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Influence of pore-size distributions and pore-wall mechanics on the mechanical
behavior of cellular solids like aerogels
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The pore-size distributions play a critical role in the determination of the properties of nanoporous cellular
materials like aerogels. In this paper, we propose a micromechanical model, and by further designing artificial
normal pore-size distributions, we inspect their effect on the macroscopic stress-strain curves. We show that the
location of the mean pore size as well as the broadness of the distribution strongly affects the overall macroscopic
behavior. Moreover, we also show that by using different damage criteria within the proposed model, the elastic,
inelastic, and brittle nature of the macroscopic material can be captured. The damage criteria are based on
the different modes of deformation in the pore walls, namely, elastic buckling, irreversible bending and brittle
collapse under compression, and combined bending and stretching under tension. The proposed model approach
serves as a reverse engineering tool to develop cellular solids with desired mechanical properties.

DOI: 10.1103/PhysRevE.103.043001

I. INTRODUCTION

Open-porous cellular solids are characterized by a com-
plex mechanical behavior. Depending on the properties of
their skeletal (or solid) material, they show either an elastic,
elasto-plastic, or brittle response. Diverse attempts [1–7] have
been made to model and characterize the mechanical behavior
of such cellular materials within a micromechanical or phe-
nomenological framework. To that end, the most extensive
work has been accomplished by Gibson and Ashby [2]. They
showed that a simple approach of modeling the mechanisms
of deformation and failure by means of a two-dimensional
(2D) system without specifying the exact cell geometry proves
to be accurate and useful in predicting the mechanical proper-
ties of such open-porous cellular solids. Under compression,
such cellular solids generally show three distinct regimes:
(1) a linear elastic regime, where local bending and buckling
of the pore walls occur, (2) a plateau regime, where pore
collapse takes place, and (3) a densification regime, where
the hardening due to compaction of the collapsed pores oc-
curs. While cellular solids exhibit complex phenomena, their
mechanical properties can be well established based on their
cell wall mechanics. The open-cell foam model by Gibson and
Ashby [2] is widely used for estimating several mechanical
properties, such as the Young’s modulus and yield stress, of
cellular materials. Such materials maximize their mechanical
properties with increasing density. The well-known relation
between the Young’s modulus (E ) and density (ρ),

E ∝ ρm, (1)

where m is the scaling exponent, is a good example. Based
on the open-cell foam model by Gibson and Ashby, m = 2.
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However, for cellular materials that rather show a random
network connectivity, the exponent may vary between 1 and
4. This is generally the case for aerogels and similar materials
[8,9].

In the past decade, there has been a strong interest in
the development of nanoporous open-cellular materials given
their exceptional thermal insulation properties. Having pore
sizes in the Knudsen regime, the resulting materials show
exceptionally low thermal conductivities [10]. While heat
flow is a scalar problem being a function of the tempera-
ture gradient, the mechanical deformation is a vectorial one
[11]. Moreover, maximizing the mechanical stiffness of the
cellular solid while maintaining a low thermal conductivity
results in a conflict of interest, given that both properties are
essentially functions of the solid phase fraction of the porous
cellular material. To this end, analyzing the nanoporous mi-
crostructure and its influence on the mechanical properties
is important for designing materials for specific applications.
Many nanoporous solids, such as biopolymer aerogels and
specifically cellulose ones, show an exponent m ≈ 2 given
their foamlike appearance [12]. The mechanical properties of
these materials are highly controlled by their pore structure
[7]. This is typically quantified by the pore-size distribu-
tion. There has been recent interest in the characteristics of
the pore sizes and pore-size distributions [13–16], as well
as their effect on the properties of the materials [17–20].
Many nanocellular solids such as biopolymer aerogels exhibit
pore sizes ranging from a very few nanometers up to 100–
150 nm. Recently at the International Seminar on Aerogels
2020, questions pertaining to the effect of the pore size and
more specifically pore-size distributions on the macroscopic
mechanical behavior of aerogels were raised. Answering this
question from an experimental perspective is rather challeng-
ing. This is because it is extremely difficult to only tune
the pore size and distribution alone, while keeping all other
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FIG. 1. An illustration of a macroscopic material specimen (a) in
an undeformed configuration and (b) in a deformed configuration
upon compression, (c) deformation of a microsphere subject to a
compressive deformation gradient F, and (d) different modes of com-
pressive or tensile deformation of the cell walls or struts: buckling,
bending, and bending and stretching. The inset showing cellular
microstructure in (a) and (b) is that of cellulose aerogels reproduced
from Ref. [6] with permission from The Royal Society of Chemistry.

parameters constant, while synthesizing a porous material
such as an aerogel. Accordingly, a theoretical approach would
be better suited to give an explanation. In our previous work
[21], we have proposed a simple physically based constitutive
model that described the macroscopic mechanical behavior of
the cellular solid based on their pore-wall mechanics where
the pore-size distribution was considered. There a special case
of uniaxial tension for a brittle cellular material was presented.

In this paper, a generalized framework for numerical mod-
eling of open-porous cellular solids is presented. Here a focus
on the influence of pore-size distributions, in particular, the
location of the mean of a normal pore-size distribution as well
as the broadness of the peak, on the macroscopic mechanical
behavior of nanocellular solids is described. The effect of
the range of the pore-size distribution is also accounted for.
Furthermore, the effect of the choice of the damage criteria
on modeling the constitutive behavior of cellular solids is
investigated by generalizing our previously published model.
The cell walls of a cellular solid may undergo elastic buckling
in the case of a flexible solid or irreversible bending in the case
of an elasto-plastic solid or sudden failure beyond the elastic
regime in the case of brittle solids [3]. Under tension, the walls
first try to align themselves to the direction of loading and then
undergo stretching [22]. During the aligning process, bending
is more dominant, followed by stretching. These modes are
exemplarily shown in Fig. 1. Figures 1(a) and 1(b) show a
macroscopic cellular solid under compressive deformation,
while Fig. 1(d) shows the above-mentioned modes of defor-
mation. To the best of our knowledge, very few studies have
reported the modeling of the macroscopic stress-strain re-
sponse of cellular solids by accounting for the different modes
of damage within a numerical micromechanical framework.

The paper is divided as follows. In Sec. II the microme-
chanical model is proposed. The results of the model are
illustrated, and an explanation is presented in Sec. III. There,
first, the effect of the pore sizes and distributions on the
macroscopic constitutive behavior are illustrated and ana-
lyzed. Then the effect of different damage mechanisms on the
overall stress-strain nature and the failure of the network are
described. Last, the conclusions from this study are drawn in
Sec. IV.

II. MODEL

For any given open-porous cellular material, the macro-
scopic mechanical behavior is governed by the mechanism
of deformation of their micro- (or nano-)scopic pore walls.
In our previous works [7,21], micromechanical models were
presented based on the assumption that the material network
is made up of idealized microcells having an isotropic spa-
tial distribution. An idealized microcell is referred to as a
square-shaped cell, representing a 2D pore. Special cases of
damage were considered based on the type of material being
considered. In this section, a generalized approach to model-
ing open-porous materials is proposed, based on our previous
works. The one-dimensional (1D) network strain energy of an
idealized microcell is expressed as

d
� =

∫
lactive

N0 p(l )(ψbn + ψst ) dl, (2)

where the bending energy ψbn and the stretching energy ψst

based on the deformation of the pore walls are given as

ψbn =
∫ l

0

1

2
κ (φ′)2 dl, (3)

ψst =
∫ l

0

1

2
μ(u′)2 dl, (4)

where φ′ is the curvature and u′ is the axial strain along
the pore walls where the pore-wall length ranges between
lmin and lmax. κ and μ represent the bending and stretching
stiffness, respectively. The parameters l and lactive denote the
length of the given pore wall and the range of active (not
collapsed or failed) microcells in the network, respectively.
lactive will be addressed in more detail in the following. p(l )
is the pore-size distribution of the given material. For most
nanocellular porous solids, such as aerogels, the pore sizes
are far from being constant. These pore sizes, for meso-
porous aerogels, are experimentally estimated by means of the
Barrett-Joyner-Halenda (BJH) model [23], which is applied to
the data obtained from nitrogen sorption isotherms. N0 is the
total number of cells within the network. This parameter is a
function of the relative density.

The total strain energy of the three-dimensional (3D) net-
work is then obtained as the sum of the energies in the
different spatial directions. Applying an isotropic spatial dis-
tribution, i.e., idealized cells (pore walls) are spread equally
in all directions, one can express

� = 1

AS

∫
S

d
� d

d
x, (5)
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FIG. 2. Illustration of the damage evolution in a cellular network
based on collapse of pores by buckling. The blue colored arrows
indicate the damage evolution.

where AS represents the surface area of the unit sphere. For
the purpose of generalization from a 1D response to a 3D one,
directional averaging by means of the numerical integration
over the unit sphere [24] was applied. The integration in
Eq. (4) was accordingly carried out numerically as

� ≈
k∑

i=1

ωi

d i

�, (6)

where ωi are weight factors corresponding to the collocation
directions d i (i = 1, 2, 3, . . . , k). This method was recently
shown to be effective for 3D generalization in the case of
modeling porous materials [7,25].

Under compression, three different modes of damage were
considered. These were (1) pore collapse due to elastic buck-
ling of the pore walls, (2) pore collapse due to irreversible
bending of the pore walls, and (3) pore collapse due to brittle
failure of the pore walls. The Euler buckling criterion was
used to model case (1). This means that once the critical buck-
ling load in a pore wall was reached, the pore was considered
to collapse. This changed the range of lactive. For example, on
the basis of the buckling criterion, the larger pores collapsed
first (see Fig. 2), because the slenderer pore walls buckled
sooner than the shorter ones. Accordingly, the value of lmax

gets updated to a new value lm. Note that, in the reference
state, lm = lmax, and then lmin < lm < lmax. To model case (2),
the bending moment criterion was used. Here the pore walls
were considered to undergo irreversible deformation after the
bending moment of the wall Mw reached its maximal allow-
able value. Beyond this point, where the yield stress in the
pore wall is reached, a plastic hinge would appear [2]. Last, to
model case (3), the normal stress criterion was applied. In this
case, a combined bending and compression were considered
to result in the failure of the pore walls. Under tension, the
damage was again based on the normal stress criterion, as the
pore walls would first try to align themselves to the direction
of loading (a bending-dominant behavior) and then begin to
stretch with increasing deformation.

In the following, first the effect of the pore sizes and pore-
size distribution is analyzed. This is followed by exploring
the application of the different above-mentioned damage cri-
teria and their effect on the overall macroscopic stress-strain
curves.

III. RESULTS

A. Effect of pore sizes and pore-size distributions

To account for the effect of pore sizes, two sets of examples
were chosen. A standard Gaussian distribution was chosen to
describe the pore-size distribution over a range between 2 and
100 nm. This encompasses the mesopores, those between 2
and 50 nm, and macropores, those larger than 50 nm, accord-
ing to the IUPAC definition. Realistic pore sizes in materials
like aerogels are usually non-Gaussian and can be approxi-
mated by, e.g., a generalized β distribution function [26]. In
this work, for the purposes of analyzing the effect of pore
sizes in an open-porous cellular material, a normal distribution
was considered. First, the mean pore size was considered to
vary in different examples, from 20 to 80 nm, as illustrated
in Fig. 3(a). For all other model parameters kept constant,
purely varying the mean pore size had a very strong effect on
the macroscopic tensile and compressive behavior. Figure 3(b)
illustrates this effect on the tensile stress-strain curve. It shows
that as the mean pore size was shifted to the right, meaning it
became larger, the constitutive behavior softened. However,
it solely did not seem to have a very strong impact on the
brittle failure of the network. Here an important point has to
be considered. For any given network with a constant number
of cells and having a constant pore-wall thickness, if the pore-
size distribution is changed, the relative density is bound to be
affected. This can be controlled by adjusting other parameters,
such as the pore-wall thickness. Conventional foams, for, e.g.,
metal foams, do not show pore-size dependency over the
mechanical properties [27]. However, such foams also do not
boast pore sizes with such variations, from 2 to 150 nm. In
our model, since the relative density itself does not appear to
be a parameter, keeping it constant is not necessarily possible.
Hence, the above-illustrated observations may appear to be
an effect of the corresponding change in the relative density.
However, recent observations in carbon aerogels [28,29] have
shown that aerogels prepared with the same relative den-
sity, but with varying pore sizes, show different mechanical
properties. Carbon aerogels with smaller pores behave more
stiffly than those with larger pores, although both have similar
relative densities. This was precisely demonstrated by the
results shown in Figs. 3(a) and 3(b). Further investigations
appear necessary to explore such size effects, specifically in
combination with the relative density. Simultaneous changes
to the pore-wall thickness may certainly alter the above-stated
conclusion. The larger the pore-wall thickness, the stiffer is
the material response. Under compression, the response also
showed a similar softening. For example, when the mean
pore size was changed from 20 to 80 nm, the mechanical
stiffness dropped by a factor of over one-third. The blue
curve in Fig. 3(e) shows the softening of the Young’s modu-
lus as measured from the uniaxial compression simulations.
The softening of the mechanical stiffness was rather steep,
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FIG. 3. (a) The different pore-size distributions considered, based on the variation of the mean pore sizes, (b) the influence of the mean pore
size on the macroscopic tensile behavior, (c) the different pore-size distributions considered, based on the variation of the standard deviation
in the pore sizes, (d) the influence of the standard deviation on the macroscopic tensile behavior, (e) the Young’s modulus vs the mean and
standard deviation of the pore-size distribution, and (f) the effect of the choice of numerical scheme within the microsphere model on the
stress-strain behavior (inset shows the three schemes, n = 21, 45, and 61).

although it seemed to be flattening with every increase in
the mean value of the pore sizes. The conclusions drawn
from Figs. 3(a), 3(b), and 3(e) corroborate well observations
from experiments as elucidated above. However, for a general
application of the model, care must be taken to analyze this
effect in correlation with the changes in the relative density.

It was of further interest to investigate the effect of the
broadness of the peak on the overall mechanical behavior.
Thus, the standard deviation in the considered normal distri-
bution was varied. As seen from the pore-size distributions
of various aerogels [26], not all have a very strong peak,
but some have a rather flattened one. Figure 3(c) shows the
different pore-size distributions modeled purely varying the
standard deviation. For a given mean, the results are not
very dramatic. Figure 3(d) shows the tensile stress-strain
behavior for the corresponding different pore-size distribu-
tions. The wider the standard deviation, slightly stiffer is the
mechanical response. This is more evident from Fig. 3(e),
where the Young’s modulus, as measured under compression,
showed a minor increase with widened standard deviation.
This conclusion may certainly change if other parameters
are simultaneously altered. Thus, for obtaining the significant

influence on the macroscopic behavior, it is more important
to reverse engineer the location of the mean of the pore-
size distributions in nanoporous cellular materials. While the
above-mentioned conclusions remain valid also for a few
non-Gaussian pore-size distributions, e.g., the generalized β

distribution function that adheres to the distributions that are
observed in polysaccharide aerogels, they may need further
attention when modeling open-porous networks with other
different types of pore-size distributions that do not exhibit
Gaussian nature.

It was also necessary to investigate the effect of the choice
of the directional scheme on the overall model response. Nu-
merical integration over a unit microsphere is predominantly
used for directional averaging in the modeling of the net-
work response of elastomers [30]. Recently this approach has
been applied for cellular solids [7,25]. The compression of an
exemplary microsphere subjected to a deformation gradient
F is illustrated in Fig. 1(c). Figure 3(f) shows the effect of
using different numerical schemes in the presented model on
the macroscopic stress-strain behavior. All the responses coa-
lesced, suggesting that the model is insensitive to the direction
scheme applied. In our model, we have used the scheme of
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FIG. 4. Effect of different damage mechanism criteria, (a) elastic buckling, (b) irreversible bending, and (c) brittle collapse, on the
compressive response of the cellular solids. (d) The same is illustrated for the failure due to combined bending and stretching under tension
showing brittle failure. The shading color scheme is as follows: the white region shows the linear-elastic regime, yellow the pore collapse, and
gray the material failure. The line type scheme is as follows: the blue solid line with triangle points shows the stress-strain curve, and the red
dotted line with circle points illustrates the collapse of pores.

45 integration points over the half sphere, as it was shown
to provide the best results by considering a trade-off between
computational time and numerical accuracy [31].

B. Effect of different damage criteria

The different deformation modes for cellular solids un-
der tension or compression have been very well outlined
by Gibson and Ashby [2]. In the majority of the material
models based on the pore-wall mechanics, the relationship in
Eq. (1) is explored, but the macroscopic mechanical behavior
of the cellular solid based on the microstructural parameters
is not simulated. Finite element methods or other similar ones
are applied for this purpose. However, the work of Gibson
and Ashby forms a very strong basis for defining a numer-
ical model. As mentioned above, they showed that a simple
approach of modeling the mechanisms of deformation and
failure by means of a 2D cellular system without specifying
the exact cell geometry proves to be accurate and useful in
predicting the mechanical properties of cellular solids. In this
paper, different damage criteria have been introduced and
subsequently varied within the framework of the proposed

model for describing diverse macroscopic stress-strain curve
types of cellular networks.

Considering compression, Gibson [3] outlined elastic
buckling as the first mode of deformation. Accordingly, by
modeling Euler buckling in the pore walls under compression,
the macroscopic stress-strain curve was modeled as shown in
Fig. 4(a). The pore collapse begins with the onset of critical
buckling stress in the respective pore walls of the material.
This is quantified by the factor NA in the plot, which corre-
sponds to the active cells that are oriented in the direction
of loading. Thus, in the presented case, the elastic buckling
was seen to occur even at very small strains. For a very soft
material, the walls would buckle even at very small strains,
thus expediting the pore collapse. The white region in Fig. 4(a)
shows the linear elastic region, whereas the yellow-shaded
region begins with the onset of the first buckling of pore walls
in the network. The range of the linear elastic (white) region
varies upon the geometric parameters as well as the Young’s
modulus of the pore walls. This is in full agreement with
the Gibson and Ashby open-cell foam model. The directional
dependency of the walls oriented in the other directions was
accounted for by the directional averaging. The mechanism
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for densification was not accounted for, hence the stress-strain
curve shows only the linear elastic regime followed by the
softening effect due to the pore collapse. This means, while
integrating over the pore-size distribution, only the active
pore walls or struts were accounted for (lactive; see Fig. 2). If
the Young’s modulus of the pore walls, their thickness, and the
pore-size distribution is known beforehand, the macroscopic
mechanical stress-strain curve can be simulated.

The second mode of deformation was irreversible bending.
Figure 4(b) shows the macroscopic compressive response of a
cellular solid modeled with the same microstructural parame-
ters, but changing only the damage criterion. Here the pore
walls were considered to undergo irreversible deformation
after the bending moment of the pore wall reached its maximal
allowable value. Here, also, the model was able to predict
the linear elastic regime followed by the softening due to
pore collapse. Again, the range of the linear elastic regime
was strongly affected by the Young’s modulus and geometric
parameters of the pore walls. The observed collapse of pores
was relatively gradual in comparison to the one observed in
Fig. 4(a) and followed the local bending of the walls in the
network.

The third mode of deformation was brittle failure.
Figure 4(c) shows the response of a cellular solid subject
to compression and subsequent brittle failure. Here the gray
region represents network failure. In this case, the collapse of
the pores was modeled based on the normal stress criterion.
Once the normal stress in the pore walls reached the maxi-
mal allowable value, the pores were considered to collapse.
One can distinctly observe the linear elastic regime, followed
by the onset of damage, which propagates very rapidly as
expected for a brittle material, leading to macroscopic fail-
ure. Such brittle failure is clearly seen in brittle nanoporous
materials under compression, such as carbon aerogels [29].
Figure 4(d) shows the stress-strain curve modeled under ten-
sion. In this case, the pore walls try to align themselves to the
direction of loading. This results in a combined local bending
and stretching of the walls followed by a more stretching dom-
inated one [22]. As can be visualized in Fig. 4(d), NA again
showed that the microcells oriented in the direction of loading
begin to fail on a microscopic level leading to macroscopic
network failure. Thus, the model captured the brittle failure
under compression as well as under tension. It is observed
that, for a given set of parameters, applying the failure cri-
terion due to normal stress, under tension and compression,
resulted in similar-appearing stress-strain curves.

The results presented in Fig. 4 show that by choosing an
appropriate damage criterion within the framework of the
proposed model, the macroscopic stress-strain response can
be effectively described. In conventional foams, it has been
observed that beyond a critical limit pertaining to size effects,
the network response should be independent of the number of
cells in the network. Since our model is based on the network
strain energy, the parameter appears as purely a multiplicative
factor but was nonetheless crucial in analyzing the progression

of damage in the cellular network. This made predicting the
network failure possible. A current limitation to the model
arises from its inability to capture the densification of the
network within the presented micromechanical framework. In
the current model, the strain energy is calculated only over
the active pore walls or struts (lactive). However, the collapsed
pore walls play a significant role in contributing towards the
compaction of the network and need to be accounted. More-
over, the current model assumed affine deformation. This
means that the microscopic stretches in the pore walls or
struts followed the macroscopic deformation gradient. There
have been alternative approaches for accounting the nonaffine
deformation in the literature [22] and shall be considered in
our next work.

IV. CONCLUSIONS

A micromechanical constitutive model to predict the
macroscopic stress-strain curves of nanoporous open-cellular
solids, based on the mechanics of the pore walls or struts,
is proposed in this paper. The following conclusions can be
deduced from the presented work. The nature of pore sizes and
their distributions strongly affect the mechanical properties.
By considering a normal distribution function for mimicking
the pore-size distribution in a cellular solid, it is realized that
tailoring the location of the mean pore size is significantly
more important than controlling only the standard deviation
while maintaining a constant mean pore size. With increasing
pore size, and for all other parameters constant, the network
response softens. As long as the mean pore size is constant,
adjusting the range of the pore sizes shows no significant
effect on the mechanical properties. These conclusions might
need minor adjustments while dealing with non-Gaussian
pore-size distributions. Thus, the proposed model presents an
alternative approach of modeling open-porous cellular solids,
by accounting for the pore-size distributions.

It further accounts for the different modes of damage,
namely, elastic buckling, irreversible bending, and brittle
failure. Thus, the model is capable of predicting elastic
and inelastic effects in cellular solids. For the case that all
model parameters—pore-wall thickness, Young’s modulus of
the pore wall, and the pore-size distribution of the consid-
ered open-porous cellular material—are known a priori, the
macroscopic tensile and compressive stress-strain curves can
be predicted. Such a modeling approach could be effectively
used to reverse engineer the properties of nanoporous cellu-
lar materials like aerogels, by first correlating the synthesis
parameters to the model ones, and then accordingly adjusting
the synthesis parameters.
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