

The transition from phase I to phase II is punctuated by a
foot impact event. In a time-reversed picture, in the phase II
to phase I transition, this event would normally be viewed as
a foot liftoff. We will refer to it as an impact in either case.

Let qs(t ) be the result of integrating the equations of mo-
tion Dsqs = 0 forward in time starting from Ps. Let qd (t ) be
the result of integrating the equations of motion Dd qd = 0
backward in time starting from Pd . Let ts and −td be the
moment of time t where the respective branches reach the
impact point. For a collisionless impact, it is required [8] that
the swing foot position r [of the branch qs(t )] satisfies at the
impact ṙ = r̈ = 0. Since the foot positions are not affected
by θl rotations, and φl = 0 in phase II, the impact conditions
translate into φs

l = φ̇s
l = ψ̇ s

l = φ̈s
l = ψ̈ s

l = 0 at t = ts. We can
write the impact conditions as

Diqs(ts) = 0, (30)

where Di
(1,1) = 1, Di

(2,1) = Di
(3,3) = d

dt , Di
(4,1) = Di

(5,3) = d2

dt2 ,
and the rest are zeros. For qs(t ) and qd (−t ) to belong to the
same solution, the model states from two branches must match
at the impact: Jd qs(ts) = qd (−td ) and Jd q̇s(ts) = q̇d (−td ). We
can write the matching conditions as

Dm(Jd qs(ts) − qd (−td )) = 0, (31)

where Dm = [I; I d
dt ].

To find a valid collisionless solution, there are 11 con-
straints to be satisfied: five from Eq. (30) and six from
Eq. (31). We will refer to them as joining conditions, as
they are imposed at the joining point of two branches. If
the model is fixed, the number of free parameters that can
be varied is 10: eight initial conditions on the parameters
that are invariant to the symmetry transformations Eqs. (29),
namely, (φl , θ̇l , ψ̇l , φt , θ̇t )|t=0 for Ps and (θ̇l , φ̇t , θ̇t )|t=0 for Pd ,
and two impact times, t s and t d . Even if all the parameters
are independent (which is not the case in the linear dynamics
limit, as we show later), it is not possible to construct a lossless
gait without tuning the model parameters.

We can generalize this consideration to other models with
periodic collisionless solutions [8,9,11]. In general, let Ps and
Pd be the symmetry points in the less constrained (phase I) and
more constrained (phase II) phases, respectively. In a symme-
try point, for every degree of freedom, either its coordinate or
velocity turns zero. A collisionless solution is invariant with
respect to a sign flip in time and in every component turn-
ing zero. Let ns = dim(qs) and nd = dim(qd ). We define the
impact dimension di as the number of degrees that freeze (be-
come inactive, in other words) upon transitioning from phase I
to phase II: di = ns − nd . Let ne be the number of parameters
encoding the impact surface. In general, ne = dim(space) −
dim(ground), so ne = 1 in all the cited cases. The number of
adjustable solution parameters is ns + nd + 2: one from each
degree of freedom (nonzero coordinate or velocity) plus the
impact time, for both phases. The number of joining condi-
tions is ne + 2di + 2nd : ne + 2di impact conditions and 2nd
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matching conditions. Thus, the number of model parameters
requiring tuning is n = (ne + 2di + 2nd ) − (ns + nd + 2) =
di + ne − 2. Note that in general ne can differ from 1; for
example, ne = 2 for a three-dimensional tightrope walker.

V. SMALL MOVEMENT LIMIT SOLUTION

In the SML, the equations in the φ and θ sectors are linear.
While the equation on ψ is nonlinear, it can be easily inte-
grated analytically. However, the need to coordinate motion
in three planes to satisfy the joining conditions of a colli-
sionless solution leads to nontrivial nonlinear equations on the
impact times and normal mode frequencies. These equations
are difficult to analyze in their generality. In this section, the
analysis is simplified by imposition of an additional constraint
and a formulation in terms of dimensionless impact phases.
Also, we will focus our attention on the least exotic walking
solution, that is, a solution with the fewest oscillations.

A. Axial plane solution

To distinguish quantities in phases I and II, we optionally
use the phase notation p ∈ {s, d} that assumes the value s in
phase I (single support) and the value d in phase II (double
support). To reduce clutter we omit the sector ψ and phase s
superscripts in this section, listing all the affected quantities at
the end.

Integrating Eq. (20), we find

ψl (t ) = wt − I−1
ψ

(
dbTqθ (t ) +

∫ t

0
dt ′(qT

φ (t ′)Aφθ q̇θ (t ′)

+ qT
θ (t ′)Aθφ q̇φ (t ′)

))
. (32)

Note, a constant term in the above expression is absent due
to the symmetry of Ps [see Eqs. (29)], dictating that ψl (t ) and
qθ (t ) be odd functions, and qφ (t ) to be an even function.

To significantly simplify our analysis of the SML solution,
we will impose an additional constraint on it, requiring the
vanishing of qθ at the impact:

qθ (ts) = 0. (33)

We call it the upright legs at impact (ULI) constraint, as it
implies the same configuration of the legs, as in the upright
configuration. As will be explained in Sec. V C, in the SML,
qθ (t ) realizes a simple harmonic motion and, therefore, the
ULI constraint also implies q̈θ (ts) = 0. To satisfy the con-
straint, we will need to tune an additional model parameter.
The constraint is imposed only in the SML and not on the
general solution.

There are two joining equations involving ψl (t ):

ψ̇l (ts) = 0,

ψ̈l (ts) = 0.
(34)

Both equations arise from the impact conditions Eq. (30).
Under the ULI constraint, the joining conditions in Eqs. (34)
translate respectively to

w − I−1
ψ

(
dbT + qT

φ (ts)Aφθ

)
q̇θ (ts) = 0,

q̇T
φ (ts)

(
Aφθ + AT

θφ

)
q̇θ (ts) = 0.

(35)

At the impact point, φ̇l (ts) = 0, see Eq. (30). This also im-
plies φ̇t (ts) �= 0, because otherwise [qφ (ts); q̇φ (ts)] would be
a singular point on the phase portrait of the φ sector dy-
namics (which is decoupled from other sectors in the SML),
which would be incompatible with a periodic walking solution
we are looking for. Therefore, the second joining condition
becomes

bT
1

˙̃qθ (ts) = 0, (36)

where b1 = (S̃−1)
T

(AT
φθ + Aθφ )

(·2)
= [−I2φ ; I2θ − I2ψ ].

In this section, we have omitted ψ and s superscripts in ψ s
l ,

wψs, qs
θ , qs

φ , φs
l , and φs

t .

B. General form of linear dynamics solution in sagittal and
coronal sectors

Let us investigate Eq. (25), which describes motion in both
the coronal (α = φ) plane in phase I, and sagittal (α = θ )
plane in phases I and II. To reduce notational clutter, we will
be omitting the sector α and phase p sub- and superscripts
throughout this section. To eliminate ambiguity, we provide
a list of affected quantities in full notation at the end of the
section. Let us introduce a matrix M,

M = −G̃−1
1 H̃ =

[
a+ −γ β−1

γ β a−

]
, (37)

where

a+ = μ̃2 + I1

gμ̃1
, a− = −m2l2

t + I2

gm2lt
,

β =
√

μ̃1

m2lt
, γ = lh

gβ
.

(38)

Let {λz, uz}|z=± be the eigensystem of M. The subscript z
represents ±1, which we often shorten to ±. Notice that
det M < 0, because H̃ is positive definite and det G̃1 < 0, see
Eqs. (26). Therefore, M has two real eigenvalues, one positive
and one negative (see Appendix I for details): λ+ > 0 and
λ− < 0. The general solution of Eq. (25) can be written as

q̃(t ) =
∑

zz′=±1

wzz′uze
z′t√
λz , (39)

where wzz′ are the weights of different normal modes. Let us
define a function

�zz′ (a, b, c) = 1
2 (a + zb + z′√(a − b)2 + 4c) (40)

and shorthand notations

λzz′ ≡ �zz′ (a+, a−,−γ 2),

azz′ ≡ �zz′ (λ+, λ−, γ 2).
(41)

We can now compactly write down the eigensystem of M,

λz = λ+,z, uz = [λ−,z, γ β]T, (42)

and the expression of az in terms of λz and γ :

az = a+,z. (43)
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The general solution of the phase II Eq. (28) is

φt (t ) =
∑
z=±1

wze
zt√
a− . (44)

The quantities in this section that have the sector α and
phase p sub- or superscript in their full notations include Mα ,
G̃1α , H̃α , aα

z , Iiα , λ
αp
z , uαp

z , q̃p
α , w

αp
zz′ , λ

αp
zz′ , and aαp

zz′ .

We will be using a frequency notation ω
αp
z ≡ 1/

√
zλαp

z in
the following analysis. If a quantity does not depend on the
phase index p, as is the case for λ

θ p
z , uθ p

z and ω
θ p
z , we will

omit p for clarity.

C. Sagittal plane solution

To reduce clutter, we omit the sector θ superscript in this
section, listing the affected quantities at the end.

According to Eqs. (29), the symmetries of Ps and Pd dictate
that q̃p

θ (t ) be an odd function in both phases. Therefore, the
weights w

p
zz′ in Eq. (39) must be odd functions of z′. Conse-

quently, the sagittal plane solution must be in the form

q̃p
θ (t ) = w

p
+u+ sinh ω+t + w

p
−u− sin ω−t, (45)

where we have defined w
p
z = 2z

√
zz′wp

zz′ . There are four
scalar joining equations involving the sagittal sector:

q̃s
θ (ts) − q̃d

θ (−td ) = 0,

˙̃qs
θ (ts) − ˙̃qd

θ (−td ) = 0.
(46)

All the equations arise from the matching conditions Eq. (31).
Because the equations of motion are identical in both phases,
a formal continuation of either branch q̃p

θ (t ) to all t is a valid
solution (up to a time shift), and

q̃s
θ (t ) = q̃d

θ (t − ts − td ). (47)

Since the solution is periodic and the first term in the right
hand side of Eq. (45) is unbounded, its weight must be w+ = 0
and the sagittal sector motion in both phases is a simple har-
monic motion q̃p

θ (t ) ∝ sin ω−t . It then follows from Eq. (47):

ω−(ts + td ) = πk, k ∈ Z (48)

(where Z is the set of integer numbers) and ws
− = (−1)kwd

−.
The ULI constraint of Eq.(33) implies ω−ts = πk′, k′ ∈ Z,
and therefore ω−td = π (k − k′). In the rest of the analysis,
we choose to consider a solution with the smallest positive tp,
therefore we pick k = 2, k′ = 1 to have:

ts = td = π

ω−
. (49)

Because we are focusing on a solution with ts = td , we may
use a single notation τ = ts = td to represent the impact times
in both phases. We introduce an impact phase notation o− =
ω−τ , so the previous equation can be written as

o− = π. (50)

An impact phase describes the phase gained by a normal mode
between t = 0 and the impact moment. The full utility of
the impact phase notations will become evident in the next
section.

In this section, we have omitted θ superscripts in: wθ p
zz′ , w

θ p
z ,

uθ
z , ωθ

z , and oθ
−.

D. Coronal plane solution

To reduce notational clutter we omit the sector φ super-
script in this section, listing all the affected quantities at the
end.

According to Eqs. (29), the symmetries of Ps and Pd dictate
that q̃s

φ (t ) and φd
t (t ) be an even and odd functions respectively.

Therefore, the weights ws
zz′ in Eq. (39) must be an even func-

tion of z′, while the weights wd
z in Eq. (44) must be an odd

function of z. Consequently, the coronal plane solution must
have the form

q̃s
φ (t ) = ws

+us
+ cosh ωs

+t + ws
−us

− cos ωs
−t,

φd
t (t ) = wd sin ωdt,

(51)

where we have defined ws
z = 2ws

zz′ , wd = −2izwd
z and ωd =

1/
√−a−. There are five joining equations involving the coro-

nal sector:

φ̃s
l (ts) − cφ(1) = 0,

˙̃φs
l (ts) = 0,

¨̃φs
l (ts) = 0,

φ̃s
t (ts) − φd

t (−td ) = 0,

˙̃φs
t (ts) − φ̇d

t (−td ) = 0.

(52)

The first three equations arise from the impact conditions
Eq. (30), while two other equations arise from the matching
conditions Eq. (31) (the last two equations were simplified
using the first two). The five joining conditions form a set
of linear equations on w = [ws

+,ws
−,wd ]T. The first equation

determines the scale of the solution of the homogeneous linear
system A(ts, td )w = 0, comprised of the other four equations.
The matrix A(ts, td ) is a 4 × 3 matrix, whose coefficients are
functions of ts and td . For a nontrivial w solution to exist, the
rank of A must be lowered below 3. This can be achieved by
appropriately tuning ts and td . To that end, we have derived the
following equations on tp, (see Appendix E for details):

ωs
− cot ωs

−ts = ωs
+ coth ωs

+ts,

ωs
− cot ωs

−ts = ωd tan ωdtd .
(53)

Because the equation of motion in phase II is a projection
of the phase-I equations, the frequencies ωs

z and ωd are not
independent, they satisfy (see Appendix I)

(a− − λ−)(a− − λ+) = γ 2. (54)

As discussed in the previous section, we consider a solution
with ts = td = τ . We can view Eqs. (53) and (54) as a system
of equations on the φ sector spectrum, given the impact time
τ . We can write them as

o+ coth o+ = o− cot o− = o tan o,

(o−2 − o−2
− )(o−2 + o−2

+ ) = τ̄−4,
(55)

where we have introduced the impact phase notations oz =
ωs

zτ , o = ωdτ and the reduced impact time notation τ̄ =
τ/

√
γ . Interestingly, the equations in Eqs. (55) are free of

any model parameters. In that sense, the impact phases are
universal. We refer to them, and any other functions derived
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FIG. 2. The impact phases o+(τ̄ ), o−(τ̄ ), and o(τ̄ ) are functions
of the reduced impact time τ̄ ∈ (0, τ̄c ). Because o+ is unbounded, it
is plotted together with 1/o+.

from the impact phases and the reduced impact time alone, as
universal functions.

Since τ and the frequencies are positive, we are only con-
cerned with positive roots of Eqs. (55). Since o+ coth o+ � 1,
both o− and o can only belong to (kπ, (k + 1/2)π ), k ∈ Z,
where tan () is positive. Since o− cot o− � 1 for o− < π/2,
we need k > 0 for o−. The parameter k characterizes how
many oscillating movements the walker commits before the
impact. We choose to look for a solution with the minimal
number of such oscillations, therefore we limit our consider-
ation to o− ∈ (π, 3π/2) and o ∈ (0, π/2) in the rest of this
section. Under these constraints, o+ coth o+, o− cot o−, and
o tan o are monotonic functions of their arguments. It then
follows from the first line of Eqs. (55) that o+ and o are
monotonically decreasing functions of o−. From the second
line of Eqs. (55), it follows that τ̄ is also a monotonically
decreasing function of o−. Therefore, all the impact phases
are monotonic functions of τ̄ : o− is decreasing, while o+ and
o are increasing functions. The solution of Eqs. (55), o+(τ̄ ),
o−(τ̄ ), and o(τ̄ ) are plotted in Fig. 2. It is straightforward to
find

o+(τ̄ ) ∈ (0,+∞),

o−(τ̄ ) ∈ (π, o−u),

o(τ̄ ) ∈
(

ol ,
π

2

)
,

τ̄ ∈ (0, τ̄c),

(56)

where o−u = 4.4934094... and ol = 0.86033359... are the
roots of o− cot o− = 1 and o tan o = 1, respectively, and τ̄c =
π/
√

2
√

3. It is straightforward to extract the asymptotic be-
havior of impact phases for the extreme values of τ̄ . For
τ̄ → 0, to two dominant terms, we find

oz → ν0
z τ̄ z+1

(
1 + zν1

z τ̄
4
)
, o → ν0(1 + ν1τ̄

4), (57)

where

ν0
+ =

√
o−2

l − o−2
−u, ν0

− = o−u, ν0 = ol ,

ν1
+ = 1

2

(
o−2

l − o−2
−u

)
o−2

l − 1

3

((
o2

l + 2
)−1

o−2
l − o−3

−u

)
,

ν1
− = 1

3

(
o−2

l − o−2
−u

)
o−1

−u,

ν1 = 1

3

(
o−2

l − o−2
−u

)(
o2

l + 2
)−1

.

(58)

For τ̄ → τ̄c, to the lowest nonconstant term, we find

o+ → 4

3
ε−1, o− → π

(
1 + 3

4
ε

)
,

o → π

2

(
1 − 3

4
ε

)
,

(59)

where ε = −(τ̄ − τ̄c)/τ̄c.
In this section, we have omitted φ superscripts in w

φs
zz′ , w

φp
z ,

wφd , uφs
z , ωφs

z , ωφd , aφ
−, λφ

z , oφ
z , oφ , oφ

−u, and oφ

l .

E. Model parametrization of the collisionless solution

So far, we have resolved the joining conditions in the coro-
nal and sagittal sectors in terms of the impact phases oφ

z , oφ ,
and oθ

−. In the axial sector, out of two joining conditions one
[the first in Eqs. (35)] can always be trivially satisfied, while
the other [Eq. (36)] remains to be solved. To complete the
SML solution, we need to select physically admissible values
of the model parameters that reproduce the impact phases and
solve the remaining joining condition, Eq. (36). That can be
done, in fact, for any τ̄ ∈ (0, τ̄c), as we show in this section.

The physically realizable model parameter values must
satisfy the following constraints: The parameters li, lh, lt ,
mi, and Iiα , where i ∈ {1, 2} and α ∈ {φ, θ, ψ}, must all be
non-negative. In addition, the moments of inertia must respect
the triangle inequality: Iiα1 + Iiα2 � Iiα3 , for all distinct αi.

In Sec. IV, we provided a counting argument showing that
at least one model parameter needs to be tuned to obtain a
collisionless solution. In the linear dynamics limit, the sagittal
sector solution is defined up to an arbitrary scale ε. Setting
this scale consumes an additional free parameter. Satisfying
the ULI constraint takes another free parameter. Solving for
an arbitrary τ̄ value consumes yet another free parameter. In
total, we now need to adjust at least four model parameters.

We consider two parametrization prescriptions: a simpler
(restricted) case and a more general case. We start by consider-
ing the restricted case, where we set to zero as many moments
of inertia as possible to simplify consideration: I1φ = I2φ =
I1θ = 0. The restricted case solution is then generalized to the
general case of positive moments of inertia. While both cases
are not totally general, they offer useful analytical insights
about the extent of the domain of admissible model param-
eters. Refer to Appendix F for more details.

1. Restricted case parametrization

First, we find lh, l1, and τ , given a solution of the φ sector
equations Eqs. (55). For compactness, we present the results
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in dimensionless units by setting g = m2 = lt = 1,

lh = κ2(κ1
√

m1 + 1), l1 = lh
κ1√
m1

, (60)

where the universal functions κi(τ̄ ) are completely indepen-
dent of the model parametrization,

κ1 =
√

−λ̄
φ
+λ̄

φ
−, κ2 = (āφ

+−)−2, (61)

where λ̄φ
z = λφ

z /γ = z(oφ
z (τ̄ )/τ̄ )−2 and āφ

zz′ = aφ

zz′/γ =
�zz′ (λ̄φ

+, λ̄
φ
−, 1). For any τ̄ ∈ (0, τ̄c), the functions κ1 and

κ2 are positive and so are lh and l1. The condition l2 > 0 is
satisfied as long as m1 > mc, where

mc =
{

0, κ2 � 1( 1−κ2
κ1κ2

)2
, κ2 < 1.

(62)

The impact time is

τ = τ̄ κ
1
4

2 . (63)

Next, we need to find I2θ . Notice its value does not affect φ

sector. Equation (50) (which is a consequence of the ULI con-
straint) can be solved for a positive I2θ given any τ̄ ∈ (0, τ̄c).
Indeed, if I2θ = 0, then oθ

− = oφ
− > π , and if I2θ → +∞, then

oθ
− → 0. Therefore, there exists I2θ > 0 that solves oθ

− = π :

I2θ = τ 2

π2
+
(

τ 2

π2
κ−1

2 + κ2
1 + 1

)−1

− 1. (64)

To respect the triangle inequalities on the moments of inertia,
one should set I1ψ = 0 and I2ψ = I2θ . Coincidentally, this
choice of I2 parameters also satisfies the axial plane joining
condition Eq. (36), as b1 = 0 now. Thus, the restricted case
SML solution is parametrized by four independent parame-
ters: two model parameters (d and m1), and two nonmodel
parameters (τ̄ and ε).

To restore the presented expressions to dimensionful nota-
tions, one needs to replace all mass ma, length la, moment of
inertia Ia, and time τ notations with ma/m2, la/lt , Ia/m2l2

t , and
τ
√

g/lt , respectively, where a stands for any subscript.

2. General case parametrization

To consider the general case of positive moments of inertia,
we parametrize them as I1α = cα

1 μ̃2 and I2α = cα
2 m2l2

t . While
I1α is now parametrized implicitly (since μ̃2 is not fixed), this
type of analysis still gives us a good idea about the range of I1α

values, for which an admissible parametrization of the SML
solution exists. Let us define

κ ′
1 =

√
κ2

1 + 1(
1 + cφ

1

)(
1 + cφ

2

) − 1,

κ ′
2 = κ2

(
1 + cφ

2

)2
.

(65)

If we now replace κi with κ ′
i in Eqs. (60), (62), and (63),

we obtain the general case solution for lh, l1 mc, and τ , (see
Appendix F for more details). The solution is defined for those
values of τ̄ and cφ

i that do not turn the expression under the
square root in Eqs. (65) negative. The general case formula

for I2θ involves more than just replacing κi with κ ′
i :

I2θ = τ 2

π2
+
(

τ 2

π2
κ ′

2
−1 + (

κ ′
1

2 + 1
)(

1 + cθ
1

))−1

− 1. (66)

Let us investigate the case of I2φ = I2θ = ζ . In this case,
ζ dependence drops out of Eq. (66) completely, and we can
rewrite it as

cθ
1 = (

1 + cφ

1

) (1 − ξ 2)−1 − ξ 2κ−1
2

κ2
1 + 1

− 1, (67)

where ξ = τ̄ κ
1/4
2 /π . The equation has the form cθ

1 = (1 +
cφ

1 )�(ξ, κ1, κ2) − 1; it is easy to verify (see Appendix F for
details) that �(ξ, κ1, κ2) > 1 as long as ξ < 1, and therefore,
cθ

1 > cφ

1 . Thus, we have an explicit prescription, in terms of
cα

i , for the model parametrization in the general case for any
τ̄ , as long as (1 + cφ

1 )(1 + ζ ) < κ2
1 + 1.

To have a more quantitative assessment of the admissible
model parameter domain, we present the asymptotic expan-
sion of κi to the lowest nonconstant term, as well as the
expansion of λ̄z to the lowest order needed to establish the
expansion of κi. For τ̄ → 0, we find from Eqs. (57), (58), and
(61):

λ̄z → zν0
z
−2

τ̄−2z
(
1 − 2zν1

z τ̄ 4
)

(68)

and

κ1 → (ν0
+ν0

−)−1(1 − (ν1
+ − ν1

−)τ̄ 4),

κ2 → ν4
0 τ̄−4.

(69)

For τ̄ → τ̄c, we find from Eqs. (59) and (61):

λ̄+ → 3
√

3

32
π2ε2, λ̄− → − 1

2
√

3

(
1 − 7

2
ε

)
(70)

and

κ1 →
√

3

8
πε, κ2 → 3

4
(1 + ε). (71)

The functions κi and ξ are plotted in Fig. 3. We have veri-
fied that κi are monotonically decreasing functions, while ξ

is a monotonically increasing function of τ̄ . The function ξ

changes from ξ → ν0/π at τ̄ → 0 to ξ → 1/2 at τ̄ → τ̄c.
Thus, the required condition ξ < 1 is satisfied for all τ̄ . Notice
that τ → ν0

√
1 + cφ

2 remains finite for τ̄ → 0.
The axial joining condition Eq. (36) is equivalent to

bT
1 uθ

− = 0, from where we find, for I2φ = I2θ = ζ : I2ψ =
ζ (1 − uθ

−(1)/uθ
−(2) ). Since 0 < uθ

−(1) < uθ
−(2), (see Appendix F

for details), we have 0 < I2ψ < ζ , which satisfies the triangle
inequality. To satisfy it for I1, we choose I1ψ in the range
|I1φ − I1θ | � I1ψ � I1φ + I1θ . Thus, the general case SML so-
lution is parametrized by seven independent parameters: five
model parameters (d , m1, cφ

1 , cφ

2 , and I1ψ ), and two nonmodel
parameters (τ̄ and ε).

We have demonstrated that both the restricted and general
case of the model parametrization satisfies all the joining
equations and the ULI constraint, and therefore realizes a
collisionless solution in the SML.

It is instructional to evaluate the effective number of the
tuned model parameters in the restricted and general cases.
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FIG. 3. Universal functions κi(τ̄ ) and ξ (τ̄ ) [plotted for τ̄ ∈
(0, τ̄c )] are independent of the model parametrization. Because κ2

is unbounded from above, it is plotted as 0.2/κ2.

We ignore the nonholonomic constraints, even when they
become degenerate, as in the restricted case. We also ignore
the general case constraint cφ

2 = cθ
2, which can be replaced

by a nonholonomic constraint. Then, in both the restricted
and general case, we only need to tune two additional model
parameters to satisfy the ULI constraint and the axial joining
condition. It makes four parameters in total (together with lh
and l1), as expected.

F. Spring-supported torso solution

In this section, we consider a version of the original model
endowed with torsion springs at the hip joint. This modifica-
tion enables consideration of a collisionless gait with the torso
located above the hip joint, which can be regarded as a more
anthropomorphic-looking gait.

The hip springs are modeled by adding the elastic energy
term

Ve = k

2
qT

t qt (72)

to the potential energy V , where k is the spring constant.
This changes the potential term G by ∇Ve in the equations of
motion Eq. (15), without affecting H and C. In the SML, only
G1 is affected and only in α ∈ {φ, θ} sectors, cf. Eqs. (18) and
(19):

G1α = g

[−μ1 m2lt
m2lt m2lt + k

g

]
. (73)

Note the same equations can be used for describing both the
hanging and standing torso arrangements by choosing lt < 0
for the standing torso case. As long as the choice of model
parameters does not affect the signs of the eigenvalues of M
in Eq. (37), all the analysis in terms of the impact phases in
Sec. V C and V D, as well as the universal functions, remain
unchanged. Only the model parametrization step needs to be
reconsidered. Rather than reproducing a somewhat tedious
analysis of Sec. V E for an arbitrary k of the spring-endowed

model, we take a different and simpler route. We establish an
up-down torso duality, that connects solutions at different k
values and lt signs. We then use this duality to resolve the
parametrization of the spring-supported standing torso solu-
tion in terms of the already solved springless hanging-torso
solution parametrization.

We switch to dimensionless units g = m2 = 1, lt = z = ±1
with z = −1 corresponding to the standing torso setup. We
generalize S̃ so it covers both values of z and matches z = 1,
k = 0 case of Sec. III B,

S̃ =
[

1 0
y z

]
, (74)

where y = 1/(z + k) is chosen to make G̃1α diagonal. We only
use α for α ∈ {φ, θ} sectors. We use the prime to denote the
quantities in the dual setup, corresponding to z′ = −z. The
duality relation is induced by requiring the parameters of the
dual setup to be selected so H̃α and G̃1α are independent of z.
Importantly, the joining conditions are independent of z in the
α sectors (as one can easily verify). Therefore, provided the
dual parameter values are physically admissible, the solution
q̃′

α = q̃α is a valid collisionless solution, as it satisfies both
the equations of motion and the joining conditions of the dual
setup. In the ψ sector, the joining conditions do depend on z,
requiring a proper selection of I2ψ , as we explain at the end of
this section.

We now present the explicit form of the duality transforma-
tion for all the model parameters, except I2ψ . For simplicity,
we keep Iiα fixed, only allowing k, m1, l1, and lh to vary with z.
Under these restrictions, we find for the duality transformation
(see Appendix G for details)

z′ = −z,

k′ = k + 2z,

m′
1 = δ2

1

δ2
, l ′

1 = δ2

δ1
,

l ′
h = lh + 2z(1 + I2α ),

(75)

where we have defined

δ1 = m1l1 − 2z(2 + I2α ),

δ2 = m1l2
1 − 4z(2 + I2α )[lh + z(1 + I2α )].

(76)

For m′
1 and l ′

1 to be physically admissible, the positivity of δi

must be ensured, leading to the condition on m1,

m1 > (max {√mc,
√

mc1,
√

mc2})2
, (77)

where

√
mc1 =

(√
1 + 8

2 + I2α

κ2
− 1

)
1 + z

4κ1
,

√
mc2 = 2

2 + I2α

κ3
1 κ2

(√
1 + 1 + I2α

2 + I2α

κ2
1 + z

)
− 1

κ1
.

(78)

Note that μ1, μ2, and y do not change under the duality
transformation.

Let us now consider the selection of I2ψ , (which has no
affect on the α sectors). In the restricted case, Eq. (36) is
trivially satisfied (see Sec. V E 1), so I ′

2ψ = I2ψ . In the general
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case, reproducing the analysis of Sec. V E 2 for general y and
z, we find

I2ψ = ζ
1 − xy

1 + x(z − y)
, (79)

where x = uθ
−(1)/uθ

−(2), 0 < x < β−1 < 1 (see Appendix F)
and 0 < y � 1. To satisfy the triangle inequality on I2ψ , we
need 0 < I2ψ < 2ζ , which is satisfied for any x if z = 1 and
for x < 1/(2 + y) if z = −1. From there a condition on m1

follows (see Appendix G):

√
m1 >

√
mc3 =

(
2 + y√

κ2
− 1

)
1 − z

2κ1
. (80)

To obtain a standing torso solution parametrization in the
general case, one can start with any valid springless model
parametrization (as presented in Sec. V E), provided that the
conditions Eqs. (77) and (80) are met. One then uses the
duality transformation Eqs. (75) (with z = 1 and k = 0) and
Eq. (79) (with z = −1 and y = 1) to compute all the model
parameters in the dual setup. The restricted case is even sim-
pler: only Eq. (77) needs to be enforced and instead of using
Eq. (79) one sets I ′

2ψ = I2ψ .
Importantly, satisfying the conditions on m1 poses no prac-

tical difficulty. It is straightforward to verify that, for a given
springless solution, the conditions Eqs. (77) and (80) can al-
ways be satisfied by keeping τ̄ and Iiφ fixed, while increasing
m1 and computing all other parameters as prescribed by the
springless model parametrization procedure. Note we do not
need to know τ̄ ′, as the duality approach bypasses the use of
the universal functions in the dual setup.

VI. GENERAL SOLUTION

Let χ include all the adjustable initial conditions on the
generalized coordinates and the impact times, and let η in-
clude all the adjustable model parameters,

χ = [
φs

l , φ
s
t , θ̇

s
l , ψ̇

s
l , θ̇

s
t , θ̇

d
l , φ̇d

t , θ̇d
t , ts, td

]T
,

η = [
lh, l1, d, m1, η

T
I

]T
,

(81)

where ηI is the triangle-inequality-respecting parametrization
of the moments of inertia, see Appendix H for details. Thus,
x ≡ [χ ; η] includes all the parameters that can be adjusted
while searching for a collisionless gait solution. Let h(x) be
11-dimensional vector combining the joining conditions from
Eqs. (30) and (31). We are interested in finding solutions
of h(x) = 0, possibly with certain desired properties of x.
A general solution can only be found numerically by an it-
erative procedure, such as Newton’s method. In a complex
high-dimensional problem without a good initial guess on x,
this iterative procedure is not even guaranteed to converge to
h = 0, let alone in a particular region with desired properties.
Therefore, it is highly preferable that the initial guess x0 be
already close to the solution, that is, h(x0) ≈ 0. Our SML
solution provides such x0. We then evolve it to a desired region
in the parameter space using a constrained gradient descent
technique. It involves optimizing an objective function f (x)
of our choice, while staying close to a valid solution h(xi ) ≈ 0
at any step i in the course of optimization. The constrained

gradient descent update rule is (see Appendix H for details)

xi+1 = xi − λ−1
x (Ix − h′(xi )

+h′(xi ))∇ f (xi ) − h′(xi )
+h(xi ),

(82)

where the shorthand notation h′ stands for the matrix h′
(i j) ≡

∂h(i)/∂x( j), and h′+ is a pseudoinverse of h′ [defined for a

matrix m as m+ = mT(mmT )
−1

]. The second term on the
right-hand side of the above equation is the projection of the
gradient ∇ f onto the tangent space of h = 0, while the last
term enforces h = 0. The coefficient λx controls the gradient
descent rate and Ix ≡ Idim(x)×dim(x).

We use the general case parametrization for x0, as pre-
scribed in Sec. V E 2, with d set to a small value. We then
evolve x away from the SML using Eq. (82) with f encoding
certain soft constraints, for example, favoring larger values of
d and penalizing excessively small values of lh, l1, and Iφ . We
also penalize small values of |ψ̇l (0)| to prevent collapse onto a
purely coronal movement solution (side-to-side rocking with
zero step length, i.e., ψl = θl = θt = 0). The optimization
procedure was implemented using the freely available GNU
OCTAVE software [18], and we found the optimization to be
fairly straightforward.

Let the integers (kφ, kθ ) be the numbers of oscillations in
the coronal and sagittal sectors per one collisionless walking
cycle. (Due to the imposed symmetries, the number of oscil-
lations in the φ and θ sectors between two nearby symmetry
points of the same type must be half-integer and integer,
respectively, therefore kφ and kθ must be, respectively, odd
and even.) We call such solution a (kφ, kθ ) mode. So far, in
Sec. V we have analyzed the (3,4) mode. As one stays near
a valid solution during optimization, the discrete numbers
(kφ, kθ ) do not change, (perhaps with exception of certain
points in the space of collisionless trajectories). To explore
different general modes, one should seed the optimization
with different SML modes. In the SML, it should be possible
to analyze all the modes analytically, similarly to the (3,4)
mode. This goes beyond the scope of the paper though, as the
modes with a high number of oscillations seem less interesting
for the purpose of walking. In the general regime, we focus
exclusively on the (3,4) mode, which is the simplest SML
mode compatible with the ULI constraint.

We have evolved the (3,4) mode from an initial general
case SML solution (see Sec. V E 2) toward a nonsmall feet
separation solution, following the outlined optimization pro-
cedure. We then truncated all but one of the model parameters
to two significant digits and ran a few more iterations of the
optimization step Eq. (82) with η = [lh] and ∇ f = 0, thus
only optimizing over lh to enforce h = 0. Our claim that
a single model parameter suffices to tune a general colli-
sionless mode is evidenced by a prompt drop of ‖h‖ to the
numerical zero. All the results presented below are for this
particular solution, encoded by the following model parame-
ter values: lh = 1.0941669, l1 = 0.16, d = 0.15, m1 = 0.19,
I1φ = 0.00002, I1θ = I1ψ = 0.00032, I2φ = 0.0000092, I2θ =
I2ψ = 0.019 (we use g = m2 = lt = 1). The corresponding
values of χ are given in Appendix I.

The torso’s trajectory relative to the legs for the (3,4) mode
is plotted in Fig. 4. The trajectory is loosely reminiscent of a
Lissajous curve, as it is a closed contour of two superimposed
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FIG. 4. The parametric plot of θt (t ) vs φt (t ) shows the torso’s
trajectory relative to the legs over one walking cycle for the (3,4)
mode. The Lissajous-like curve features three coronal and four sagit-
tal oscillations. The symmetry points Ps and Pd and the impact point
(indicated here as ts) are denoted in the left half of the plot.

oscillating motions, but only the sagittal oscillations are sim-
ple harmonic (and only in the SML).

A collisionless trajectory is fully specified by its defini-
tion between nearby symmetry points. In Fig. 5, we plot
q(t ) between Ps and Pd , which constitutes a quarter of the
cycle. A complete walking cycle trajectory can be obtained
by unfolding the plot around the symmetry points with ap-
propriate symmetry transformations. Note only φl vanishes at

FIG. 5. Collisionless trajectory components are plotted between
Ps and Pd with the following nomenclature: solid (blue), dashed
(green), and dash-dotted (red) lines represent the φ, θ , and ψ sectors,
respectively, while ql and qt are indicated by thin and bold lines,
respectively. Vertical line is the impact moment separating phases I
and II. The components θl , ψl , and θt vanish at Ps by symmetry. The
components θl , φt , and θt vanish at Pd by symmetry. Only φl vanishes
at the impact.

FIG. 6. The first and second time derivatives (angular velocities
and accelerations) that need to vanish at the impact for the solution to
realize a collisionless conventional walking: φ̇l (t ) (solid blue), ψ̇l (t )
(dash-dotted red), φ̈l (t ) (bold solid blue), and ψ̈l (t ) (bold dash-dotted
red) are plotted between Ps and impact. All the shown derivatives
vanish at the impact.

the impact, θl and θt remain finite, as the ULI constraint is
not enforced in the general solution. Two components, φl and
ψl , become inactive in a two-dimensional impact. Those com-
ponents must respect the impact conditions of vanishing first
and second time derivatives. This is explicitly demonstrated
in Fig. 6 by plotting the derivatives for t ∈ (0, ts). While the
velocities and accelerations of φl and ψl vanish at the impact,
their jerks remain finite [8].

In the inset of Fig. 7, we plotted the swing foot trajectory
to illustrate that no ground penetration or scuffing occurs in
the swing phase. Let ρ(t ) be the minimal friction coefficient

FIG. 7. Main panel: The minimum friction coefficient ρ(t ), suf-
ficient to prevent sliding, is plotted between Ps and Pd . Inset: The
parametric plot of φl (t ) vs ψl (t ) for t ∈ (0, ts ) shows the swing foot
trajectory. The finite slope at the impact indicates finite ρ(ts).
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sufficient to prevent foot sliding at time t (see also Appendix
I). The finite angle of the trajectory at the impact [equal to
atan2(˙̇φ̇ l (ts), ˙̇ψ̇ l (ts))] implies a finite angle of the foot strike
with the ground, indicating finite ρ(ts). The main panel of
Fig. 7 shows ρ(t ) reaching maximum value of about 0.161 in
phase II. Note the forces are continuous across the impact due
to the enforcement of the impact conditions while the jerks are
not, as manifested by a kink in ρ(t ) at ts. We have verified that
the ground reaction force remains non-negative throughout
the cycle, thus confirming that the computed collisionless gait
represents conventional walking.

The gait features the step length of about 0.085, which is
7.7% of the model height or 27.4% of the feet separation.
This may seem not a lot for a normal walking, but given
overall simplicity of the model and fixed feet separation, it
does not look too little either. We can liken it to a penguin
walk, whose feet’s range is also somewhat restricted (in com-
parison to many bipedal animals) and whose wobbling walk
also involves significant torso movements.

VII. RELATED WORK AND DISCUSSION

The optimization of a robot’s design and control policies
for energy efficiency is ubiquitous in the field of legged
locomotion. Yet relatively few studies have addressed the
possibility of complete elimination of the ground collision
losses in passive walkers, even though it offers obvious bene-
fits of greatly (indefinitely, barring the joint and air friction)
extending the walking range of a robot. While the current
record-holding robot [2] has narrow specialization, there is
no fundamental reason for why an extreme walking effi-
ciency and practical versatility should be mutually exclusive
in robots.

The impact conditions that need to be satisfied by a col-
lisionless conventional walking trajectory were formulated in
Refs. [7,8]. The actual models chosen for the collisionless mo-
tion demonstration had relied in their design on springs. We do
not view it as a critical feature, as oscillating motion can be
realized by hanging pendulum-like parts as well. Springs do
offer more freedom in the selection of the model’s geometry,
however. For example, they can be added to prop up the torso
above the hip, perhaps to give the robot a more presentable
look. Indeed, in Sec. V F we extended our design to include
hip springs and showed that this modification only affects the
parametrization of the model but not the universal aspects,
such as the shape of κi. Ultimately, we believe the springs are
only strictly necessary for propping up a single-link torso, as
they enable an oscillatory mode of the standing torso, which
is needed for the collision cancellation. Most likely, the same
effect can be achieved by attaching the second link (e.g., a
hanging arm) at the top of the standing torso.

A planar three-link biped model with a spring-mounted
torso, potentially capable of collisionless walking, was pro-
posed in Ref. [19]. It was hypothesized that, with a torso, the
model had sufficient number of internal degrees of freedom to
eliminate collisional losses. A version of this model, with each
leg connected to the torso by a torsional spring, was solved
numerically in Ref. [11], (also in Ref. [20], with an arm added
to the torso). However, that solution does not enforce the
acceleration vanishing at foot impacts, and therefore does not

represent conventional walking. Without an additional mech-
anism, the walker would not be able to follow the calculated
trajectory, as it would be losing its contact with the ground
upon a foot strike.

The symmetry points Ps and Pd can be viewed as a gener-
alization of the planar symmetry points imposed in Ref. [11].
There, an additional constraint of instantaneous support trans-
fer was introduced, corresponding to td → 0 (the impact
merging with Pd ) in our terminology. It turns out this con-
straint is incompatible with the existence of a collisionless
(conventional) walking solution1. The double support phase
appears to be necessary for realizing collisionless walking, as
was originally suggested in Ref. [19].

In Sec. IV, we presented a general counting argument for
the number of model parameters n that need to be tuned to
realize a collisionless motion: n is one less than the impact
dimension. It explains in a unified manner why n = 0 for
the hopper [8] and the (extended) rimless wheel [9], while
n = 1 for the three-link walker and our model. Note n does not
depend directly on the number of model degrees of freedom
or spatial dimensions. “Tuning” refers to a small adjustment
in the vicinity of a valid solution. It does not mean that nine
remaining (dimensionless) model parameters can assume ar-
bitrary values. Still, in the SML, we were able to explicitly
parametrize a wide range of admissible model parameters by
means of a set of universal functions of reduced impact time
(an independent nonmodel parameter) and five independent
model parameters with clear restrictions on them. We find it
somewhat remarkable and credit the imposition of the ULI
constraint for that.

Our main contribution in this paper is the analytical analy-
sis of a collisionless walking solution of a three-dimensional
bipedal model in the SML, aided by the upright legs constraint
at the impact. Similar amplitude smallness considerations
have been applied to passive walking analysis on small or
vanishing slopes [13,19,21], but not in the context of complete
elimination of collisions, as far as we know. We consider
it intuitively plausible that the SML collisionless spectrum
is representative of the general collisionless modes in suffi-
ciently large vicinity of the SML. In the same vein as the
linear normal modes are representative of the nonlinear nor-
mal modes in conservative systems, under certain conditions
[22]. However, we do not attempt to rigorously defend this
idea. Instead, we empirically demonstrate the validity of such
reasoning by numerically extending the (3,4) mode to nons-
mall feet separation.

Our analysis implies that, in general, kφ � 3, and the (3,4)
mode is the simplest mode under the ULI constraint. Whether
an even simpler mode—(3,2) mode—exists in the absence of
the constraint is an open question. We think the SML-like
analysis of collisionless solution looks promising for other
models, potentially more complex and more anthropomorphic
models. It would be interesting to apply it to the planar three-
link model. Particularly, it would be interesting to see if the
problem separates into a universal part (like our equations
on the impact phases) and a parametrization part, or if one
needs to introduce additional constraints to make the problem

1Private communication with Andy Ruina and Mario Gomes.
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more tractable. It would also be interesting to consider a
three-dimensional three-link model with a pelvis and spring
supported torso, similar to the model introduced in Ref. [23].
To establish a walking SML solution, it would be sufficient
to consider linear dynamics in the decoupled sagittal and
coronal planes (with the sagittal plane dynamics identical to
that of the planar three-link model). We conjecture that this
model possesses collisonless walking modes, requiring two
model-parameter tuning due to its three-dimensional impacts.
These are just some of the possible research directions worth
pursuing.

There are many ways to reduce collisional energy losses
in legged locomotion, for example, via use of light-weight
legs or tendonlike springs [24]. Yet, only the elimination
of collisions themselves can completely eliminate collisional
losses. This work extends our theoretical understanding of the
related ideas and could improve the design of efficient walking
robots.
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APPENDIX A: ROTATION MATRIX PARAMETRIZATION

The rotations around the axes X , Y , and Z by an angle α

are defined as

RX (α) =
⎡⎣1 0 0

0 c −s
0 s c

⎤⎦, RY (α) =
⎡⎣ c 0 s

0 1 0
−s 0 c

⎤⎦,

RZ (α) =
⎡⎣c −s 0

s c 0
0 0 1

⎤⎦, (A1)

where we have defined c = cos α and s = sin α. Let
RAiAi+1...Aj (αi, αi+1, ..., α j ) be a sequence of intrinsic (i.e., rel-
ative to the body-fixed frame) rotations, where the (k + 1)th
rotation is taken around the body axis Ai+k ∈ {X,Y, Z} by the
angle αi+k :

RAiAi+1...Aj (αi, αi+1, ..., α j ) = RAi (αi )RAi+1 (αi+1)...RAj (α j ).

(A2)

We will also use shorthand notations Ri = RAi (αi ) and Ri: j ,
defined as

Ri: j =
⎧⎨⎩i � j : RiRi+1...Rj

i = j + 1 : I
i > j + 1 : undefined.

(A3)

Assume now that qα ≡ [αi, αi+1, ..., α j]T is a function of time.
Let ω̂i = ṘiRT

i and ω̂i: j = Ṙi: jRT
i: j . It is straightforward to ver-

ify, for i < j,

ω̂i: j =
k= j∑
k=i

Ri:k−1ω̂kRT
i:k−1 =

k= j∑
k=i

̂Ri:k−1ωk, (A4)

which implies ωi: j = ∑k= j
k=i Ri:k−1ωk . One can check that ωi =

I(· f (Ai ))α̇i, where f (A) maps X → 1, Y → 2, and Z → 3. Let
Ri: j = Rab be a rotation that takes Fa to Fb. Then ωi: j is the
angular velocity of Fb relative to Fa. Let us define Sab to be a
transformation relating the generalized coordinate velocity q̇α

to the angular velocity ωi: j , that is, ωi: j = Sabq̇α . We then find

Sab = [I(· f (Ai )), Ri(· f (Ai+1 )), Ri:i+1(· f (Ai+2 )), ...Ri:k−1(· f (Ak ))]

(A5)

Note the order of columns in Sab follows the order of com-
ponents in qα , (as indicated by A’s and α’s subscripts). In the
context of rotation sequences, we will refer to Ri:k for k < j
as partial rotations. Thus, the matrix Sab is specified in terms
of the partial rotations.

The angular velocity ωi: j in Eq. (A4) is specified in Fa.
To transform q̇α to another Fc, we include a rotation Rca:
ωc

i: j = Rcaωi: j = Sc
abq̇α , where we have defined Sc

ab ≡ RcaSab.
To avoid confusion, we never omit the superscript for the
angular velocity transformation Sc

ab, unless c = a. We use the
following shortcut notations in the paper: S1 ≡ Sgl , St ≡ Slt ,
Sa

1 ≡ Sa
gl , and Sa

t ≡ Sa
lt .

In our model, the (fictitious) contact joint parametrization
is chosen so R1 = RZY X (ψl , θl , φl ). The hip joint geometry is
chosen so Rt = RY X (θt , φt ). Using Eq. (A5) and paying atten-
tion to the order of joint angles in ql and qt , we can write down
the expressions for the generalized velocity transformations S1

and St corresponding to R1 and Rt , as given in Eqs. (7) and (8).

APPENDIX B: DERIVATION OF EXACT EQUATIONS
OF MOTION

In this Appendix, we derive the representation of the mass
matrix H and the potential term V in terms of the model
constants and the joint rotations, as given in Sec. III A.

We use shortcut notations R1 ≡ Rgl , R2 ≡ Rgt , Rt ≡ Rlt ,
�1 ≡ �gl , �2 ≡ �gt , and �t ≡ �lt . We call R1, Rt , �1,
and �t joint rotations and angular velocities. Clearly, �2 =
�1 + �t . Since vi = ṙi, ṙ1 = �̂1r1, ṙh = �̂1rh, ṙt = �̂2rt , and
r2 = rh + rt , we have

v1 = �̂1r1,

v2 = �̂1r2 + �̂t rt .
(B1)

We can now write the kinetic energy [see Eqs. (3)] in the basis
of joint angular velocities �′ = [�1; �t ] as T = 1

2�′TH ′�′,
where

H ′ =
[

m1r̂T
1 r̂1 + m2r̂T

2 r̂2 + I1 + I2 m2r̂T
2 r̂t + I2

m2r̂T
t r̂2 + I2 m2r̂T

t r̂t + I2

]
. (B2)

Let us express �′ in terms of q̇. According to Appendix A,
�

g
1 = Sg

gl q̇l = S1q̇l and �
g
t = Sg

lt q̇t = R1St q̇t . Therefore �′ =
S′q̇, where

S′ =
[

S1 0
0 R1St

]
. (B3)
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Let us rotate H ′ partwise so the corresponding parts’ moments
of inertia are diagonal in the new basis. In other words, we
write H ′ = R′H̄R′T, where

R′ =
[

R1 0
0 R2

]
. (B4)

To compute H̄ = R′TH ′R′, we use rg
1 = R1rl

1, rg
2 = R1rl

h +
R2rt

t , Ig
1 = R1I l

1RT
1 , Ig

2 = R2It
2RT

2 , and R2 = R1Rt to find H̄
given in Eqs. (9) and (10). Note that H̄ depends only on the
model constants and Rt . We can now write T = 1

2�′TH ′�′ =
1
2 q̇TS̄TH̄ S̄q̇ = 1

2 q̇THq̇ where S̄ = R′TS′ is given in Eq. (6).
The expression for V in Eq. (13) should be obvious now.

APPENDIX C: LINEAR DYNAMICS APPROXIMATION

In the linear dynamics limit, one retains all the terms up to
order O(q) in the equations of motion Eq. (15). This implies
that the mass matrix H and the Coriolis term C must be
considered up to order O(1), and the potential term G up to
order O(q). The Coriolis term vanishes at this level, as clear
from its definition in Eq. (11). We consider H and G below.
Note, the derived expressions are exact to all orders in d . In
this Appendix, below we refer to the quantities H , R1, Rt , S1,
St , S̄, V and G that are defined or used in Eqs. (5)–(10) and
Eqs. (13) and (14).

1. Mass matrix H in linear dynamics approximation

We need to compute H to order O(1) in q. To that order,
R1 = Rt = S1 = I , St = I3×2 and S̄ = [I3×3, 0; 0, I3×2]. Using
Eqs. (1) and (I1) to compute products of the form r̂T r̂′ in
Eqs. (10), one readily arrives at the expressions below.

In the linear dynamics limit H → H0 = [H0
ll , H0

lt ; H0
t l , H0

tt ],
where

H0
ll =

⎡⎣μ2 + Iφ + μ0d2 0 0
0 μ2 + Iθ −μ1d
0 −μ1d Iψ + μ0d2

⎤⎦,

H0
t l =

[−m2l2lt + I2φ 0 0
0 −m2l2lt + I2θ m2lt d

]
,

H0
tt =

[
m2l2

t + I2φ 0
0 m2l2

t + I2θ

]
, (C1)

and H0
lt = H0

t l
T.

2. Potential term G in linear dynamics approximation

To compute G to order O(q), we need to compute the
potential energy V , and hence the joint rotation matrices R1

and Rt [see Eq. (13)], to order O(q2). To quadratic order, we
find

R1 = RZY X (ψ, θ, φ)

=

⎡⎢⎣1 − θ2+ψ2

2 −ψ θ

ψ 1 − φ2+ψ2

2 −φ

−θ φ 1 − φ2+θ2

2

⎤⎥⎦ (C2)

and

Rt = RY X (θ, φ) =

⎡⎢⎣1 − θ2

2 φθ θ

0 1 − φ2

2 −φ

−θ φ 1 − φ2+θ2

2

⎤⎥⎦. (C3)

From Eq. (13), we find to quadratic order:

V = μ1 + μ0dφl − μ1
φ2

l + θ2
l

2

+ m2lt

(
φ2

l + θ2
l

2
+ φlφt + θlθt

)
.

(C4)

For G, we find G = G0 + G1q, where G0 =
[gμ0d, 0, 0, 0, 0]T and

G1 = −gμ1

⎡⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎦

+ gm2lt

⎡⎢⎢⎢⎣
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
1 0 0 1 0
0 1 0 0 1

⎤⎥⎥⎥⎦. (C5)

APPENDIX D: HIGHER ORDER CORRECTION TO
LINEAR DYNAMICS APPROXIMATION

The next order terms on top of the linear dynamics ap-
proximation captured by Eqs. (19) come from expanding H0

to order O(d̄ ) and from expanding H and C to order O(q)
at d = 0. The latter constitutes a nonlinear correction to the
linear dynamics approximation. We denote those terms H1(q)
and C1(q̇) for the mass matrix and the Coriolis term correc-
tions, respectively. Expanding H0 (defined in Appendix C 1) to
order O(d̄ ) contributes the term dbTq̈θ in Eq. (20). For H1(q),
one finds

H1(q) = e3qTA + ATqeT
3 , (D1)

where e3 = [0, 0, 1, 0, 0]T and A is defined in terms of the
elements Ai j

αβ ≡ Aαβ(i j) of the matrices Aφθ and Aθφ , given in
Eqs. (22):

A =

⎡⎢⎢⎢⎢⎣
0 A11

φθ 0 0 A12
φθ

A11
θφ 0 0 A12

θφ 0
0 0 0 0 0
0 A21

φθ 0 0 A22
φθ

A21
θφ 0 0 A22

θφ 0

⎤⎥⎥⎥⎥⎦. (D2)

The term C1(q̇) is determined by H1(q) via Eqs. (11) and (12).
We find

∂H1(q)

∂q(k)
= e3A(k·) + (AT )(·k)e

T
3 , (D3)

the Christoffel symbols


k = 1
2 (e3(A + AT )(k·) − (A − AT )(·k)e

T
3 − (A − AT )e3(k) ),

(D4)
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and the Coriolis term

C1(q̇) = 1
2

(
e3q̇T(A + AT ) − (A − AT )

(
q̇eT

3 + eT
3 q̇I5×5

))
.

(D5)

The corresponding contribution to the equations of motion
Eq. (20) in the ψ sector is

eT
3 (H1(q)q̈ + C1(q̇)q̇) = qTAq̈ + 1

2
q̇T(A + AT )q̇

= d

dt
(qTAq̇)

= d

dt

(
qT

φAφθ q̇θ + qT
θ Aθφ q̇φ

)
.

(D6)

APPENDIX E: CORONAL SECTOR IMPACT TIME
EQUATIONS

To reduce clutter, we omit the coronal sector superscript
φ in this section. The last four equations in Eqs. (52) form a
homogeneous linear system Aw = 0, where

A =

⎡⎢⎢⎣
us

+(1)ω
s
+ss

+ us
−(1)ω

s
−ss

− 0
us

+(1)ω
s
+

2cs
+ −us

−(1)ω
s
−

2cs
− 0

us
+(2)c

s
+ us

−(2)c
s
− sd

us
+(2)ω

s
+ss

+ us
−(2)ω

s
−ss

− −ωd cd

⎤⎥⎥⎦, (E1)

where we have defined cs
z = cosh

√
zωs

zts, ss
z =√

z sinh
√

zωs
zts, cd = cos ωdtd , and sd = sin ωdtd .

Consider the task of reducing the rank of a n × m matrix
M, with n > m, below m. To achieve it, one needs to tune at
least n − m + 1 parameters of M, in general. Indeed, for A this
can be done by tuning two parameters, ts and td .

Consider two submatrices of A: (1) a 2 × 2 matrix A1,
which is the top left corner submatrix of A, and (2) a 3 × 3
matrix A2, which is obtained from A by dropping the second
row. If A1 and A2 are singular matrices, then A has rank at most
2. One can see it as follows. The singularity of A1 implies that
the rows A(1·) and A(2·) are not independent. The singularity of
A2 implies that among A(1·), A(3·), and A(4·) there are at most
two independent rows. Hence A has at most two independent
rows.

Let A:A(i·) be a matrix obtained from A by the elementwise
division of its rows by ith row. We first test the singularity
of A1,

det (A1:A1(1·) ) = ωs
− cot ωs

−ts − ωs
+ coth ωs

+ts, (E2)

from where the first equation in Eqs. (53) follows.
To test the singularity of A2, we compute

det (A2:A2(3·) )

= − σ+
ωs−

cot ωs
−ts − σ−

ωs+
coth ωs

+ts + σ+ − σ−
ωd

tan ωdtd

= −
(

σ+
ωs−

2 + σ−
ωs+

2

)
ωs

− cot ωs
−ts + σ+ − σ−

ωd
tan ωdtd ,

(E3)

where σz = us
z(1)/us

z(2). In the second step, we assumed
det A1 = 0 and used Eq. (E2). Next, we compute

σ+ − σ−
σ+
ωs−

2 + σ−
ωs+

2

= �λ
−,+ − �λ

−,−
�λ−,−�λ+,+ − �λ−,+�λ+,−

= 1

�λ−,+ − �λ+,+
= 1

−a−
= ωd 2

,

(E4)

where we used Eqs. (42) and (I2). From Eqs. (E3) and (E4),
the second equation in Eqs. (53) follows.

APPENDIX F: MODEL PARAMETRIZATION

In this Appendix, we fill in the details omitted in Sec. V E.
Our goal is to realize the impact phase solution (at a given τ̄ )
by tuning the minimal number of the model parameters. We
first focus on the φ sector. The impact phases are completely
specified by aφ

z , γ and τ . Since the impact phases are defined
by three frequencies, we are going to tune τ and two model
parameters. To this end, we first solve for aφ

+ and γ , with aφ
−

fixed and τ = τ̄
√

γ . Let us write Eq. (43) as aφ
z = γ āφ

+z =
γ�+z(λ̄φ

+, λ̄
φ
−, 1). From where we get: aφ

+ = aφ
−āφ

++/āφ
+− and

γ 2 = aφ
−

2
(āφ

+−)−2. Using Eqs. (I3), we find

āφ
++

āφ
+−

= āφ
++āφ

+−
āφ

+−āφ
+−

= λ̄
φ
+λ̄

φ
− − 1

(āφ
+−)2

. (F1)

We can now write the equations on aφ
+ and γ 2 in the form

aφ
+ = −aφ

−
(
κ2

1 + 1
)
κ2,

γ 2 = aφ
−

2
κ2,

(F2)

where κi were defined in Eqs. (61). Let us work in dimension-
less units by setting g = m2 = lt = 1. Let us also parametrize
the moments of inertia as I1α = cα

1 μ̃2 and I2α = cα
2 m2l2

t = cα
2 .

The expressions for aφ
z and γ 2, in terms of the model parame-

ters [see Eqs. (38)], now read

aφ
+ = μ̃2

μ̃1

(
1 + cφ

1

)
, aφ

− = −(1 + cφ

2

)
, γ 2 = l2

h

μ̃1
. (F3)

We first consider a simpler case of cφ
i = 0. Plugging aφ

z and
γ 2 from Eqs. (F3) into Eqs. (F2) and solving for lh and l1, one
readily finds Eqs. (60). We next consider the general case of
cφ

i > 0. Let us express κi as

κ2
1 + 1 = (

κ ′
1

2 + 1
)(

1 + cφ

1

)(
1 + cφ

2

)
,

κ2 = κ ′
2

(
1 + cφ

2

)−2
.

(F4)

If we now plug aφ
z and γ 2 from Eqs. (F3) and κi from Eqs. (F4)

into Eqs. (F2), we get equations on lh and l1 which look
exactly like the cφ

i = 0 case but with κi replaced by κ ′
i . It

follows that the general case solution must have the form of
Eqs. (60) with κi replaced by κ ′

i .
We consider the θ sector next. Let us express aθ

− in terms
of aθ

+, λθ
−, and γ 2, by inverting λθ

− = λθ
+−, see Eqs. (42). We

find

aθ
− = λθ

− + γ 2

λθ− − aθ+
. (F5)
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Equation (50) implies λθ
− = −τ 2/π2. Notice that μ̃2/μ̃1 and

γ 2 are purely functions of κ ′
i : μ̃2/μ̃1 = (κ ′

1
2 + 1)κ ′

2 and γ 2 =
κ ′

2. Therefore, we can write aθ
+ = (κ ′

1
2 + 1)κ ′

2(1 + cθ
1 ). Plug-

ging the above expressions for λθ
−, γ 2 and aθ

+ into Eq. (F5),
while replacing aθ

− with −(1 + I2θ ), we obtain Eq. (66) and
the restricted version Eq. (64).

Let us analyze the function �(ξ, κ1, κ2), implicitly intro-
duced via Eq. (67) in Sec. V E 2. We will use the restricted
solution quantities τ r and Ir

2θ , as indicated by the superscript
r. Note, ξ = (τ r/π )2. Using Eq. (64), we can cast �(ξ, κ1, κ2)
in the form:

�(ξ, κ1, κ2) ≡ (1 − ξ 2)−1 − ξ 2κ−1
2

κ2
1 + 1

= 1 + Ir
2θ

ξ 2κ−1
2 + κ2

1 + 1

(1 − ξ 2)
(
κ2

1 + 1
) . (F6)

Since Ir
2θ and κ2 are both positive, �(ξ, κ1, κ2) > 1 provided

ξ < 1.
To prove that 0 < uθ

−(1) < uθ
−(2), we observe that 0 <

λ−− � γ < γβ, since μ̃1 > m2lt , see Eqs. (38). The result
then follows from Eqs. (42). Also, uθ

−(2) > βuθ
−(1).

APPENDIX G: UP-DOWN TORSO DUALITY

In the dimensionless units, Hα and G1α are

Hα =
[

h1 hz

hz h2

]
, G1α =

[
g1 z
z z + k

]
, (G1)

where

h1 = μ2 + Iα, h2 = 1 + I2α, hz = zlh + h2,

g1 = −μ1.
(G2)

Computing H̃α and G̃1α [see Eq. (24)] with S̃ defined in
Eq. (74) and selecting y that diagonalizes G̃1α we find

H̃α =
[

h1 − 2zhzy + h2y2 zhz − h2y
zhz − h2y h2

]
,

G̃1α =
[

g1 − y 0
0 1

y

]
,

(G3)

where y = 1/(z + k). As explained in Sec. V F, we want H̃α

and G̃1α to be independent of z. It then follows from Eq. (G3)
that y, g1, h1, h2, and zhz are all independent of z. Solving
y′ = y and z′h′

z = zhz with z′ = −z, where the prime denotes
quantities in the dual setup, we find

k′ = k + 2z, l ′
h = lh + 2zh2. (G4)

Note that μ′
1 = μ1. If we demand I1α to be fixed, then we

also have μ′
2 = μ2. From there, the transformation law for m1

and l1 in Eqs. (75) easily follows, where δn = m′
1l ′n

1 = μn −
(l ′

h − z′)n. To derive a condition for δn > 0, we use Eqs. (60)
to substitute l1 and lh to find a quadratic equation on

√
m1.

Solving the quadratic equations we arrive at Eqs. (78). The
condition in Eq. (80) is similarly derived from β > 2 + y,
which implies x < 1/(2 + y).

APPENDIX H: CONSTRAINED GRADIENT DESCENT

We enforce the triangle inequality (for the moments of
inertia) by setting up a one-to-one correspondence between
triangle’s side lengths (d1, d2, d3) and a triplet (η1, η2, η3)
of real numbers. We require that the triangle’s perimeter is∑

i di = P = ∑
i eηi and the opposing angles are αi = πeηi/P.

One then finds for the mapping:

di = P sin πeηi

P∑
i sin πeηi

P

,

ηi = ln

(
P

π
arccos

∑
j �=i d2

j − d2
i

2� j �=id j

)
.

(H1)

This parametrization is only suitable for enforcing the strict
triangle inequality (the general case in Sec. V E 2), as ηi →
−∞ for di → 0.

Consider a constrained optimization problem of find-
ing x that maximizes an objective function f (x) under the
constraints ‖x − x0‖ = ε and h(x) = 0. Solving it amounts to
finding the stationary points of the Lagrangian function

f (x) + λT
h h(x) + λx

2
((x − x0)T(x − x0) − εTε) (H2)

with respect to x and the Lagrange multipliers λh and λx.
Assuming that x0 approximately satisfies h = 0 and ε is small,
we can optimize an approximate Lagrangian function where
f (x) and h(x) have been replaced by their first order expansion
around x0. The result of this is Eq. (82) with implicit depen-
dence of λx on ε, (with x0 and x replaced by xi and xi+1). In
practice, we dispense with ε and treat λx as the controlling
parameter of the gradient descend rate.

APPENDIX I: MISCELLANEOUS RELATIONS
AND PROPERTIES

In this Appendix, we gather an eclectic mix of relations
and properties used in the paper. Product of skew symmetric
matrices can be expressed via respective vectors as

âTb̂ = (aTb)I − baT. (I1)

It is easy to see that a real-valued 2 × 2 matrix M with
det M < 0 has one positive and one negative eigenvalue: the
discriminant of the characteristic polynomial λ2 − λTrM +
det M is positive, therefore the eigenvalues are real, nonzero,
and of different signs.

It is easy to verify a number of useful relations on �zz′

using its definition in Eq. (40):

�z,z′ (a, b, c) + �−z,−z′ (a, b, c) = a,

�z,z′ (a, b, c) − �−z,z′ (a, b, c) = zb,
(I2)

and

�−+(a, b, c)�−−(a, b, c) = −c,

�++(a, b, c)�+−(a, b, c) = ab − c.
(I3)

To prove Eq. (54) relating the coronal sector frequencies,
we compute

(a− − λ−)(a− − λ+) = λ−−λ−+ = γ 2, (I4)
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where we used Eqs. (41), (42), (I2), and (I3).
The values of χ , that is, the initial conditions on qp and

tp, fully specifying (in addition to the model parameters η)
the (3,4) mode, numerically studied in Sec. VI, are given
below:

φs
l = 0.2146047,

φs
t = −0.1452115,

θ̇ s
l = 0.5255085,

ψ̇ s
l = 0.2670555,

θ̇ s
t = 0.1306085

θ̇d
l = 0.5369450,

φ̇d
t = 0.1716506,

θ̇d
t = 0.1257789,

ts = 1.1657382,

td = 1.1582562. (I5)

It is straightforward to compute the minimum friction coef-
ficient ρ given the moment of gravity force Mg = ∑

i mir̂ig f ,
the momentum P = ∑

i mivi, and the angular momentum L =
∂L/∂�1 [16]. One readily finds Mg = R1(m1r̂l

1 + m2r̂l
2)g f

and P = R1[m1r̂l
1 + m2r̂l

2; m2r̂t
t RT

t ]TS̄q̇, where rl
2 = rl

h + Rt rt
t .

It is also easy to find L = R1(H̄ S̄q̇)(l ), see the last paragraph
of Appendix B.
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