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Indentation of solid membranes on rigid substrates with van der Waals attraction
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We revisit the indentation of a thin solid sheet of size Rsheet suspended on a circular hole of radius R � Rsheet

in a smooth rigid substrate, addressing the effects of boundary conditions at the hole’s edge. Introducing a basic
theoretical model for the van der Waals (vdW) sheet-substrate attraction, we demonstrate the dramatic effect of
replacing the clamping condition (Schwerin model) with a sliding condition, whereby the supported part of the
sheet is allowed to slide towards the indenter and relax the induced hoop compression through angstrom-scale
deflections from the thermodynamic equilibrium (determined by the vdW potential). We highlight the possibility
that the indentation force F may not exhibit the commonly anticipated cubic dependence on the indentation
depth (F ∝ δ3), in which the proportionality constant is governed by the sheet’s stretching modulus and the
hole’s radius R, but rather a pseduolinear response F ∝ δ, whereby the proportionality constant is governed by
the bending modulus, the vdW attraction, and the sheet’s size Rsheet � R.

DOI: 10.1103/PhysRevE.103.043002

I. INTRODUCTION

A. Background

The mechanics of a solid membrane is determined by a bal-
ance between its rigidity for in-plane (strain) and out-of-plane
(bending) deformations. For graphene and other nanometer-
thick crystalline two-dimensional (2D) membranes (e.g.,
transition metal dichacogenides and black phosphorus), the
in-plane stretching modulus Y is very large, whereas the bend-
ing modulus B is small, such that the characteristic length

�bend ≈
√

B
Y is much smaller than the system size Rsheet [1–6].

Given the huge characteristic values of the von-Karman ratio
vK = (Rsheet/�bend)2, it is commonly assumed that the bend-
ing rigidity does not affect the mechanics, and the response to
exerted forces is determined solely by the in-plane stiffness.
While such an anticipation is justified when the exerted loads
are purely tensile (e.g., isotropic stretching of the sheet), it is
obviously wrong to totally ignore the bending rigidity in the
presence of compressive loads, as can be easily demonstrated
by subjecting sheets to uniaxial compression [7–10]. Here the
low bending rigidity underlies an instability of the compressed
planar state, and the consequent formation of a strain-free
buckled shape (if the sheet is suspended) or a wrinkle pattern
(if the sheet is supported on a substrate) reflects the relevance
of the bending energy at scales much larger than �bend. In this
paper we study a conceptually similar yet nontrivial effect
of the low bending rigidity in indentation problems, where
radial tension induces compression in the azimuthal (hoop)
direction, thereby making the weak bending energy a crucial
player in the mechanical response of the sheet.

Indentation experiments on suspended samples became a
primary tool for measuring the stretching modulii of 2D ma-
terials [1,11–15]. In a typical setup, the sheet is supported on

a thick, rigid substrate (e.g., SiO), which contains a hole of
radius R ∼ 1 μm. A localized force is exerted by an AFM
tip at the center of the suspended part of the sheet, and the
force F is measured as a function of the deflection δ. In most
experiments [1,15] the stretching modulus Y is extracted by
fitting the force-displacement curve F (δ) to a prediction of a
“membrane elasticity” model, whereby the suspended sheet is
assumed to be clamped to the substrate at the edge of the hole.
This assumption implies that the indentation-induced stress
field in the sheet is purely tensile, and consequently has a
dramatic influence on the estimated value of the stretching
modulus [16]. However, an unequivocal, independent sup-
port for the validity of the clamping assumption has been
lacking. Furthermore, since layers of graphene (like graphite)
are known to slide easily on each other (due to a very low
interlayer shear modulus), one may suspect that the interaction
of graphene with a substrate is even weaker, such that the
“no-sliding” assumption may not be satisfied.

B. Sliding, wrinkling, and response to applied forces

In order to understand the substantial effect of sliding on
the indentation force, one must consider also the strength of
the normal force that the substrate exerts on the supported part
of the film. This interplay can be demonstrated in a table-top
example [Fig. 1(a)]: attempting to push a tablecloth into a hole
in a frictionless table, one finds that the tablecloth responds by
changing its morphology—sliding towards the indenter, and
forming radially oriented blisters (by buckling out from the ta-
ble’s plane) that release the hoop compression induced by the
inward sliding. Obviously, in such an experiment the fabric is
not significantly stretched, indicating that the combined effect
of in-plane sliding and out-of-plane deflection may undermine
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FIG. 1. (a) Pushing a tablecloth into a hole does not cause
significant stretching of the fabric, but rather its sliding towards
the indenter, and the formation of a pattern of “radial buckles.”
(b) Schematic side view of indentation when a sheet is clamped to
the hole’s edge. The unavoidable stretching of radial lines yields
a tensile strain ∼√

R2 + δ2/R − 1 ∼ δ2/2R2. (c) If the sheet can
slide inwards, the radial strain can be eliminated through a dis-
placement ur ∼−δ2/2R for r > R, and the “bare” hoop compression
thus acquired, −ur/r, is relieved by undulations into the normal
direction. (d) A schematic top view of a small portion of a radially
wrinkled sheet. Since wrinkles cause a collapse of the hoop stress,
force balance in the radial direction implies that σrr ∝ 1/r; boundary
conditions at the far edge give σrr ≈ σ0Rsheet/r.

the use of indentation as a reliable probe for measuring the
stretching modulus Y of the sheet. The theoretical model we
introduce and analyze in this paper addresses the question that
follows naturally from this simple observation: Under what
conditions do sliding and deflection from the substrate curb
the effect of the stretching modulus Y on the indentation force
F (δ) ?

The mechanism for deflection from the substrate that we
consider here, however, does not consist of blisters (which
are penalized by surface energy and may be expected when
the sheet-substrate attachment is sufficiently weak), but rather
of small-amplitude wrinkles, such that the sheet-substrate dis-
tance d remains close to its equilibrium value [see schematic
Fig. 2(d)]. A central conclusion of our study is that when
sliding and wrinkling are effective, the indentation force F
scales as

F ∼ γeff
Rsheet

R
δ. (1)

Underlying Eq. (1), which we call a pseudolinear response
(and is valid above a certain threshold), there is a highly

FIG. 2. Schematic of our model system and key physical mech-
anisms. (a) A side view of a solid membrane (sheet), supported on a
smooth, rigid substrate in R < r < Rsheet , and suspended in r < R. A
pointwise indenter pushes at the center, causing the sheet to deflect
downwards. Even though a sheet with finite bending modulus B
cannot accommodate a discontinuity of the tangent to its plane, our
model allows the sheet to make a finite angle θ with the horizon-
tal at the hole’s edge. The reasoning is illustrated in (b) and (c),
depicting two possible scenarios at the vicinity of the hole’s edge
(see Appendix A). In both scenarios, the tangent “jumps” over a
short distance �∗

bc, Eq. (A1), which constitutes a boundary layer of
negligible energy cost. (d) We assume that the attractive force exerted
by the substrate on the sheet is described by Zhang-Witten stiffness,
Eq. (8), whereby the sheet-substrate distance remains in the vdW
potential well. Delamination of the sheet from the substrate requires
an energy barrier, and is not addressed within our model (see Sec. V).

nonlinear geometric effect, comprising a global rearrange-
ment of the sheet in order to suppress the indentation-induced
strain. The global nature of the pseudolinear response under-
lies its dependence on the overall size of the sheet (Rsheet ) in
addition the hole’s radius radius R and an effective tension
γeff , which is independent on the stretching modulus Y , and
may differ substantially from any pre-existing tension (σ0) in
the sheet. Specifically, γeff may reflect the bending rigidity
and the steepness of the substrate-membrane vdW potential.
In contrast, the standard linear response at infinitesimal in-
dentation depth is F ∼ (σ0/R)δ (up to logarithmic corrections
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TABLE I. Summary of central results under various types of conditions of clamping and sliding at the hole’s edge, upon increasing
indentation depth δ (left to right), assuming the substrate stiffness Ksub is sufficiently large (β � δ̃2), such that the supported part of the sheet
cannot wrinkle. The first row summarizes the response in the “no-sliding” case [σrr (R) = σ0]; the second row describes the “free sliding” case
[σrr (Rsheet ) = σ0], where compression develops above a threshold value δ̃c ≈ 3.3. The third row summarizes the effect of wrinkle formation in
the suspended portion of the sheet.

Asymptotic slope
Linear constant Cubic constant at core’s edge Asymptotic

F
δ

F
δ3 normalized by δ

R tensile core Comments

No sliding − 2π

log(δ̃)
σ0

0.166×2π

R2 Y 0.63 LI = R pure tension
(Sec. II A)

Sliding − 2π

log(δ̃)
σ0

0.101×2π

R2 Y 0.83 LI ≈ 0.6R wrinkling instability
no wrinkling δ̃ � 3.3 (Sec. II B)
Sliding − 2π

log(δ̃)
σ0

0.098×2π

R2 Y 0.87 LI ≈ 0.49R stable if β � δ̃2

wrinkling inside hole (Sec. II C)

[16]), being fully determined by the pretension σ0, and the size
of the suspended portion.

Before delving into the details of our model, let us provide
a heuristic argument for the mechanism by which sliding
and wrinkling give rise to a pseudolinear response (1). This
argument is inspired by the example of indenting an ultrathin
polymer sheet that is floating on a liquid bath [17–20].

C. Heuristic argument: Stretching versus asymptotically
isometric response

Let us contrast the two limit cases in the above example of
pushing a tablecloth through a hole: (a) perfect clamping of
the sheet at the edge of the hole (r = R); or (b) free sliding
and “wrinkling” of the sheet on the substrate.

(a) Clamping: Assuming that prior to indentation the sheet
is subjected to a uniform tension σ0, the elastic energy asso-
ciated with the work Fδ of the indenter can be estimated as

Fδ ∼ Uelas ∼ R2

[
σ0 + Y

(
δ

R

)2](
δ

R

)2

, (2)

where the stress in the sheet is estimated as the sum of the
pretension σ0 and the indentation-induced stress Y (δ/R)2.
Notice that the clamping assumption underlies our estimate
of the radial strain εrr ∼ (δ/R)2, as the indentation-induced
extension of the radial distances [see Fig. 1(b)]. Note also
that the bending energy is neglected, since we expect it to
contribute only at some narrow, high-curvature zones, near
the rim and around the indenter’s tip. Equation (2) shows
that upon increasing δ, the force transforms from a linear
response F/δ ∼ σ0 (column 2 of Table I) to a nonlinear, cubic
response F/δ3 ∼ Y/R2, which reflects the stretching modulus
Y [21] (column 3 of Table I). Actual calculations [16] yield
a quantitative description of the transition between the two
regimes (gray curve in Fig. 3).

(b) Sliding and wrinkling: Let us assume now that the sheet
can slide freely on the substrate, such that material circles
at radius r undergo radial displacement r → r + ur(r). An
inward displacement (ur < 0) enables the sheet to retain the
length of radial lines, thus avoiding the indentation-induced
tensile strain (δ/R)2 in the radial direction; a simple calcu-
lation shows that retention of the original length of radials

Rsheet requires a constant radial displacement outside the hole
(r > R):

ur (r) ∼ −δ2/R (3)

[Fig. 1(c)]. Clearly such an inward sliding causes a com-
pression in the orthogonal planar (azimuthal) direction, since
hoops of radius r acquire a strain ur/r. If the normal at-
tractive force exerted by the substrate is very strong, such
a compression cannot be relieved, and the indentation force
F (δ) is qualitatively similar to the clamping case discussed
in the above paragraph. However, if the sheet can deflect
even slightly from the substrate, then the compressive strain
ur/r can be eliminated by forming azimuthal undulations
whose characteristic wavelength may be very small, being
determined by the bending modulus and the strength of sheet-
substrate attachment. This scenario is the essential mechanism
by which the tablecloth in Fig. 1(a) responds to the indentation
force.

The elimination of tensile radial strain (by sliding) and
compressive hoop strain (by deflection), suggests that the
indentation force is not sensitive to the stretching modulus
of the sheet. Understanding this type of response, which in-
volves only a minute, asymptotically vanishing level of strain,
and is thus called “asymptotically isometric” [17,22–24], is
the essence of our paper. At a heuristic level, one can make
progress by considering a small tension σ0 pulling radially on
the sheet at its far edge r = Rsheet, where Rsheet � R. The pres-
ence of boundary tension implies that the stress in the sheet is
not totally eliminated by sliding and wrinkling, and the re-
sponse becomes dominated by the dependence of the residual
stress on the indentation depth δ. Since wrinkles eliminate
the azimuthal component of the stress tensor, force balance
on infinitesimal annular zones implies that there is a residual
radial stress in the sheet σrr (r) ≈ σ0Rsheet/r [Fig. 1(d)]. The
consequent divergence at r → 0 is resolved by the presence
of an unwrinkled core of radius LI in which the stress satu-
rates to its bare value ∼Y (δ/LI )2. Continuity of radial stress
at the boundary r = LI , between the wrinkled zone and the
unwrinkled core, gives

LI ∼ σ0

Y

R2

δ2
Rsheet (4)

(column 6 of Table II).
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FIG. 3. Dimensionless “spring constant” F/σ0δ vs dimensionless indentation amplitude δ̃ = δ
√

Y/σ0/R, Eq. (15). Different colors (de-
scribed in the following from top to bottom) represent different boundary conditions and physical parameters. Gray (topmost): clamping at the
hole’s edge. Blue: sliding of the sheet on the substrate, assuming the deformed shape is perfectly axisymmetric. Brown: sliding of the sheet
on the substrate, where wrinkles are allowed to relax hoop compression only in the suspended part of the sheet [regime (i), Eq. (11)]. Green:
sliding is hindered by clamping at the far edge r = Rsheet (≈90R), and wrinkles are allowed to relax hoop compression in both suspended and
supported parts of the sheet [regime (ii), Eq. (12)]. Red: sliding throughout the whole sheet (same value of Rsheet ≈ 90R), where wrinkles are
allowed to relax compression in both suspended and supported parts of the sheet [regime (ii), Eq. (12)]. For the problems that assume clamping
(at the hole’ edge [gray (topmost) curve] or the sheet’s edge [green (second from bottom) curve]), σ0 is the pretension in the sheet, whereas for
the sliding problems [blue (second from top), brown (third from top), and red (bottom) curves], σ0 is the tensile load exerted at the far edge. The
curves that correspond to sliding at the hole’s edge [i.e., all except the gray (topmost)] overlap for δ̃ < 3.3, at which range the axisymmetric
state is purely tensile. The red (bottom) and green (second from bottom) curves, corresponding to wrinkling on the supported part with tensile
load and clamping at the far edge, respectively, are nearly identical for δ̃ < δ̃∗∗(R = 90) ≈ 41, at which range wrinkles do not reach the far
edge of the sheet. Regardless of the various BCs, the linear response at δ � R

√
σ0/Y , shown in panel (b), is actually sublinear, whereby

F/δ ∼ 1/| log δ| → 0 [16]. When wrinkles are not allowed on substrate the asymptotic response at δ � R
√

σ0/Y is cubic (F/δ ∼ δ2). When
wrinkles can form on the substrate, the response become eventually pseudolinear (F/δ ∼ const.) after wrinkles can reach the sheet’s edge [red
(bottom) curve], and subcubic (F/δ ∼ δ2/| log δ|) if the sheet’s edge is clamped [green (second from bottom) curve].

An interesting feature of such a sliding-wrinkling response
is that only a negligible part of the indenter’s work Winden =
Fδ is transmitted to the elastic energy of the sheet. In other
words, the near absence of strain, enabled by the combination
of in-plane sliding and out-of-plane deflection, underlies a soft
mode of an asymptotically isometric deformation, which even-
tually controls the mechanical response to indentation. This
soft mode mechanics may be realized by recalling that the

only (finite) contribution to residual stress is the radial compo-
nent σrr , whose integration yields Uelas ∼ ∫ Rsheet

LI
r drσ 2

rr/Y ∼
σ 2

0 R2
sheet/Y , where we used Eq. (4) and neglected logarithmic

corrections and higher order terms associated with bending
and other components of the stress. In contrast, the work
done by the tensile load at the far edge against the inden-
ter is Wten ∼ 2πRsheetσ0ur (Rsheet ) ∼ σ0δ

2Rsheet/R, where we
used Eq. (3). Introducing dimensionless parameters for the

TABLE II. Summary of central results under various types of conditions of clamping and sliding at the hole’s edge, upon increasing
indentation depth δ (left to right), assuming β < O(δ̃2), such that the substrate stiffness Ksub is sufficiently small to allow relief of compression
by forming wrinkles on the supported portion of the sheet. The upper row describes the response under the “sliding” BC [σrr (Rsheet ) = σ0]
in the parameter regime β � 1, where the explicit values of the bending rigidity B and substrate stiffness Ksub barely affect the stress field
and extent of the wrinkled zone. Here δ̃∗∗ ≈ 2.43

√
R logR [Eq. (45)] characterizes the indentation depth above which wrinkles reach the

far edge of the sheet. The middle row describes the response when sliding is hindered by clamping the sheet at the far edge, such that
ur (Rsheet ) = (1 − ν )σ0Rsheet . The bottom row describes the response under sliding (or hindered sliding) conditions, but when 1 � β � δ̃2,
such that the radial stress is governed by the residual hoop compression σθθ ≈ −2

√
BKsub, rather than by the tensile load at the far edge. Here

δ̃ = δ
√

Y/γeff/R.

Linear (Sub) cubic Pseudolinear Asymptotic slope Asymptotic
constant constant constant at core’s edge tensile core Comments

F
δ

F
δ3

F
δ

normalized by δ

R (LI/R)

Sliding − 2π

log(δ̃)
σ0 − 0.22×2π

log(δ̃)
Y
R2 ∼2πσ0R 1 − O[1/ log δ̃] (1 � δ̃ < δ̃∗∗) ∼1/logδ̃(1 � δ̃ < δ̃∗∗) wrinkling instability

β � 1 (1 � δ̃ � δ̃∗∗) (δ̃ > δ̃∗∗) 1 − O[Rδ̃−2] (δ̃ > δ̃∗∗) ∼ Rδ̃−2 (δ̃ > δ̃∗∗) at δ̃ ≈ 3.3 (Sec. II)

Hindered sliding − 2π

log(δ̃)
σ0 ∼ 1

logR
Y
R2 none 1 − O[1/ logR] ∼ 1

logRR wrinkling instability
β � 1 at δ̃ ≈ 3.3 (Sec. IV)
Sliding as above as above as above as above as above γeff = 2

√
BKsub

(hindered sliding)
1 � β � δ̃2 σ0 → γeff σ0 → γeff σ0 → γeff σ0 → γeff σ0 → γeff (Sec. III)
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indentation depth and the sheet’s radius:

δ̃ = δ

R

√
Y

σ0
; R = Rsheet

R
, (5)

we find that Wten > Uelas if

δ̃ > δ̃∗∗, where δ̃∗∗ ∼
√
R. (6)

For δ̃ > δ̃∗∗, the elastic energy stored in the sheet can be
neglected, and the indentation force is F ≈ ∂Wten/∂δ, so that
we readily obtain Eq. (1), with γeff = σ0.

Crucially, Eq. (6) shows that the depth δ required to reach
such a pseudolinear response vanishes for a “nearly inexten-
sible” sheet (i.e., σ0/Y → 0). In this regime the combined
effect of low energetic cost for bending and avoidance of
indentation-induced strain makes the solid sheet a “bad capac-
itor” of mechanical energy, and the work Winden = Fδ done by
the indenter is transmitted almost entirely to the puller at the
far edge [17,22]:

δ̃ < δ̃∗∗ : Fδ −→ Wten + Uelas,

δ̃ > δ̃∗∗ : Fδ −→ Wten. (7)

D. Overview

We introduce a minimal model to study the interplay be-
tween stretching, sliding, and wrinkling, and the dependence
of the indentation force on actual physical parameters—
external tension, bending, and stretching modulii of the sheet,
and the strength of sheet-substrate attachment. Ignoring vari-
ous effects which could be non-negligible in realistic setups
(e.g., frictional force due to pinning of the membrane to
the substrate, spatial disorder in the membrane or the sub-
strate, and thermal fluctuations) enables us to obtain analytic
solutions of the model in various limit cases. More impor-
tantly, the study of this “ideal” system elucidates the key
mechanical-geometrical interplay in indentation experiments
and the qualitatively different response types at distinct pa-
rameter regimes.

1. Model and analysis

Our model is depicted schematically in Fig. 2. We consider
a disklike sheet of radius Rsheet, with bending rigidity B and
Young modulus Y , which is suspended on a flat rigid substrate
with a hole of radius R � Rsheet around its center (r =0),
and a pointlike indenter, which induces an out-of-plane de-
flection of amplitude δ at r =0. We assume that the sheet
is subjected to radial tension σ0 at its far-edge r = Rsheet, to
which we will refer as “pretension.” This may be an actual
pretension (σ0 = Tpre), applied prior to clamping the far edge,
or be exerted directly, such that the far-edge r = Rsheet is load
controlled rather than clamped. In our model, the normal force
that resists deviations of the supported sheet from a planar
state is characterized by a “stiffness” parameter Ksub. Such
a simplified response is known as Winkler foundation in the
solid mechanics literature [25]. The stiffness parameter Ksub,
together with the bending rigidity B of the sheet, determine
the deflections in the normal direction, which often take a
periodic form that we call “wrinkles”—the larger Ksub is, the
smaller are the characteristic amplitude and wavelength of

the emerging wrinkle pattern [26]. For our primary interest
here—a highly rigid, undeformable substrate—the stiffness
Ksub was recognized by Zhang and Witten [27] as

Zhang-Witten stiffness: Ksub = V ′′(dmin), (8)

where V (d ) is the attractive substrate-sheet potential per unit
area, and dmin is the thermodynamic equilibrium distance
between the sheet and the substrate [Fig. 2(d)]. The Zhang-
Witten stiffness assumes that the substrate is infinitely rigid,
and the energetic cost for forming wrinkles (in addition to
bending energy) is associated with the slight deviation of
the sheet-substrate distance from its favorable value in the
absence of any external loads. The assumption underlying this
picture is that the vdW interaction is sufficiently strong, such
that the energy barrier (i.e., the depth of vdW potential well)
that is necessary for the sheet to delaminate from the substrate
cannot be reached. Instead, the small-amplitude undulations
keep the sheet everywhere within the vdW potential well
of the substrate, and the energetic penalty ∝ (d − dmin)2. In
Sec. V we will elaborate on the important difference between
the relaxation of compression through such small-amplitude
undulations and the formation of delamination zones, for
which the energy cost per area is ∼V (dmin), independent of
the actual sheet-substrate distance.

Our analysis is based on asymptotic analysis of the
Föppl–von Kármán (FvK) equations, which describe the de-
formations of a thin solid sheet to exerted forces, assuming
that the local response is Hookean (namely, linear stress-strain
relationship), and that the deformed shape is characterized by
small slopes. The FvK equations are geometrically nonlin-
ear, namely, the nonlinearity is universal rather than material
dependent stemming from the coupling of out-of-plane deflec-
tions to in-plane strain.

In order to understand the response of the sheet to exerted
loads, it is imperative to distinguish between the response to
compressive and tensile stresses. If the stress exerted on a
small piece of the sheet is (uniaxially or biaxially) tensile, the
piece will stretch along the tension direction(s); we call this
tensile strain. In contrast, if the piece is under a compressive
stress, it may buckle to reduce the compression level, and this
mechanism gives rise to wrinkle patterns. If the sheet is suf-
ficiently thin, or more precisely highly bendable, the residual
compression depends on the bending modulus and the exerted
loads through a dimensionless parameter, called bendability
[28]. The method by which the residual compression level is
found, along with geometric features of the wrinkled state, has
been called a [28] far from threshold analysis; this is an ex-
pansion of FvK equations around the singular limit of tension
field theory, which pertains to a compression-free sheet with
no bending resistance (i.e., B = 0) [29–33]. It is thus crucial
to understand that despite the smallness of the amplitude, the
mere existence of wrinkles has a strong effect on the stress
field in the sheet, and therefore cannot be considered as a
perturbation to some compressed, prebuckled state.

2. Classification of parameter regimes and central predictions

Since the FvK equations are nonlinear, the stress cannot be
considered a superposition of independent sources. Neverthe-
less, it is useful to identify three sources of stress that underlie
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the mechanical response:

σ0; Y

(
δ

R

)2

; 2
√

KsubB. (9)

The first source σ0 contributes a uniform isotropic tension to
both radial and azimuthal (hoop) components of the stress
tensor. The second source Y ( δ

R )2, which is the only one that
depends explicitly on the amplitude δ, gives rise to radial
tension (i.e., stretching radial lines) and hoop compression
(pulling latitudes inwards). The last term 2

√
KsubB character-

izes the residual hoop compression in the presence of radial
wrinkles, namely, it is the minimal possible value, to which
the hoop compressive stress can be suppressed with the aid of
wrinkles [24,34].

The characteristic scales of stress (9) form two dimension-
less groups, in addition to δ̃ and R [Eq. (5)], that we use to
characterize the response to indentation at various parameter
regimes:

ε = B/R2

Y (δ/R)2
, β = 2

√
BKsub

σ0
. (10)

The counterparts of the three dimensionless groups δ̃, ε, R
have been used to describe the indentation of a floating ultra-
thin polymer sheet [17,22], whereas the additional parameter
β, which describes the ratio between the residual compres-
sion and isotropic pretension, has received less attention in
those studies. The parameter δ̃—a renormalized indentation
depth—is the ratio between the bare indentation-generated
strain and the isotropic pretension in the sheet; the param-
eter ε is the inverse of the “geometric bendability”—the
ratio between a (minimal) bending-related strain and the bare
indentation-induced strain; the parameter R is the ratio be-
tween the lateral sizes of the sheet and the hole.

Throughout our study we will assume a highly bendable
sheet, namely ε � 1, such that in-plane compression may
be easily suppressed by wrinkling, and its size is large in
comparison to the hole, namely R � 1. Our primary interest
is to understand the mechanics when δ̃ is increased above
a finite threshold value δ̃c ∼ O(1), at which the indentation
force is sufficiently strong to pull latitudes inwards and cause
compression in part of the sheet. (Note that in the absence
of pretension δ̃c = 0). In the rest of this introductory section
we summarize the various types of response described by this
model in terms of the parameters δ̃, ε, β, and R.

Regime (i)

β � δ̃2. (11)

In this parameter regime, the sheet-substrate attachment is
so strong that the supported portion of the sheet cannot re-
lieve compression through wrinkling, even though the sheet is
highly bendable.

If the sheet is not clamped to the hole’s edge and can
freely slide on the substrate, we find that for δ̃ > δ̃c ≈ 3.3,
azimuthal (hoop) compression develops around r = R. For
δ̃ � δ̃c, the indentation-induced load dominates, and the stress
becomes highly nonuniform and anisotropic, whereby the
hoop-compressed zones extend upon increasing δ. In the
suspended part, the hoop compression can be effectively

suppressed through the formation of radial wrinkles, but the
supported part remains compressed.

The study of this parameter regime is the subject of Secs.
II A–II C, and the results are summarized in Table I. Here
the central prediction of our study is a suppression of the
force F (δ) due to sliding and wrinkling (second and third
rows in Table I). Nonetheless, since the supported part of
the sheet cannot wrinkle, the qualitative behavior—transition
from F ∼ δ at δ̃ � 1 to F ∼ δ3 at δ̃ � 1—is similar to the
indentation of a sheet clamped at the hole’s edge (first row
in Table I). Note that the prefactor of the δ3 term changes
significantly as function of the boundary conditions. Hence,
even in this relatively simple regime, the extraction of the
value of the Young modulus from an indentation experiment
requires a careful consideration of the boundary conditions.

Regime (ii)

β � 1. (12)

In this parameter regime, described in Secs. II E and II F,
the sheet-substrate attachment is sufficiently low such that
it is energetically favorable to suppress hoop compression
through radial wrinkles in both suspended and supported parts
of the sheet. As a consequence, the response to indentation
is qualitatively different from regime (i), and is summarized
in the first two rows of Table II. A central prediction is
the emergence of a pseudolinear response, Eq. (1), at suffi-
ciently large indentation depth δ̃ � O(

√
R) � 1, which was

motivated by our heuristic discussion in Sec. I C. In Sec. IV
we discuss a situation where the sliding of the sheet on the
substrate is hindered by clamping at the far edge r = Rsheet.
We find that far-edge clamping implies biaxial tension at the
vicinity of Rsheet, even for large indentation depth (δ̃ � R),
and thus eliminates the pseudolinear response (second row of
Table II). Nevertheless, the ability to relax hoop compression
through wrinkling gives rise to dramatic suppression of the
cubic response F ∼ δ3, when the clamping is at the sheet’s
edge (r = Rsheet) in comparison to clamping at the hole’s edge
(r = R). For δ̃ � 1, we find that the asymptotic ratio F/δ3 is
proportional to 1/ log(R).

Regime (iii)

1 � β � δ̃2. (13)

In this parameter regime, the pretension σ0 is irrelevant, and
the substrate response is governed by a competition between
the characteristic stress 2

√
BKsub, associated with the resid-

ual hoop compression in the wrinkled zone, and the bare
indentation-induced stress Y ( δ

R )2. We discuss this regime in
Sec. III, and show that the residual hoop compression gives
rise to a comparable, bending-induced radial tension [24,35].
This leads us to introduce an “effective tension” [36]:

γeff ≡ max{σ0, 2
√

BKsub}. (14)

Redefining the dimensionless amplitude:

δ̃ = δ

R

√
Y

γeff
, (15)

we can characterize the mechanical response in regime (iii)
through a simple generalization of the predictions for regime
(ii), upon substituting (in all expressions that involve δ̃):
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γeff = √
BKsub, rather than γeff = σ0. This is the content of

the last row in Table II.

II. CLAMPING VERSUS SLIDING AND WRINKLING

We start by considering a perfectly axisymmetric defor-
mation in response to indentation, namely, no wrinkles are
allowed on the suspended or supported parts of the sheet.
In Secs. II A and II B we address two types of boundary
conditions (BCs). The first type is clamping at the hole’s edge
(r = R) with a pretension σ0. The second type of BCs allows
for sliding of the sheet on the substrate, while a given tensile
load σrr (Rsheet ) = σ0 is exerted at the far edge of the sheet. We
show that the freedom to slide on the substrate significantly
suppresses the indentation force. Importantly, we find that if
sliding is allowed, the sheet becomes azimuthally compressed
in the vicinity of the hole’s edge, if the dimensionless inden-
tation depth δ̃ exceeds a critical value δ̃c ≈ 3.3. This indicates
an instability to the formation of radial wrinkles, which we
address in Sec. II C, assuming a sufficiently strong attachment
to the substrate [regime (i), Eq. (11)], such that wrinkles can
form only at the suspended part of the sheet. We use this
case to introduce the basic principles of the far from threshold
approach [28], through which we characterize the emerging
wrinkle pattern, and show how the formation of wrinkles
underlies further, albeit modest suppression of the indentation
force. In Sec. II D we relax the condition of infinitely strong
sheet-substrate attachment, and find a second threshold, such
that for δ̃ > δ̃∗(β ), hoop compression is sufficiently strong
to give rise to radial wrinkles also on the supported part of
the sheet. In Secs. II E and II F we address the parameter
regime (ii) [Eq. (12)], where wrinkles expand throughout the
supported part of the sheet and further suppress the indenta-
tion force, culminating with a transition to the pseudolinear
response, Eq. (1).

A. Clamping at the hole’s edge

Following Ref. [16], we address a circular sheet clamped
with pretension σ0 at the hole’s edge r = R. The axial sym-
metry of the setup calls for the use of polar coordinates. We
denote the out-of-plane displacement by z(r), and by ψ (r) the
radial derivative of the Airy stress function, where the stress
components are

σrr = ψ

r
, σθθ = ψ ′. (16)

The hoop component of the strain tensor εθθ and the conse-
quent radial displacement field ur satisfy

εθθ = ur

r
= 1

Y
(σθθ − νσrr ) = 1

Y

(
ψ ′ − ν

ψ

r

)

⇒ ur = 1

Y
(rψ ′ − νψ ), (17)

whereas the radial strain is

εrr = ∂ur

∂r
+ 1

2

(
∂z

∂r

)2

= 1

Y
(σrr − νσθθ )

= 1

Y

(
ψ

r
− νψ ′

)
, (18)

where ν is the material’s Poisson ratio.
The second FvK equation, expressing in-plane force bal-

ance (as well as compatibility of the stress and strain tensors
with the displacement field), is

r
d

dr

[
1

r

d

dr
(rψ )

]
= −1

2
Y

(
dz

dr

)2

(19)

and the first FvK equation, which expresses force balance in
the normal direction (≈ẑ), is

1

r

d

dr

(
ψ

dz

dr

)
= F

2πr
δ(r). (20)

In the last equation we neglected a bending force B∂4z/∂r4

due to the radial curvature of the sheet. As we explain in
Appendix A, this term is significant only at the vicinity of the
hole’s edge, and its omission—together with a suitable choice
of BCs at the hole’s edge—is justified in all parameter regimes
addressed in our paper [see schematic Figs. 2(b) and 2(c)].

Let us turn now to describe the BCs at the vicinity of the
indenter (r → 0), and the hole’s edge:

r →0 : (i) z=−δ, (ii) ur = lim
r→0

1

Y
(rψ ′−νψ )=0,

r =R : (iii) z=0, (iv) ur = 1

Y
(rψ ′−νψ)= (1−ν)

σ0

Y
R.

(21)

Note that clamping at r = R in the presence of a pretension
σ0 means that the radial displacement ur (R) (rather than the
load) is set to a fixed nonzero value, determined by the pre-
indentation condition, as reflected in BC (iv), Eq. (21).

Throughout this paper we denote by ψ, r, z dimensional
values of the potential, radial (in-plane) length, and deflection
(out-of-plane) length, respectively, and �, ρ, and ζ for their
dimensionless counterparts:

ρ = r

R
, � = ψ

σ0R
, ζ =

√
Y

σ0

z

R
. (22)

Additionally, we define a dimensionless version of the
force F :

F = 1

2πR

√
Y

σ 3
0

F. (23)

The dimensionless form of the FvK Eqs. (19) and (20) is

ρ
d

dρ

[
1

ρ

d

dρ
(ρ� )

]
= −1

2

(
dζ

dρ

)2

, (24)

1

ρ

d

dρ

(
�

dζ

dρ

)
= F

ρ
δ(ρ). (25)

The dimensionless version of the BCs (21) is

ρ → 0 : (i) ζ = −δ̃, (ii) lim
ρ→0

(ρ� ′ − ν� ) = 0,

ρ = 1 : (iii) ζ = 0, (iv) (� ′ − ν�) = 1 − ν. (26)

Although Eqs. (24) and (25) are nonlinear, there exists
a transformation [37] which allows an analytic solution (up
to integrals that can be evaluated numerically). The analytic
solution [16], which we repeat in Appendix B, enables us to
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FIG. 4. The radial stress at the hole’s edge σrr (R) normalized by σ0 vs the dimensionless indentation amplitude δ̃ = δ
√

Y/σ0/R, Eq. (15).
Colors (equivalently order from top to bottom) of curves represent different boundary conditions and physical parameters, as in Fig. 3.

express the force F , the shape z(r), and the stress components
σrr (r), σθθ (r), for any value of δ̃. These are shown, respec-
tively, in the gray curves in Figs. 3–8. Let us discuss briefly
some key features of of these results.

At sufficiently large values of δ̃, the force F (δ) ∼ δ3,
reflecting a transition from pretension-dominated stress (for
δ̃ � 1) to indentation-dominated stress ∼Y (δ/R)2 (for δ̃ �
1). The radial and hoop components of the stress, shown, re-
spectively, by the dashed and solid curves in Fig. 5 (δ̃ = 3) and
Figs. 6 and 7 (δ̃ = 10), indicate that an indented sheet clamped
at the hole’s edge is under pure tension at any indentation
depth, in agreement with the discussion in Sec. I C.

An interesting feature of the indentation force is the ab-
sence of a true linear response [Fig. 3(b)]. Instead, for δ̃ � 1
the response is sublinear, with F ∼ −1/ log(δ̃). Such a sub-
linear response appears also for the sliding BCs, albeit with
a different numerical prefactor (blue curve in Fig. 3). This
peculiar feature emanates from the assumption of a pointwise
indentation, and is intimately related to the (integrable) di-
vergence of the stress components at r → 0 (σrr, σθθ ∼ r−1/3

[16]), which is observed in Fig. 5. For an indenter with a
finite tip’s radius Rtip, a linear response is recovered, with a
numerical prefactor that scales as −[log(Rtip/R)]−1 [16].

Finally, it is noteworthy that the deformed shape (Fig. 8)
defers substantially from an ideal cone; this is signified by the
slope in the vicinity of the hole’s edge ( dz

dr )r=R, which is only
63% of the slope of an ideal cone (first row of Table I). We
will show later that the slope at the vicinity of the edge de-
pends strongly on the boundary conditions and other physical
parameters, and may thus serve as an indirect experimental
probe of the actual boundary conditions associated with a
given setup.

B. Sliding at the hole’s edge and the buckling threshold in the
suspended zone

Now we address the axisymmetric (unwrinkled) state of
the indented sheet in a setup, where sliding of the sheet is
allowed at the hole’s edge (and on the substrate). Clearly the
only difference between this case and the above analysis of
clamping at r = R is encapsulated by the BC (iv) in Eq. (26).
For simplicity we assume a fixed tensile load at the far edge
σrr (Rsheet ) = σ0. We note that, as long as Rsheet � R, replacing
this BC with clamping at the far edge (with pretension σ0),
gives rise to practically indistinguishable results.

In order to derive the appropriate BC at the hole’s edge, we
must consider the stress field in the supported part of the sheet.
In this annular zone, R < r < Rsheet, the sheet is subjected to
radial tension σ0 at r = Rsheet and an unknown radial tension
σrr (R) at r = R. This problem is readily recognized as the

FIG. 5. (a) The hoop stress (solid) and radial stress (dashed) for
a sheet that is clamped [gray (top)] or slide [blue (bottom)] at the
hole’s edge. Here the value of the dimensionless indentation depth
δ̃ = 3, for which in both cases the sheet is under pure tension, and
the axisymmetric response is stable. Both stress components are nor-
malized by a constant σ0 (see text). (b) The profile of the suspended
sheet. Here radial distances are normalized by the hole’s radius R,
whereas vertical distances are normalized by the indentation depth δ.
Note the deviations in both cases from a perfect conical shape.
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FIG. 6. The hoop stress for a dimensionless indentation depth δ̃ = 10 [(A) suspended part, (B) supported part]. Distances are normalized
by the hole’s radius R and stress is normalized by σ0 (see text). The colors (equivalently, order of curves from top to bottom) correspond to the
various types of BCs, noted already in the caption of Fig. 3: gray (clamping at the hole’s edge); blue [axisymmetric (unstable) response under
sliding at the hole’s edge]; brown (wrinkling at the suspended part of the sheet only); green (wrinkling in both suspended and supported parts
of the sheet, for a sheet with R ≈ 90 [δ̃∗∗(R = 90) < 10, Eq. (6)]); red (wrinkling in both suspended and supported parts of the sheet, for a
sheet with R = 6 [δ̃∗∗(R = 6) > 10]). Note that all but two curves have zero values at r ∈ (LI , R) in the suspended zone. [Curves are slightly
shifted vertically in the zone r ∈ (LI , R) in order to make them visually discernible.] Only the brown curve (middle one in A) is discontinuous
at the hole’s edge.

Lamé problem, and its classical solution yields the hoop and
radial stress components [25]:

R<r <Rsheet :

{
σrr (r) = σ0 + [σrr (R) − σ0] R2

r2 ,

σθθ (r) = σ0 − [σrr (R) − σ0] R2

r2

(27)

(where we simplified the general solution for R = Rsheet/R �
1), allowing one to express the radial displacement ur (r) as a
function of Rsheet, r, σ0, and σrr (r):

R < r < Rsheet : ur (r) = r

Y
[2σ0 − (1 + ν)σrr (r)]. (28)

Obviously integrity of the sheet requires continuity of the
radial displacement at the hole’s edge, namely

ur (r → R+) = ur (r → R−), (29)

and the analogous relationship for the radial component of the
stress reads

σrr (r → R+) = σrr (r → R−). (30)

In Appendix A we will elaborate further on the continuity
of radial displacement and stress at the hole’s edge and the
validity of the corresponding Eqs. (29) and (30).

Equations (28)–(30), together with Eqs. (16) and (17) yield
ψ/R + ψ ′ = 2σ0. Turning to dimensionless representation we
obtain the BCs:

ρ → 0 : (i) ζ = −δ̃, (ii) lim
ρ→0

(ρ� ′ − ν� ) = 0,

ρ = 1 : (iii) ζ = 0, (iv) � + � ′ = 2. (31)

The solution of the FvK Eqs. (24) and (25) with the BCs
(31) can be obtained in a similar way to the solution in the
preceding subsection (see Appendix D), allowing us to ex-
press the force F , the shape z(r), and the stress components
σrr (r), σθθ (r) for any value of δ̃. These are shown, respec-
tively, in the blue curves in Figs. 3–8.

One may notice that the qualitative behavior of the ax-
isymmetric state with sliding BCs is very similar to the
edge-clamped setup. Considering the stress and force as
functions of the dimensionless parameter δ̃ (Figs. 3 and 4, re-
spectively), their magnitudes scale similarly in both setups, for
δ̃ � 1 as well as for δ̃ � 1, whereas the numerical prefactors
become smaller once sliding is allowed. Intuitively, sliding
allows the sheet to moderately relax the stretching in the sus-
pended part at the expense of more stretching at the supported
part. An interesting observation is the pronounced effect of

FIG. 7. Same as Fig. 6, but for the radial stress. Note that all curves are continuous at the hole’s edge.
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FIG. 8. A side view of the deformation in the suspended part for
δ̃ = 10. (Only the wrinkled portion, which starts at a distance LI from
the center, is shown). Radial distances are normalized by the hole’s
radius R, and vertical distances are normalized by the indentation
depth δ. The colors (equivalently, order of curves from top to bottom)
represent the same types of BCs as in previous figures.

the change in BCs on the shape (Fig. 8). Specifically, we
found that for δ̃ � 1, the contact angle of the membrane at the
edge approaches the asymptotic value: ( dz

dr )r=R → 0.83 δ
R —an

increase of over 25% of the slope under clamped BCs.
A dramatic feature of the stress profile is the emergence

of an annular zone on both sides of the edge, where the hoop
stress is compressive (blue curve in Fig. 6), for δ̃ � 3.3. While
a compressive stress may not be relieved in the supported
part due to a strong attachment to the substrate [regime (i),
Eq. (11)], the existence of compression in the suspended part
of a thin sheet clearly gives rise to a wrinkling instability.
Understanding the wrinkle pattern under such physical con-
ditions is the subject of the next subsection.

C. Wrinkling in the suspended zone

We come to study the simplest case in which wrinkles
affect the mechanical response, where the hoop compression
induced by sliding at the hole’s edge gives rise to wrinkles
in the suspended portion of the sheet (r < R), but not at the
supported part (r > R). In order to study the effect of wrin-
kles on the stress and thereby on the indentation force, we
employ tension field theory (TFT) [29–33]. In this approach
one assumes that wrinkles suppress almost entirely compres-
sive stress, such that one of the two principal components
of the stress tensor in the wrinkled zone is positive, corre-
sponding to tensile stress along wrinkles, whereas the other
principal component vanishes, signifying the direction along
which wrinkles undulate. The stress field in the whole sheet
is then obtained by matching the displacement field and the
compression-free stress in the wrinkled zone to the adjacent,
purely tensile zones, where both principal stress components
are non-negative.

Applying the TFT methodology to our indentation prob-
lem, the axial symmetry of the setup suggests that for δ̃ >

3.3, confinement of latitudes occurs in an annular zone
LI < r < Lout, where LI < R and Lout > R. In this subsec-
tion we assume that in the supported part R < r < Lout, the

large effective stiffness Ksub [Eq. (8)] prohibits the forma-
tion of wrinkles, such that the sheet must accommodate the
indentation-induced hoop compression; however, in the sus-
pended part, LI < r < R, the formation of radial wrinkles
underlies collapse of hoop compression. Hence, the sheet is
naturally divided into three parts: (i) R < r < Rsheet—where
the supported sheet undergoes a planar axisymmetric de-
formation; (ii) LI < r < R—where the suspended sheet is
wrinkled; and (iii) r < LI —where the suspended sheet is un-
wrinkled and the stress is purely tensile. In the sequel we
will describe the stress and deformation in each zone and the
matching among them.

Zone (i) R < r < Rsheet: Similarly to Sec. II B, the state
of the sheet in this part is determined by solving the planar
Lamé problem, subject to radial tensile load at the far edge
σrr (Rsheet ) = σ0 and a radial tension σrr (R), which must be
determined by matching the three zones. In this zone the
stress components are given by Eq. (27) through the un-
known σrr (R), and the ratio between the radial displacement
and stress is given by Eq. (28), which we repeat here for
completeness:

ur (r) = r

Y
[2σ0 − (1 + ν)σrr (r)]. (32)

Zone (ii) LI < r < R: Here the formation of wrinkles un-
derlies a collapse of the hoop compression, such that we
need to solve the radial force balance equation with σθθ = 0.
(More precisely, a TFT solution is the leading order in a
“high bendability” expansion ε → 0 of the FvK equations
[28], rather than a standard expansion around the compressed,
axisymmetric state [25]). Technically, in the wrinkled zone
radial force balance is obtained by satisfying Eq. (16) with
ψ (r) = const., whereas the relationship εθθ = ur/r (17) be-
tween the hoop strain and radial displacement is “ignored”
since it merely determines a comparable contribution to the
hoop strain (εθθ = −νεrr), which is missing from the right-
hand side of Eq. (17) due to the excess length in the wrinkly
undulations [28]. Equation (19) also relies on (17) and its
validity is thus limited to an axisymmetric, unwrinkled state,
hence it is likewise ignored. Requiring continuity of radial
displacement and stress, Eqs. (29) and (30), as well as con-
tinuity of the deflection z(R) = 0, and employing Eqs. (16),
(18), and (20), we obtain the stress components, deflection
z(r) and radial displacement in the wrinkled zone:

σrr (r) = σrr (R)
R

r
, σθθ (r) = 0 ⇒ ψ (r) = Rσrr (R),

z(r) = arctan θ (r − R) ≈ θ (r − R),

ur(r) = −1

2
θ2(r − LI ) + 1

Y
σrr (R)R log

(
r

LI

)
+ ur(LI ), (33)

where θ � 1 is the angle between the suspended sheet and the
planar substrate at r = R, and ur(LI ) is the radial displacement
at the edge of the wrinkled zone r = LI . We re-emphasize
that although both radial displacement and Airy potential in
the wrinkled zone are given by axisymmetric functions, the
presence of symmetry-breaking wrinkles is reflected in the
violation of the relationship (17) between ur(r) and ψ (r).
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Zone (iii) 0 < r < LI : In the purely tensile core the state
is again axisymmetric, and the FvK equations there, ex-
pressed through the dimensionless functions ζ (ρ) and �(ρ)
[Eq. (22)], are correspondingly given by Eqs. (24) and (25),
with the strain-displacement relationship for both parts of the
strain tensor (17) and (18). Exploiting once again the continu-
ity of the radial stress σrr (r) = ψ (r)/r and the deflection z(r),
we obtain the BCs:

ζ (0) = −δ̃; lim
ρ→0

(ρ� ′ − ν�) = 0,

ζ (L̃I ) = ã(L̃I − 1), �(L̃I ) = �(1) = σrr (R)

σ0
, (34)

where L̃I and ã are dimensionless versions of the core radius
and the slope at the hole’s edge:

L̃I = LI/R; ã =
√

Y/σ0θ. (35)

Similarly to the previous subsections, we find that the non-
linear Eqs. (24) and (25) with the BCs (34) can be solved
analytically. Namely, for a given value of the control param-
eter δ̃ and given values of the three unknowns �(1), θ , and
L̃I , there is a single analytic solution that fully characterizes
the function �(ρ), the related components of the stress (16),
and the deflection ζ (ρ) in the interval 0 < ρ < L̃I . Since the
state in this core zone is axisymmetric (unwrinkled), Eq. (17)
implies that the radial displacement at r = LI satisfies

ur (LI ) = 1

Y
[LIψ

′(LI ) − νψ (LI )]

= σ0

Y
R[L̃I�

′(L̃I ) − ν�(L̃I )]. (36)

Matching conditions: In addressing the zones (i)–(iii), we
only used the continuity of radial stress [hence �(ρ)], and
the deflection ζ (ρ). In order to determine the three unknown
variables �(1), θ , and L̃I , we must invoke three other match-
ing conditions. Two of them are continuity of the slope ζ ′(ρ)
and hoop stress σθθ (r) = ψ ′(r) = σ0�

′(ρ) at the borderline
between the tensile core and the wrinkled zone, yielding two
equations:

ζ ′(L̃I ) = ã; � ′(L̃I ) = 0. (37)

(As was noted in the similar problem of indenting a floating
sheet [17], these two equations do not follow from local force
balance at r = LI per se, but rather from minimization of
the total energy of a wrinkled state, which is realized when
the hoop stress is continuous throughout the sheet). The last
matching condition is the continuity of radial displacement at
the hole’s edge ρ = 1, which is obtained through Eqs. (32),
(33), (36), and (37), yielding

�(1)(1 − log L̃I ) − 1
2 ã2(1 − L̃I ) = 2. (38)

With the three Eqs. (37) and (38), and the four BCs (34),
the FvK Eqs. (24) and (25), which are two coupled second
order ODEs, yield a single solution for �(ρ), ζ (ρ) in the in-
terval 0 < ρ < L̃I , as well as the three unknowns L̃I , ã, �(1).
The details of the analytic solution are given in Appendix E.
Together with Eqs. (27), (32), (33), and (35), this solution
fully characterizes the displacement and stress fields for any
value of the dimensionless control parameter δ̃ > δ̃c.

The brown curves in Figs. 3 and 4 show the force F and
the radial stress at the hole’s edge σrr (R) upon increasing δ

above δ̃c ≈ 3.3, and the brown curves in Figs. 6–8 show the
hoop and radial stresses σθθ (r), σrr (r), and the shape z(r) at
the suspended part for δ̃ = 10. One may notice that for any
δ̃ > 3.3, wrinkling in the suspended part of the sheet reduces
slightly further the force (in comparison to the unstable, ax-
isymmetric deformation with sliding, represented by the blue
curve). Note also that the formation of wrinkles acts to slightly
increase the angle θ at the hole’s edge in comparison to an
unwrinkled deformation and to extend the azimuthally con-
fined zone (fourth and fifth columns in Table I, respectively).
Intuitively, since wrinkles suppress the energetic cost of hoop
strain, it is favorable to extend this zone.

One should note the discontinuity exhibited in Fig. 6 by the
hoop stress at the hole’s edge. Such a discontinuity does not
violate any force balance, and is therefore physically allowed.
More precisely, while this discontinuity emerges naturally
in TFT, which describes the infinite bendability limit (of a
hypothetical sheet with no bending rigidity, i.e., ε =0), we
do expect the formation of a “boundary layer” at the vicinity
of the hole’s edge, whose length vanishes as ε → 0, over
which the “jump” in the hoop stress occurs (similarly, but not
identically, to the boundary layer that regularizes a jump in the
radial stress, see Appendix A). Nevertheless, the consequent
effect on the elastic energy is negligible, i.e., “subdominant”
in the terminology of the far-from-threshold approach [28].

Taken together, these results demonstrate the wrinkles-
assisted suppression of the energetic cost of the deformation
induced by indentation, and consequently a reduction of the
force constant F (δ)/δ3 in comparison to the analogous nonlin-
ear force constant for the unwrinkled state. These observations
reinforce our qualitative discussion in Sec. I C, indicating that
the formation of wrinkles implies a nonperturbative modifica-
tion to the stress field, and thereby to the indentation force.

D. Buckling threshold in the supported zone

In the previous subsection we let wrinkles suppress hoop
compression only in the suspended part of the sheet, whereas
the supported part of the sheet remains unwrinkled. In order
to identify the parameter regime at which such a scenario
may be realized, we note that the supported sheet is sub-
jected to hoop compression at the vicinity of the hole’s edge
that keeps increasing in magnitude and spatial extent upon
increasing the indentation depth. Physically, such a state is
mechanically stable if the hoop compression is below the
threshold value ≈2

√
BKsub = βσ0 [Eq. (10)] at which the

supported sheet buckles. This criterion is well known for
uniaxial deformations [7–10] and was shown to be relevant
also for more complicated, nonuniaxial confinement problems
[24,38]. Considering our solution in Sec. II C, we note that the
hoop compression at the edge [σθθ (R) = ψ ′(r → R+)] is ap-
proximately 0.11 · Y (δ/R)2 = 0.11σ0δ̃

2 (where we assumed
δ̃ � 1 for simplicity). Hence, we obtain that the indentation
depth δ̃∗(β ) at which the supported part of the sheet becomes
wrinkled is given by

δ̃∗(β ) ≈
{√

0.11 · β1/2, β � 1,

δ̃c ≈ 3.3, β � 1.
(39)

Note that for β < 1, the resistance to buckling in the sup-
ported part is sufficiently low, such that both supported and
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suspended parts of the sheets become wrinkled almost simul-
taneously, as soon as indentation-induced hoop compression
emerges at δ̃ � δ̃c ≈ 3.3.

Equation (39) shows that the analysis in Sec. II C describes
the parameter regime β � 1 and δ̃c < δ̃ � δ̃∗(β ), namely,
where the sheet-substrate attachment is sufficiently strong to
prevent wrinkling in the supported part, for sufficiently small
indentation depth. This is precisely regime (i) we described in
Sec. I D.

In the rest of this section we will turn our attention to
regime (ii), β � 1 and δ̃ > δ̃c, at which both suspended and
supported parts of the sheet become wrinkled at δ̃ � δ̃c, and
the sheet-substrate attachment does not affect the residual
stress field. In Sec. III we will address regime (iii), β � 1 and
δ̃ � δ̃∗(β ), at which the residual compression in the wrinkled,
supported part of the indented sheet must be taken into con-
sideration.

E. Wrinkling in both suspended and supported zones

Considering the parameter regime (ii), β � 1 and δ̃ >

δ̃c ≈ 3.3, we follow our analysis in Sec. II C, noting that since
β � 1, the direct effect of the sheet-substrate attachment on
the stress field in the sheet is negligible, and therefore the stan-
dard TFT approach of Sec. II C can be employed also here.
Namely, in the wrinkled zone, LI < r < LO, the stress field is
given by a tensile radial stress σrr (r) > 0 and negligible hoop
and shear stresses σθθ (r), σrθ (r) ≈ 0.

Similarly to Sec. II C, we proceed by considering the dis-
placement and stress fields in the three parts of the sheet: (i)
R < r < Rsheet—where the sheet is nearly planar, but (unlike
Sec. II C) it develops radial wrinkles in R < r < LO and is ax-
isymmetrically deformed only at LO < r < Rsheet, where both
radial and hoop stress components are tensile; (ii) LI < r <

R—where the suspended sheet is wrinkled; and (iii) r < LI —
where the suspended sheet is unwrinkled and both hoop and
radial stresses are tensile. For the last two parts we notice that
the displacement and stress are given by expressions identical
to their counterparts in Sec. II C, namely, Eqs. (33) and the
BCs (34) for the nonlinear FvK Eqs. (24) and (25) in the
unwrinkled core, albeit with a different triplet of constants
�(1), ã, L̃I that must be determined by matching the radial
displacement and stress at the hole’s edge with the wrinkled
portion of the sheet at r > R. Thus, among the three equations
that specify the constants �(1), ã, L̃I , the two equations
that reflect these continuity conditions are identical to their
counterparts in Eq. (37).

In order to find the remaining equation that relates the con-
stants �(1), ã, L̃I , we turn to discuss the exterior zone r > R.
Once again we find a direct mapping to the Lamé problem
of an annulus under coaxial, coplanar tensile loads σrr (R) =
�(1)σ0 and σrr (Rsheet ) = σ0. For R � 1 and �(1) > 2 [for
which the Lamé solution, Eq. (27) is unstable], the TFT solu-
tion is given by [28]

R<r <LO

{
σrr (r)=σrr (R) R

r ,

σθθ (r)=0,
(40)

LO <r <Rsheet

{
σrr (r)=σ0 + [σrr (LO) − σ0] L2

O
r2 ,

σθθ (r)=σ0 − [σrr (LO) − σ0] L2
O

r2 ,
(41)

where

LO = σrr (R)

2σ0
R = �(1)

2
R , (42)

and the radial displacement at the wrinkled zone R < r < LO

is given by

ur (r) = r
σrr (r)

Y

[
− ν − log

(
LO

r

)]
. (43)

Comparing Eq. (43) with its counterpart Eq. (28) in Sec. II C
reveals a dramatic effect associated with the expansion of
wrinkles on the supported part upon increasing indentation
depth δ̃. While Eq. (28) shows that ur(R) is proportional to
the radial stress at the hole’s edge σrr (R), Eqs. (42) and (43)
show that in the presence of wrinkles the ratio ur(R)/σrr (R) ∝
log[σrr (R)/σ0]. As we will show now, this effect has a strong
impact on indentation mechanics, associated with the continu-
ity equation for radial displacement at the hole’s edge:

�(1) log
�(1)

2L̃I
− 1

2
ã2(1 − L̃I ) = 0, (44)

which follows from Eqs. (43) and (36).
Let us inspect Eq. (44), contrasting it with its counter-

part Eq. (38) in Sec. II C. Considering the asymptotic limit
δ̃ → ∞, one may easily notice that a solution of the form
�(1) ∼ δ̃2, ã ∼ δ̃, L̃I ∼ O(1) is consistent with Eq. (38), but
not with Eq. (44). Instead, a consistent asymptotic solution
of Eq. (44) has the form �(1) ∼ δ̃2/ log(δ̃), ã ∼ δ̃, L̃I ∼
1/ log(δ̃). Obtaining the numerical values of the prefactors
in these asymptotic relations requires the use of Eqs. (33),
(34), (24), and (25), and the detailed calculation is described
in Appendix E.

The results are shown in the green curves in Figs. 3 and 4
and Figs. 6–8. We note that the presence of wrinkles on the
substrate underlies a subcubic asymptotic response, namely
F/δ3 ∼ 1/ log(δ̃) → 0 as δ̃ → ∞, reflecting a logarithmic
suppression of the radial stress at the hole’s edge with respect
to the bare indentation-induced stress: σrr (R)∼ 1

log δ̃
Y (δ/R)2.

The invasion of wrinkles into the supported zone of the sheet
affects strongly also the displacement field, where the slope at
the hole’s edge now approaches asymptotically the “natural”
cone angle: a → δ

R [1 − O(1/ log δ̃)], and the size of the un-
wrinkled core vanishes, LI = RL̃I ∼ R/ log δ̃, as is described
in the first row of Table II.

F. The geometric limit: Pseudolinear response

In the preceding section we saw that if the sheet-substrate
attachment is sufficiently weak (β � 1), radial wrinkles ex-
pand in the supported part of the sheet, occupying an annular
zone whose external radius LO ∼ Rδ̃2/ log δ̃. If δ̃ is suffi-
ciently large, wrinkles approach the edge of the sheet, causing
yet another dramatic change in the distribution of stress in
the sheet and its response to the indentation force. (A similar
phenomenon has been found for the indentation of a floating
sheet [19,20]). For a given value of the parameter R, our
numerical results in the preceding section allow us to estimate
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the value δ̃∗∗ at which wrinkles reach the far edge:

R ≈ 0.12(δ̃∗∗)2/ log δ̃∗∗

⇒ δ̃∗∗(R) ≈ 2.43
√
R logR[1 + O(logR)]. (45)

For δ̃ > δ̃∗∗, the supported part of the sheet is fully wrinkled,
and the stress field for any R < r < Rsheet is described by
Eq. (40). Together with the BC σrr (Rsheet ) = σ0, we find that

σrr (r) = σ0
Rsheet

r
; σθθ (r) = 0, (46)

as we described already in Sec. I C. In this regime, the value
of the unknown �(1) is directly given by Eq. (46):

�(1) = R, (47)

and the deformed state is fully described by solving the FvK
Eqs. (24) and (25) with the BCs (34), along with replacing
Eq. (44) by (47), and the two additional equations in (37).
The solution of these equations is described in Appendix E.
We note that this solution merely determines the numerical
prefactors in the scaling laws we already found in Sec. I C,
specifically the pseudolinear response F (δ) ∝ δ [Eq. (1), with
γeff = σ0].

The results of this calculation, for a dimensionless inden-
tation depth δ̃ = 10 and R = 6 [such that δ̃ > δ̃∗∗(R)], are
shown through the red curves in Figs. 3 and 4 and Figs. 6–8.
As we noted already in Sec. I C, the pseudolinear response
reflects an asymptotically isometric mechanics, whereby the
indentation force “decouples” from the stretching modulus of
the sheet, transmitting work to the puller at the far edge of the
sheet r = Rsheet. Echoing an observation made already for in-
denting floating polymer sheets [19,20], our results show that
after wrinkles reach the far edge the shrinkage of the tensile
core zone with δ̃ becomes much more pronounced [L̃I ∼ δ̃−2

vs L̃I ∼ 1/ log δ̃ for δ̃ < δ̃∗∗(R)]. In the asymptotically iso-
metric regime δ̃ � δ̃∗∗(R) the suspended portion approaches
the shape of a perfect cone, with a slope δ

R , superimposed with
radial wrinkles.

III. THE ROLE OF SHEET-SUBSTRATE ATTACHMENT

In the previous section we avoided the need to address
explicitly the effect of sheet-substrate attachment by consid-
ering the two opposite limits of strong and weak attachment,
namely, the parameter regimes (i) (β � δ̃2 �1) and (ii) (β �
1), respectively. Notwithstanding the striking difference be-
tween these regimes (compare brown vs green and red curves
in Figs. 3 and 4 and Figs. 6–8), in each of them the mechanical
response is not affected by the actual values of the bending
modulus B and stiffness Ksub, but only by the tensile load
σ0 exerted at the far edge, the stretching modulus Y , and the
indentation depth δ (as well as R). In contrast, in the interme-
diate regime (iii), 1�β � δ̃2, the stress and indentation force
depend explicitly on B and Ksub.

In order to elucidate this distinction let us consider a
narrow annulus of radius r as an elastic ring of bending mod-
ulus B that is forced to contract due to radial displacement
ur(r) < 0 (which is given for each parameter regime by the
corresponding expressions in Secs. II C, II E, and II F). If the
contracted ring is forced to retain a circular shape, it must

acquire a “bare” hoop strain εθθ = ur (r)
r <0, and thereby a

compressive stress

σ
(bare)
θθ (r) ≈ Y

ur(r)

r
∼ −Y (δ/R)2, (48)

and correspondingly an energetic penalty ∼Y [ur(r)/r]2. If
out-of-plane deflections are allowed, the ring may respond as
an elastica—developing wrinkles of wavelength λ and ampli-
tude A, such that (πA/λ)2 ≈ − ur (r)

r .
Such a deformation retains the arclength nearly intact, sup-

pressing the hoop stress to a residual value [18,24]:

σ
(res)
θθ (r) ≈ −2B/λ2, (49)

whose magnitude will be shown to be much smaller than
σ

(bare)
θθ (r). The wavelength λ and consequently the residual

hoop stress is determined by a “local λ law” [18,34]:

λ ≈ 2π (B/Keff )1/4, (50)

where Keff is an “effective stiffness,” which may be associated
with the resistance of the supporting substrate (Keff ∼ Ksub) or
with the presence of radial tension that resists a large wrinkle
amplitude [Keff ∼ σrr (r)/r2]. Implementing this rule we find
different values of λ (and consequently the residual stress and
energy) in the suspended and supported parts of the sheet [39]

r > R : λ ∼ (B/Ksub)1/4,

r < R : λ ∼
(

BR4

Y δ2

)1/4

∼ R
√

t/δ. (51)

For the suspended part r<R, Eqs. (48), (49), and (51) show
that the residual, wrinkle-induced hoop compression σ

(res)
θθ (r)

is much smaller than its counterpart σ
(bare)
θθ (r) ∼ Y (δ/R)2, and

therefore the formation of wrinkles is energetically favorable
in r < R, regardless of the value of β. Turning now to the
supported part, and addressing first the parameter regimes (i)
(β � δ̃2 �1) and (ii) (δ̃ > δ̃c and β �1), an analogous com-
parison of σ

(res)
θθ (r) and σ

(bare)
θθ (r) ∼ Y (δ/R)2 yields precisely

the same conclusion we reached already in Sec. II D, namely,
the stress in the supported part is given by the axisymmetric
Lamé solution in the former regime and by the TFT solution in
the latter. However, when inspecting regime (iii), δ̃2 �β �1,
we find that the supported portion r>R consists of a zone
close to the hole’s edge, where |σ (res)

θθ (r)|�|σ (bare)
θθ (r)|, and

another zone, away from the hole’s edge, where |σ (res)
θθ (r)|�

|σ (bare)
θθ (r)|. This observation reflects the complexity of the me-

chanical response in this parameter regime, where the value
of the residual hoop compression σ

(res)
θθ (r) must be taken ex-

plicitly into account through Eqs. (49) and (51), in order to
reliably evaluate the stress field and thereby the indentation
force.

One may find the stress and indentation force in regime (iii)
by applying a generalized version of tension field theory [24].
Rather than neglecting the contribution of the residual hoop
compression to the radial stress altogether, Eq. (49) is taken
as a nonhomogeneous source in the radial force balance Eq.
(19), yielding for r > R:

ψ (r) = ψ0 − 2
√

KsubBr ⇒ �(ρ) = �0 − βρ, (52)
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where �0 is a constant determined through matching con-
ditions with the unwrinkled zones at r < LI and r > LO,
similarly to the analysis in Sec. II. The Airy potential (52)
describes a bending-induced radial tension [24,35,36], which
can be conveniently expressed as

σrr (r) = [σrr (LO) + 2
√

BKsub]
LO

r
− 2

√
KsubB. (53)

Recalling that we focus here on regime (iii), 1 � β � δ̃2,
and expecting that σrr (LO)∼σ0 (since the region r >LO is
under nearly isotropic tension), Eq. (53) can be simplified in
R < r < LO to σrr (r) ≈ 2

√
BKsubLO/r. Contrasting this sim-

plified expression with Eq. (40) or (46), we notice that the
stress field and thereby the indentation force in regime (iii)
may be determined in an analogous manner to the analysis
of regime (ii) in Secs. II E and II F, upon replacing in the
definition of the dimensionless variable �, Eq. (22):

σ0 → βσ0 = 2
√

BKsub. (54)

Hence, at this level of approximation, expected to be valid
up to corrections of O(β−1) � 1, the mechanics in regime
(iii) δ̃2 �β �1, is described by the mechanics of regime (ii)
β �1 and δ̃�1, with the replacement (54). This observation
underlies the last row of Table II.

IV. HINDERED SLIDING:
CLAMPING THE SHEET’S EDGE

In the previous sections we assumed that the far-edge r =
Rsheet is subjected to a fixed tensile load σ0. Here we consider
another basic boundary condition, which may be of interest to
an experimenter, whereby the far edge is clamped. Mathemat-
ically this amounts to replacing the BC σrr (Rsheet ) = σ0 with

ur(Rsheet ) = (1 − ν)
σ0

Y
Rsheet, (55)

where σ0 is now understood as an isotropic pretension in the
sheet prior to clamping its far-edge r = Rsheet (and prior to
indenting its center) [22]. Clamping the sheet at its far edge
hinders its sliding inwards, which is necessary to release the
radial strain induced by indentation. Thus, for a given δ̃ � 1,
the in-plane stress in this version of the problem is larger in
comparison to a sheet under fixed tensile load σrr (Rsheet ) =
σ0, and so is the indentation force. This effect is elucidated by
contrasting the corresponding versions of the Lamé problem.
In the first version, which was the basis for our analysis in the
preceding sections, the far edge is under a given radial tension
σrr (Rsheet ) = σ0, but otherwise is free to slide on the substrate
[ur(Rsheet ) < 0], the stress field of the planar, unwrinkled state,
is given by Eq. (27), and the tension field solution of the wrin-
kled state is given by Eqs. (40)–(42). In the second version of
the Lamé problem, the BC at the far edge is given by Eq. (55),
the stress field of the planar (unwrinkled) state is

σrr (r) = R2

R2(1 − ν) + (1 + ν)

{
σ0(1 − ν) + R−2σrr (R)(1 + ν) + (1 − ν)[σrr (R) − σ0]

(
R

r

)2}

≈ 1

1 − ν

{
σ0(1 − ν) + (1 − ν)[σrr (R) − σ0]

(
R

r

)2}
, (56)

σθθ (r) = R2

R2(1 − ν) + (1 + ν)

{
σ0(1 − ν) + R−2σrr (R)(1 + ν) − (1 − ν)[σrr (R) − σ0]

(
R

r

)2}

≈ 1

1 − ν

{
σ0(1 − ν) − (1 − ν)[σrr (R) − σ0]

(
R

r

)2}
, (57)

where the second lines in the above equations are valid for
R � 1. As a result, the TFT solution is characterized by a
compression-free stress in the wrinkled zone:

R < r < LO :

{
σrr (r) = σrr (R) R

r ,

σθθ (r) = 0,
(58)

with

LO = R

⎡
⎣√

1 − ν

1 + ν

√
1 +

( R
�(1)

)2 1 − ν

1 + ν
R − R2

�(1)

1 − ν

1 + ν

⎤
⎦

≈ 1

2
R�(1) (for R � 1), (59)

where �(1) = σrr (R)/σ0, and the stress components in the
unwrinkled zone, LO < r < Rsheet, are given by Eqs. (56)
and (57) upon replacing: R→LO, σrr (R)→σrr (LO)=
σrr (R)R/LO, and R→Rsheet/LO =RR/LO.

The primary effect of the BC (55) is elucidated by con-
sidering a fixed R�1, and using the above expressions
to evaluate σrr (Rsheet ) for �(1)=σrr (R)/σ0 →∞. For both
planar state and wrinkled state, we find that the far-edge
stress σrr (Rsheet ) it proportional to the stress at the hole’s
edge σrr (R). More specifically, we find that for the planar
state σrr (Rsheet )/σrr (R) ∝ R−2, whereas for the wrinkled state
σrr (Rsheet )/σrr (R) ∝ R−1. This means that in order to keep
the far edge from sliding inwards under the influence of the
large radial stress σrr (R) that pulls at the inner edge, the
clamp must exert a comparable radial load on the far edge,
hence σrr (Rsheet ) ∼ σrr (R) � σ0. This observation is rather
intuitive, indicating that the elastic energy needed to deform a
sheet clamped at its far edge is much larger than the energy
required to deform a sheet whose far edge is free to slide.
As a consequence, the indentation force F (δ) is larger in
comparison to the response we found in the preceding sections
for a sheet subjected to a fixed boundary load.
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We find the indentation force F (δ) by following the tracks
of our analysis in Secs. II C and II E, assuming the sheet is
wrinkled in an azimuthally confined zone LI < r < LO (with
LI < R and LO > R) and unwrinkled in r < LI and LO < r <

Rsheet. Considering the first two zones, we notice that the
displacement and stress are given by expressions identical to
Eq. (33) and the BCs (34) for the nonlinear FvK Eqs. (24)
and (25) in the unwrinkled core, albeit with a different triplet

of constants �(1), ã, L̃I , that must be determined by match-
ing the radial displacement at the hole’s edge ur(R) with the
wrinkled state at the exterior of the hole. Thus, exactly as we
found in Sec. II E, two equations among the three that specify
the constants �(1), ã, L̃I , are identical to their counterparts
in Eq. (37), and the third equation reflects a continuity of the
radial displacement at r = R. Employing Eqs. (56)–(59) and
Eq. (36) we obtain an equation that replaces Eq. (44):

�(1) log

⎛
⎝− R2

�(1)L̃I

1 − ν

1 + ν
+ R

L̃I

√
1 − ν

1 + ν

√
1 + 1 − ν

1 + ν

( R
�(1)

)2
⎞
⎠ − 1

2
ã2(1 − L̃I ) = 0

�⇒ �(1) log

(R�(1)

2L̃I

)
− 1

2
ã2(1 − L̃I ) ≈ 0 (for R � 1). (60)

The values of the unknowns �(1), L̃I , ã, for any given
δ̃ > 3.3 are obtained from the numerical solution of the three
algebraic equations that are derived from Eqs. (37) and (60)
and the exact solutions of the FvK Eqs. (24) and (25), under
the BCs (34); see details in Appendix E. As anticipated by the
above discussion, we notice that if the far edge is clamped,
the asymptotic response at large indentation depth δ̃ → ∞ is
F ∼ (Y/R2)δ3, hence the system does not reach the extreme
wrinkle-assisted softening obtained upon exerting a fixed load
at the far edge. Nevertheless, the asymptotic value of the
constant F/δ3 scales as 1/ log(R) (second row of Table II),
so that as R is increased, the wrinkle-induced suppression of
the indentation force becomes more and more effective.

V. WRINKLING VS DELAMINATION

In our model we assume that relieving compression in the
supported part of the sheet does not require the formation
of delaminated zones, in which the sheet-substrate distance
d exceeds the width of the vdW potential well [Fig. 2(d)],
but merely tiny deviations of d from the thermodynamic
equilibrium value dmin. The crucial distinction between these
deformation types stems from the respective energetic costs
(per area) of sheet-substrate attachment:

delamination : usub ≈ V (dmin), (61)

Zhang-Witten : usub(d ) ≈ 1
2V ′′(dmin)(d−dmin)2. (62)

With the Zhang-Witten stiffness Ksub = V ′′(dmin), a rigid sub-
strate that supports a thin sheet is merely an example of a
“Winkler foundation” [25], hence the response of the sheet
to compression is analogous to other examples of this ba-
sic model, such as a sheet floating on a liquid bath (where
Ksub = ρliqg with ρliq being the liquid’s mass density). For
Winkler-like problems, planar deformations are unstable to
wrinkling—periodic undulations characterized by a single
wavelength λ ∼ (B/Ksub)1/4 [see Eq. (50)]—which emerges
through a supercritical (second order) instability of the planar
state, not involving any energy barrier.

In contrast, the finite, d-independent energy V (dmin) as-
sociated with delamination, Eq. (61), which one may view

as a surface energy penalty, entails a strictly different insta-
bility of the planar state. This instability is subcritical (first
order), and therefore requires the crossing of an energy barrier,
which in turn gives rise hysteresis loops. Furthermore, the
basic deformation mode [40,41] is a single delaminated zone,
which may accommodate any excess length by increasing the
sheet-substrate distance d without further energy cost, as is
indicated by Eq. (61), rather than by forming multiple de-
lamination zones. Even though periodic delamination patterns
have been observed under certain circumstances (such as uni-
axial compression of a sheet attached to compliant substrate
[42]), those patterns are characterized by two length scales,
whereby the width of each delaminated zone is much smaller
than the distance between them (where the sheet remains
fully laminated). Hence, even if the indentation-induced hoop
compression leads to delamination instability, the number of
blisters at a given distance r should be �2πr/λ, where λ

is the average width of an individual blister. This suggests
that a recent attempt to describe such a delamination pattern
by a wrinklinglike sinusoidal profile, characterized by single
wavelength λ [43], is nonphysical.

In order to determine which of the two deformation types,
described by Eqs. (61) and (62), is likely to relieve hoop
compression in a given indentation experiment, we note two
necessary conditions for a wrinkle pattern to be physically
realizable.

(i) The wrinkle wavelength λ [Eq. (50)] with Keff = Ksub

[Eq. (8)] must exceed the length �bend = √
B/Y , otherwise

the bending energy would be too large, rendering wrinkles
energetically unfavorable. In terms of the parameters of our
model this condition reads

�bend � �vdW, (63)

where we defined the length scale:

�vdW ≡
√

Y/V ′′(dmin). (64)

(ii) The wrinkle amplitude d must not exceed a length dmax

above which the sheet “escapes” from the attractive zone of
the vdW potential [see schematic Fig. 2(d)], and the energetic
cost transitions from Eq. (62) to (61). Noting that the ratio
between the wrinkle amplitude and wavelength is “slaved” to
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the excess hoop length (|d − dmin|/λ)2 ∼ −ur/r (such that the
wrinkly undulations “waste” just the right arclength necessary
to suppress hoop compression [28]), and using the estimate
ur ∼ −δ2/R [Eq. (3)], we obtain the second condition:

δ

R
� |dmax − dmin|√

�bend�vdW
. (65)

The two conditions (63) and (65) define a parameter regime
in which we expect the wrinkle patterns assumed in our
model to be a feasible, energetically favorable mechanism
for relaxing the hoop compression induced by indentation
and sliding. If condition (63) is violated, an axisymmetric
(unwrinkled) deformation in the supported portion of the
sheet (Sec. II B) is stable against wrinkling, and delamination
may occur, through a subcritical instability, at some large
indentation depth directly from the planar state. If condition
(63) is satisfied, the supported portion of the sheet becomes
unstable to wrinkling at δ̃∗(β ) [Eq. (39)], and delamination
is expected to occur when the indentation depth δ reaches
R(dmax − dmin)/

√
�bend�vdW.

A crude estimate of the various lengths in the conditions
(63) and (65) may be obtained by assuming V ′′(dmin) ∼
V (dmin)/d2

min, and 0.1 < dmin < dmax < 1 nm. For graphene
(on SI or BN), we use the values Y ∼ 300 N/m, �bend ∼
0.1 nm, and V (dmin) ∼ 0.1 N/m. With these values we find
that both conditions (63) and (65) are satisfied for δ/R < 0.1,
suggesting the relevance of a wrinkle-assisted compression-
relieving mechanism for experiments, at least at indentation
depths δ � 100 nm.

VI. DISCUSSION

A. The nonperturbative macroscale effect of bending rigidity

Employing standard TFT (Secs. II and IV) or its recently
generalized version (Sec. III) we showed that, as long as there
is compressive stress somewhere within the indented sheet,
the ability to relax it by energetically inexpensive wrinkles
acts to suppress considerably the elastic energy. Our results,
summarized in Tables I and II, show that the wrinkle-assisted
reduction of elastic energy and the consequent suppression of
the indentation force F (δ) is a nonperturbative phenomenon,
which is not sensitive to the specific value of the bending mod-
ulus, but rather stems from its mere smallness (i.e., ε � 1).
That is, for specific BCs (e.g., sliding at r = R and a constant
tensile load at r = Rsheet), we find that the error incurred by
ignoring the effect of wrinkles on the indentation force is
O(Y/R2)δ3, as one can see by comparing the second row of
Table I (which ignores the effects of wrinkles, describing a
mechanically unstable state for δ̃ > δ̃c) with the third row of
Table I or the first two rows of Table II.

While we focused our study on the pointwise indentation
problem, the above lesson is general and applies to any sit-
uation in which a confining geometry or loading conditions
give rise to compressive stress within a thin, highly bendable
sheet. One example, which has attracted some interest lately,
is the strain induced in a 2D solid sheet, supported on a smooth
substrate, by high-pressure “bubbles” confined between the
sheet and the substrate [44]. Such bubbles cause radial stretch-
ing of the sheet around the bubble axis, and—similarly to the

indentation problem (with sliding BCs)—a hoop compression
emerges in the sheet at the vicinity of the bubble’s edge. While
a wrinkle-assisted suppression of hoop compression may not
have a pronounced effect on the bubble’s shape or the pressure
within it [44], the strain components in the sheet are strongly
affected by the presence of wrinkles. This effect, however,
has been overlooked in a recent paper [45], where the authors
computed the strain tensor by assuming a mechanically unsta-
ble (unwrinkled, axisymmetric) deformation of the sheet.

B. Beyond ideal mechanics:
Substrate roughness and thermal fluctuations

Our model assumes a smooth, homogeneous substrate,
such that the only energetic cost of sliding stems from
the consequent hoop compression. From a pure mechanical
perspective, a roughness of the substrate may give rise to
localized or extended zones in which the sheet is pinned to the
substrate, hindering its sliding inwards. A simple, effective-
medium-theory approach to incorporate surface roughness
into our model may be to replace the control parameters γeff

and R in the last two rows of Table II with effective param-
eters that account for the excess radial tensile and clamping
(away from the hole’s edge), associated with the hindrance
of sliding. A more thorough study of the effects of surface
roughness, as well as thermal fluctuations, on the indentation
force, should account for the anomalous elasticity [46–49] that
has been predicted for 2D solid membranes such as graphene
at room temperature [50–52].

C. Summary

The main purpose of the ideal model we introduced in
this paper is to elucidate the crucial assumptions one has to
make in order to extract the stretching modulus of a suspended
sheet from indentation experiments. In this context, the cen-
tral outcome of our analysis is that sliding and wrinkling of
the sheet affect significantly the commonly assumed cubic
dependence of the indentation force F/δ3 ∝ (Y/R2); the as-
sumption of clamping at the edges of the suspended sheet
gives a lower bound to the value of the Young modulus. If the
membrane can slide over the nonsuspended zone, the force
required to achieve a given deformation can be significantly
lower than in the case of clamping. This message is illustrated
most conspicuously in the geometry-dominated nature of the
pseudolinear response, Eq. (1), where F/δ may depend on a
pretension σ0 or a bending-induced tension γeff = 2

√
BKsub,

as well as on the radii R (of the hole) and Rsheet (of the whole
sheet), but not on the stretching modulus Y ! Such a stretching-
independent response may be avoided if the attachment to the
substrate is sufficiently strong, or if the sheet is clamped at the
far edge (r = Rsheet � R). But also in such cases sliding and
wrinkling have a significant effect on the indentation force,
which must be considered in order to properly extract the
stretching modulus Y from the measured response.

Our theoretical model is quite elementary and does not
include effects which may be important for experimental
setups of 2D membranes, such as pinning, spatial disorder,
and thermal fluctuations. We suspect that further theoretical
progress is required, possibly along the directions outlined
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above, in order to render our model applicable for a quanti-
tative description of actual experiments. Nevertheless, some
basic predictions may be sufficient to test the relevance (or
lack thereof) of sliding and wrinkling. Specifically, measuring
the slope (≈θ ) of the suspended sheet in the vicinity of the
hole’s edge may provide a robust, indirect probe for this pur-
pose. A slope that is close to 0.63 δ/R should indicate that the
sheet is practically clamped at the hole’s edge. A larger slope
should indicate a substantial sliding and wrinkling of the sheet
in the suspended part and possibly also on the substrate.

Beyond its relevance to metrology and to studying sliding
and wrinkling phenomena, our model highlights the com-
plexity that is often ignored by one’s perception of 2D solid
membranes as being “nearly inextensible, highly bendable”
objects, whose resistance to bending can be ignored in ana-
lyzing macroscale, tension-dominated deformations. Instead,
our study illuminates the subtle role played by both stretch-
ing and bending rigidity in the response to such external
stimuli.
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APPENDIX A: BOUNDARY CONDITIONS AT THE
HOLE’S EDGE AND THE NEGLIGIBLY

OF RADIAL CURVATURE

In order to elucidate the neglect of the radial bending
force B∂4z/∂r4 in Eq. (20), often referred to as a “membrane
approximation,” as well as the BCs at the hole’s edge, let
us recall that for a sheet with finite (albeit small) bending
modulus B the tangent t̂ to the sheet’s plane must be a con-
tinuous function of the radial distance r. A discontinuity of
t̂ implies a divergence of the radial curvature κrr ≈ |∂ t̂/∂r|,
and hence an infinite bending energy, regardless of how small
B is. In fact, the vicinity of the hole’s edge, where the tangent
t̂ varies sharply, is the only zone where the radial curvature
has to be considered, since it is required to regularize this
divergence. Specifically, the characteristic length over which
occurs the necessary change from t̂ (r → R−) = cos θ r̂−
sin θ ẑ to t̂ (r → R+) = r̂, is the “local bendo-capillary”
length [22]:

�∗
bc ≈

√
B/σrr (R) ∼

√
B/Y R

δ
, (A1)

where σrr (R) is the radial tensile stress at the hole edge, whose
dependence on the indentation depth δ̃ under various BCs
and membrane-substrate interaction was found in Sec. II. For

simplicity of the discussion, in Eq. (A1) we estimated �∗
bc

through the maximal value σrr (R) ∼ Y (δ/R)2. On one hand
we have that �∗

bc � R, since the sheet is highly bendable [i.e.,
ε � 1, see Eq. (24) and the following paragraphs]; on the
other hand we assume �∗

bc is much larger than the atomic scale
(over which the corner in the substrate is “smoothed out”), see
schematic Figs. 2(b) and 2(c).

In our analysis of the FvK equations, either of the unwrin-
kled state in Sec. II B or the wrinkled state in Sec. II C and the
rest of the paper, we exploited the fact that �∗

bc � R, and con-
sidered the narrow annulus R − �∗

bc < r < R as a “boundary
layer,” whose energetic cost may be ignored. More precisely,
this excess energy can be estimated as ∼Bκ2

rr�A, where the
radial curvature κrr ∼ θ/�∗

bc and �A ∼ 2πR�∗
bc is the highly

curved area at the vicinity of the hole’s edge, yielding an
excess energy ∼√

BY δ3/R2 [where we used Eq. (A1) and
θ ∼ δ/R], and an inspection of Tables I and II reveals that
it is smaller by a factor

√
ε [Eq. (10)] than the elastic energy

evaluated in Secs. II–IV. Hence, neglecting the explicit ener-
getic cost of that boundary layer amounts to evaluating the
leading order of the elastic energy (and the indentation force
derived from it) in an expansion whose small parameter is

√
ε.

Mathematically, since the radial bending force B∂4z/∂4r is
significant only in this narrow zone, our analysis has been
greatly simplified by omitting this term from the first FvK
Eq. (20), rendering it—along with Eq. (19)—a coupled set
of second order ODEs for ψ (r) and z(r), and allowing for a
discontinuity of z′(r) at r = R.

The boundary layer approach implies that the radial and
vertical components of the displacement may be considered
continuous at r = R yielding the BCs (29) and (31 iii), while
the derivative of the latter is allowed to be discontinuous
([z′(r)]R+

R− ≈ θ ). At the same time, the mere existence of the
boundary layer underlies the continuity of the radial stress
component (even though one may naively view it as a vio-
lating a force balance in the horizontal direction at r = R),
as is illustrated in the schematic Fig. 2. We note that these
continuity BCs remain valid even if a small portion of the
sheet slides vertically in order to gain some surface energy
by contacting the hole’s walls [cf. Figs. 2(b) and 2(c)], as
long the sheet does not get pinned to the substrate. A detailed
discussion of this effect will be discussed elsewhere.

APPENDIX B: GENERAL ANALYSIS
OF THE UNWRINKLED CORE

Here we describe the steps underlying an analytic solu-
tion for an axisymmetric (unwrinkled) solution the nonlinear
FvK Eqs. (24) and (25). This solution, with distinct types
of BCs, is used to characterize a purely tensile “core”
around the indenter, which exists under all various conditions
[clamping/sliding at the hole’s edge, and various parameter
regimes, Eqs. (11) and (12)]. Our exposition follows closely
Ref. [16] and the Supplemental Material of Ref. [17].

We start by integrating the first FvK Eq. (25), and obtain

�
dζ

dρ
= F . (B1)
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Next, we introduce the variable transformation [37]

� = ρ�, η = ρ2, (B2)

such that � = �√
η

and d�
dρ

= (2 d�
dη

− �
η

). With this transfor-
mation, the second FvK Eq. (24) becomes

�′′ = − F2

8�2
, (B3)

which can be integrated once, obtaining

�′ = F
2

√
1 + A�√

�
, (B4)

where A is a constant of integration. Evaluating Eq. (B4) at
η = 1, we obtain a first equation that involves the unknowns
�′(1), �(1), A, and F :

�′(1) = F
2

√
1 + A�(1)√

�(1)
. (B5)

Integrating now Eq. (B4), we obtain an explicit expression
between the variable η and the function �(η):

√
�(1 + A�)

A
− 1

A3/2
sinh−1[

√
A�] = F

2
η (B6)

[where we used the BC �(0) = 0, which is valid for all cases
addressed here]. Evaluating the above equation at the hole’s
edge (η = 1), we obtain a second equation that involves the
unknowns �(1), A, and F :

√
�(1)[1 + A�(1)]

A
− 1

A3/2
sinh−1[

√
A�(1)] = F

2
. (B7)

Turning to the integrated form of the first FvK Eq. (B1), we
reparametrize the function ζ (ρ) → ζ [�(η)]. With the aid of
Eq. (B4), and integration (over �), we obtain an explicit form
for the shape:

ζ (�) − ζ (0) = 2√
A

sinh−1[
√

A�]. (B8)

Equations (B5) and (B7) constitute two equations for the
four unknowns: �′(1), �(1), A, and F . These two equations
are common to all cases we study in this paper. The other two
equations must come from the BCs that reflect the various
physical conditions discussed in our paper (clamping/sliding
at the hole’s edge, absence/presence of wrinkles).

Once the four constants [�′(1), �(1), A,F] are deter-
mined, Eqs. (B6) and (B8) provide implicit expressions for
the functions �(η), ζ (�), which can be directly transformed
[through Eqs. (B2) and (16)] to the shape ζ (ρ) and the stress
components σrr (r), σθθ (ρ).

APPENDIX C: CLAMPING AT THE HOLE’S EDGE

For the clamped case, Sec. II A, the BCs (26) become

η = 0 : (i) ζ = −δ̃, (ii)� = 0,

η = 1 : (iii) ζ = 0, (iv) 2�′ = (1 − ν) + (1 + ν)�.

(C1)

Among these BCs, (ii) was used already to obtain Eq. (B6).
Since the FvK Eqs. (24) and (25) are invariant under ζ →

ζ + c, only the difference ζ (1) − ζ (0) can affect the physics,
and hence the three remaining BCs in (C1) give rise to two
equations that involve the unknowns [�′(1), �(1), A,F].
The first equation is simply BC (iv):

2�′(1) = (1 − ν) + (1 + ν)�(1), (C2)

and the second equation is obtained by evaluating Eq. (B8)
at �(1), and substituting for the difference ζ [�(1)] −
ζ [�(0)] = δ̃:

δ̃ = 2√
A

sinh−1[
√

A�(1)]. (C3)

Solving the four algebraic Eqs. (B5), (B7), (C2), and (C3),
is straightforward (e.g., using Mathematica’s “FindRoot”),
and allows us to obtain the constants �′(1), �(1), A, F
as a function of the single dimensionless parameter δ̃. The
response function F (δ̃), the deformed shape, and the stress
profile (which are evaluated with the aid of Eqs. (B6), (B8),
(B2), and (16)] are shown in the gray curves in Figs. 3–8.

APPENDIX D: SLIDING (NO WRINKLING)

The BCs that corresponds to an axisymmetric (unwrinkled)
state for which the sheet can slide on the substrate were de-
rived in Sec. II B. The difference between clamped-edge and
sliding boils down to replacing the BC (iv) in Eq. (26) with the
corresponding BC in Eq. (31). Hence, the algebraic equations
for the four unknowns �′(1), �(1), A, F are Eqs. (B5),
(B7), and (C3), and

�′(1) = 1. (D1)

The response function F (δ̃), the deformed shape, and the
stress profile that correspond to this solution, are shown in
the blue curves in Figs. 3–8.

APPENDIX E: SLIDING AND WRINKLING

If the sheet can slide at the hole’s edge, hoop compres-
sion evolves around the hole’s edge and the compressed
zone expands upon increasing indentation depth, in a manner
that depends on the sheet-substrate attachment (through the
parameter β, Secs. II C and II E), the sheet’s size (through
the parameter R, Sec. II F), and the boundary conditions
at the far edge (Sec. IV). Central to all of these cases is
the presence of a purely tensile, unwrinkled core, 0 < r <

LI , around the indenter, where the deformation is described
by solving the axisymmetric FvK Eqs. (24) and (25), sub-
ject to Eq. (33) and the BCs (34), that yield two Eqs. (37)
for the three unknowns �(1), ã, L̃I . The various cases in
Secs. II C, II E, II F, and IV differ only in the final equation
that connects �(1), ã, L̃I , which stems from the continuity
of radial displacement at the hole’s edge [Eqs. (38), (44), (47),
and (60), respectively]. In the following we obtain the first two
algebraic equations for �(1), ã, L̃I that are common to all of
these cases.

Following Ref. [17] (Sec. 3 of the Supplemental Material),
it is convenient to replace the dimensionless variables (22)
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with

ρ̄ = r

LI
= ρ

L̃I
; �̄ = ψ

σrr (R)R
= �

�(1)
;

ζ̄ = z√
RL

√
Y

σrr (R)
= ζ√

L̃I�(1)
(E1)

and the dimensionless force F (23) with

F̄ = 1

2πR

√
LI

R

√
Y

σrr (R)3
F = F

√
L̃I

�(1)3
, (E2)

such that the BCs in (34) and (37) that involve explicitly the
function �̄(ρ̄ ) are

�̄(ρ̄ = 1) = 1; �̄(ρ̄ = 0) = 0; �̄ ′(ρ̄ = 1) = 0. (E3)

Using a similar manipulation to the one employed earlier, we
make the additional transformation:

� = ρ̄�̄; η = ρ̄2, (E4)

with which the BCs (E3) become �(η = 0) = 0, �(η =
1) = 1, �′(η = 1) = 1

2 , and the implicit expression for �(η),
Eq. (B6), is fully satisfied by the numerical constants A, F̄ ,

through the algebraic Eqs. (B5) and (B7). Solution of these
equations yield the numerical values

A ≈ −0.697; F̄ ≈ 1.815, (E5)

which were found already in [17]. Equation (B8), with ζ → ζ̄ ,
together with the BCs for ζ in Eq. (34) yield

(ã(L̃I − 1) + δ̃)(L̃I�(1))−1/2

= 2√
A

sinh−1(
√

A) ≈ 2.367, (E6)

and the BC for the slope (37) becomes

ã(L̃I/�(1))1/2 = (1 + A)−1/2 ≈ 1.815. (E7)

For any value of the control parameter δ̃ � 3.3, Eqs. (E6) and
(E7), together with Eq. (38) for Sec. II C, or Eq. (44) for
Sec. II E, or Eq. (47) for Sec. II F, or Eq. (60) for Sec. IV,
form a set of three nonlinear algebraic equations for the three
unknowns �(1), L̃I , ã. The solutions of these equations fully
characterize the shape and stress of the deformed sheet in each
case, and the corresponding indentation force is obtained with
the aid of Eqs. (E2) and (E5).
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