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Scaling behavior of the tensile strength of viscocohesive granular aggregates
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We numerically analyze the tensile strength of a single wet agglomerate modeled as a viscocohesive aggregate
impacting a flat surface by using the discrete-element simulations. The viscocohesive agglomerate composed
of primary spherical particles with the inclusion of the interstitial liquid in the form of the capillary bridges
characterized by the cohesive and viscous forces between particles is extracted from a cuboidal sample of
granular materials by applying a spherical probe. The tensile strength is measured from the impact test of a
wet agglomerate by systematically varying different values of the surface tension of the interstitial liquid, the
liquid viscosity, and the impact speed. We show that the tensile stress increases immediately when the collision
occurs between the agglomerate and the flat surface. The peak of the tensile stress obtained after the collision,
then decreases smoothly with increasing the particle movement. The maximum tensile stress is defined to be the
tensile strength of such agglomerate. It is remarkable that the normalized tensile strength of such agglomerate
can be well described as a function of a dimensionless impact number that incorporates the capillary number
and Stokes number (calculated from the surface tension and the viscosity of the liquid and the impact rate of
the agglomerate), thus providing the confirmation for the unified representation of the liquid properties and the
impact rate of wet granular media.
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I. INTRODUCTION

Wet aggregates, viscocohesive aggregates, or cemented
aggregates commonly appear in nature and industrial pro-
cesses [1–6]. Important components of aggregates involve raw
materials and interstitial liquid which are presented in the
structure of the capillary bridges between grains [6–12]. These
capillary bridges are the consequence of the condensation of
the liquid vapor or drainage in the nature and the mixing of the
binding liquid and the particles in the industry [13–18]. The
liquid commonly induces the cohesive forces and the viscous
forces between particles [18,19]. These forces increase the
mechanical strength of viscocohesive agglomerates [4,17].
Besides the compressive stress that is nearly understood based
on previous studies over the last few decades, the tensile
strength of such agglomerates needs further investigation,
especially when considering both cohesive and viscous inter-
actions between grains.

In order to study the tensile strength of wet granular
materials, here we consider the case in which an agglomer-
ate impacts on a rigid surface by setting its initial position
and initial velocity applied for all primary particles. At the
beginning of the collision process, the aggregate receives
the external forces from the rigid plane and transmits them
to the agglomerate based on the interactions between pri-
mary particles. These interactions involve the elastic and
frictional forces, and the cohesive and viscous forces which
depend on the properties of the binding liquid. Meanwhile,
the cohesive forces only represent the contractive properties
between spherical particles; the viscous forces mobilize in the
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direction of the extension or contraction depending on the
relative movement between particles which may depend on
the impact speed and microstructure of agglomerates [20].
Thus, it is necessary to get a better understanding of the effects
of the cohesive and viscous interactions as well as the impact
rate on the tensile strength of viscocohesive agglomerates.

Actually, the effects of liquid properties characterized by
the cohesive and viscous forces between particles and the
flow rate of granular materials are previously investigated
in terms of the rheology of steady-state shearing flows and
the evolution of agglomerates in different configurations and
environments [6,12,17,19,21–23]. In the viscoinertial sim-
ple shear flows of granular materials, the effective friction
coefficient and the packing fraction can be described as a
function of a dimensionless number combining the particle
inertia and the liquid viscosity [20,24–26]. In the steady-state
simple shear flows of cohesive material, the combination of
the particle inertia and the cohesive forces could scale its
rheological properties [17,27]. In particular, when both co-
hesive and viscous effects come into play with the frictional
and elastic interactions between particles, the rheology of
unsaturated granular flows and the erosion rate of wet particle
agglomerates can be scaled as a function of a dimension-
less number which incorporates the particle inertia, cohesive
stress, and viscous stress [18,19]. These above examples raise
the question whether the tensile strength of wet agglomerates
generated in the impact test can also be scaled as a function
of a new dimensionless number incorporating the liquid-vapor
surface tension, the liquid viscosity, and the impact rate. This
will be nontrivially addressed in this current paper.

In this paper, we analyze the tensile strength of
viscocohesive agglomerates impacting a flat surface by
means of three-dimensional (3D) numerical simulations. The
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simulations were carried out by means of the discrete-element
method with the inclusion of the viscous and cohesive forces
of the binding liquid. The agglomerates are extracted from
a cuboidal sample of viscocohesive granular materials. By
systematically varying broad ranges of values of the liquid
viscosity and the surface tension of the interstitial liquid as
well as the impact speed as setting different values of the
initial velocity of the agglomerate, we investigate the tensile
stress of such aggregate. This tensile stress increases pro-
portionally to the system parameters above, and as we shall
see, the tensile strength of a viscocohesive aggregate can
be nontrivially behaved by a dimensionless impact number
incorporating all key parameters.

In the following, we introduce the sample preparation and
parameters used to prepare the impact test of agglomerates in
Sec. II. In Sec. III, we discuss the evolution of the tensile stress
as a function of the particle displacement for different values
of the system parameters. Then, we propose the scaling behav-
ior of the tensile strength in Sec. IV. We conclude in Sec. V
with the summary of the salient results and further research
directions. We briefly introduce the numerical method in the
Appendix.

II. MODEL SETTING AND PARAMETERS

The viscocohesive agglomerate composed of 31 470 spher-
ical particles was first prepared by introducing a cuboidal
sample of spherical particles under an isotropic compaction.
The particle diameter is varied in a range [dmin, dmax] with
dmax = 2 × dmin. After the cuboidal sample of spherical par-
ticles reaches the equilibrium state, we added the interstitial
liquid characterized by the cohesive and viscous forces
between particles, and the liquid is assumed to be homoge-
neously distributed inside the sample. Then, we placed in the
center of the cuboidal sample a spherical probe in order to
extract the agglomerate. Finally, this agglomerate is allowed
to reach the relaxation under the action of both cohesive and
viscous forces. These forces are shown in the Appendix below.

The viscocohesive agglomerate is then subjected to the im-
pact test by setting its initial position having the height equal
to a half of the agglomerate radius, measured from the lowest
point of such agglomerate, as illustrated in Fig. 1(a). This
agglomerate was then set at an initial velocity for all primary
particles before falling down to collide with the rigid surface,
as shown in Figs. 2(a) and 2(b). The gravity is set to 9.81 m/s.
We ran a series of simulations by systematically varying the
cohesive stress σc in a range [4.0, 74.0] kN/m2, the liquid
viscosity in a range [1.0, 3000.0] mPa s, and the range of the
impact velocity v0 [0.3, 5.0] m/s. The interparticle friction
coefficient is set to 0.5. All the other system parameters are
shown in Table I.

III. TENSILE STRENGTH

In order to analyze the tensile stress of a viscocohesive
agglomerate impacting a rigid plate, we consider the normal
stresses σxx and σyy that have the direction perpendicular to
the planes xz and yz, respectively, as shown in Fig. 1(b), where
σxx and σyy are observed from the stress tensor by considering
the tensile forces that have the direction perpendicular to the
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FIG. 1. (a) Schematic drawing of the impact model of a single
agglomerate. (b) Schematic representation of the different compo-
nents of the stress tensor in different directions and sides.

impact direction of the agglomerate.

σii = 1

Va

Nb∑
k=1

f k
i �k

i = nb
〈
f k
i �k

i

〉
k, (1)

TABLE I. Main simulation parameters.

Parameter Symbol Value Unit

Smallest particle diameter dmin 600 μm
Density of particles ρ 2600 kg m−3

Number of particles Np 31 470
Friction coefficient μ 0.5
Normal stiffness kn 106 N/m
Tangential stiffness kt 8 × 105 N/m
Normal damping γn 0.5 Ns/m
Tangential damping γt 0.5 Ns/m
Contact angle θ 0 deg.
Liquid viscosity η [1.0, 3000] mPa s
Cohesive stress σc [4.0, 74.0] kN/m2

Impact velocity v0 [0.3, 5.0] m/s
Time step �t 2 × 10−8 s

042902-2



SCALING BEHAVIOR OF THE TENSILE STRENGTH OF … PHYSICAL REVIEW E 103, 042902 (2021)

Vimpact

(a) (b)

(c) (d)

FIG. 2. Snapshots represent the geometries of a single wet ag-
glomerate composed of spherical particles impacting a rigid plane
at the early-stage impact (a) and during the deformation (b), and
the distribution of the tensile forces in these two different stages
(c,d). The line thickness is proportional to the tensile forces between
near-neighboring particles.

where i denotes the x or y direction, Va is the volume of
aggregate at the current computational step, Nb is the number
of capillary bridges having the tensile forces fx or fy, f k

i
and lk

i are the i components of the force vector and branch
vector of capillary bridge k, respectively, and nb = Nb/Va is
the number density of the capillary bridges. The symbol 〈· · · 〉k

is averaging over all contacts k in the volume. The tensile
stress σt of the agglomerate is defined as an average value
of σxx and σyy, as given:

σt = σxx + σyy

2
. (2)

Figure 3 shows the evolution of the tensile stress σt as a
function of the particle movement Dp = v0 × t/〈d〉 for dif-
ferent values of the initial impact velocity v0 and as a given
value of the cohesive stress σc = 46.4 kN/m2 and the liquid
viscosity η = 1000 mPa s, where t is the impact time and
〈d〉 denotes the mean particle diameter. As we can see, the
tensile stress of all agglomerates remains at a constant value
in the equilibrium state (before the occurring impact). This
stress then increases immediately when the agglomerate starts
colliding with the rigid surface and reaches the peak that in-
creases proportionally to the impact speed v0 of agglomerates.
It is also interesting to see that the peak of the tensile stress
appears a short period of time after the collision. This may
be explained by the delay of the relative movement between
primary particles and the extension behavior of the capillary
contacts. This property of the tensile stress is really different
as compared to the compressive stress that reaches a peak at
the beginning of the impact process. After reaching a peak, the
tensile stress σt decreases smoothly due to losing the impact
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FIG. 3. Evolution of the tensile stress σt as a function of the
particle movement Dp for different values of the impact velocity v0.

energy; then the agglomerate reaches the stable state with
the stress that decreases almost proportionally to the impact
velocity.

Similar to the impact speed, the liquid properties char-
acterized by the cohesive stress σc = γs/〈d〉 and the liquid
viscosity between primary particles also have strong influ-
ences on the tensile stress of viscocohesive agglomerates.
Figures 4 and 5 display the evolution of the tensile stress
σt as a function of the particle movement Dp for different
values of the cohesive stress σc and the liquid viscosity η for
a given value of the impact velocity. It is remarkable that the
tensile stress σt of the viscocohesive agglomerate increases
proportionally to the cohesive stress σc before colliding, dur-
ing impacting, and in the deposition stage. These observations
are also presented in Fig. 5 for different values of η.

In order to show the effects of different system parameters
on the tensile stress of the viscocohesive agglomerate, we
defined the tensile strength of such agglomerate. The tensile
strength is obtained by normalizing the peak of σt with the
cohesive stress σc of capillary bonds. Figure 6 shows all the
data points of the normalized tensile strength σ

p
t /σc as a
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FIG. 4. Evolution of the tensile stress σt as a function of the
particle movement Dp for different values of the cohesive stress σc

of primary particles.
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FIG. 5. Evolution of the tensile stress σt as a function of the
particle movement Dp for different values of the liquid viscosity η.

function of the impact velocity vi, where vi is obtained when
the lowest primary particles start touching the rigid surface.
Although the impact velocity vi is the same for each group of
v0 of the simulations, the data points are plotted separately for
improving visibility. We see that the tensile strength increases
proportionally to the impact speed, the cohesive stress, and
the liquid viscosity η. Remarkably, the rate of these increases
is almost the same order of magnitude with increasing the
liquid properties. This tendency leads one to conjecture that
the tensile strength of wet agglomerates is fundamentally gov-
erned by a scaling parameter that combines all key parameters
including the liquid properties and the impact rate.

IV. SCALING BEHAVIOR

In the case of wet particles agglomerates impacting a rigid
surface, there are three different stresses exerted on the par-
ticles including the inertial stress σi, the cohesive stress σc,
and the viscous stress σv . The inertial stress σi ∼ ρ〈d〉2γ̇ 2 is
the stress that appears due to the collective motions of the
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FIG. 6. The normalized tensile strength σ
p

t /σc as a function of
the impact speed vi. Each symbol point and its color correspond to
the controlled parameters that are varied with their ranges of values;
all other system parameters are kept constant.

particles as a consequence of impacting the plane, where ρ

is the particle density [17,19,21,28–31]. The cohesive stress
σc ∼ γs/〈d〉 and the viscous stress σv ∼ ηγ̇ are induced from
the capillary bonds between primary particles [17–20]. In
order to define a dimensionless impact number that combines
the surface tension, the viscosity of the interstitial liquid, and
the impact rate γ̇ , we consider the linear combination of the
inertial stress σi and the viscous stress σv with a weighting
factor α (as given σi + ασv) due to the same footing between
them. This combination is dependent on the impact speed of
the wet agglomerate.

As inertial number (I ≡ √
σi/σp) in the pressure-

controlled conditions shearing flows of granular materi-
als [19,20,28,29,32–34], where σp is the confining pressure
as external stress is exerted on the particles, the dimensionless
impact number In in this current work is defined as a ratio
of the stress combination (σi + ασv) that is dependent on the
impact rate and the cohesive stress σc that is independent on
the impact speed of the agglomerate:

In =
√

σi + ασv

σc
=

√
σi/σp + ασv/σp

σc/σp
, (3)

implying

In = I

√
1 + α/St

ξ
, (4)

where St is the Stokes number, defined as the ratio of the iner-
tial stress σi and the viscous stress σv [20,25,26], and ξ is the
cohesion number, defined as the ratio of σc and σp [17,18,27].

Furthermore, in the case of the confining pressure σp is the
gravity of the primary particles, which is small as compared to
the cohesive and viscous stress between particles, the inertial
number I is replaced by

I =
√

σi

σp
=

√
σi

σv

× σv

σc
× σc

σp
=

√
St × Ca × ξ, (5)

where Ca is the capillary number, defined as a ratio of the
viscous stress σv and the cohesive stress σc exerts on each
particle [8,19]. By integrating the combination of Eqs. (4)
and (5), we get the dimensionless impact number In:

In =
√

Ca(St + α). (6)

Hence, the tensile strength of a wet particle agglomerate
impacting a rigid plane may be described as a function of
this dimensionless impact number if choosing an appropriate
value of the weighting factor α.

Figures 7 and 8 show the tensile strength σ
p

t /σc of a wet
particle agglomerate impacting a flat surface as a function of
the dimensionless impact number in linear-linear and log-log
scales for broad ranges of values of key parameters including
σc, η, and γ̇ by setting α = 0.113. As we can see, all the data
points of σ

p
t /σc nicely collapse on a master curve as a func-

tion of In incorporating the capillary number Ca and Stokes
number St (obtained from the liquid-vapor surface tension,
the liquid viscosity, and the impact rate of agglomerate). This
scaling thus provides the evidence that it is possible to unify
the description of the cohesive and viscous stresses and the
impact speed of wet granular materials in the case of a wet

042902-4



SCALING BEHAVIOR OF THE TENSILE STRENGTH OF … PHYSICAL REVIEW E 103, 042902 (2021)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.1 0.2 0.3

FIG. 7. Normalized tensile strength σ
p

t /σc as a linear function of
the dimensionless impact number In defined by Eq. (6) by setting
α = 0.113 for all of the system parameters. The symbols and their
colors are the same as Fig. 6. The solid line is the plot of Eq. (7).

agglomerate impacting a rigid plane. All the data points of
the tensile strength are well fitted by the power-law functional
form as follows:

σ
p

t

σc
= At I

β
n + Bt , (7)

with At = 3.1 and Bt = 11.5 × 10−2 the prefactors, and β =
1.05 the power of In. The fitting functional form confirms the
dependence of different stresses in particle interactions char-
acterized by the capillary number Ca and Stokes number St
on the tensile strength of wet particle agglomerates impacting
a flat surface. The correlation between all data points and
the fitting form is strongly supported by a high value of the
coefficient of determination R2 = 97.56%.

The mechanical strength of wet particles agglomerates
has been successfully modeled by using the discrete ele-
ment method with the interpretation at the particle scale
for fine grains [35], coarse grains [36], and the asteroid
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FIG. 8. Normalized tensile strength σ
p

t /σc in the log-log scale as
a function of the dimensionless impact number In defined by Eq. (6)
by setting α = 0.113 for all of the system parameters. The symbols
and their colors are the same as Fig. 6. The solid line is the plot of
Eq. (7).

and solar level [37,38]. Previous investigations also indi-
cated the effects of different parameters such as the particle
size distribution [12,39] and the liquid content [12,40,41]
on the compressive and tensile strength of agglomerates in
different configurations. The current work follows the studies
above. As a result, the observations presented in this pa-
per are not only consistent with the previous investigations
on the mechanical strength of wet particle agglomerates but
also the scaling of rheology of unsaturated granular materi-
als [17,19,20].

V. CONCLUSIONS

In this paper, we used a 3D discrete element approach with
the inclusion of the capillary cohesion law characterized by
the cohesive and viscous forces of the capillary bridges be-
tween primary particles to analyze the tensile strength of wet
particle agglomerates, which are extracted from a cuboidal
sample of a weak size polydispersity and subjected to impact
on a rigid plane by systematically varying a broad range
of values of the impact speed and the liquid properties. We
showed that the tensile stress of such viscocohesive aggregates
increases immediately when the collision with the flat surface
occurs, then reaches a peak before decreasing smoothly and
reaching constant stress at the deposition stage. The peak of
the stress is called the tensile strength of wet agglomerates.
This tensile strength is proportional to the cohesive stress and
viscous stress of the liquid bridges as well as the impact rate
of agglomerates. We also proposed a scaling behavior of ten-
sile strength of such wet agglomerates with a dimensionless
impact number that combines the capillary number and the
Stokes number defined from different stresses exerted on par-
ticles. This scaling dimensionless parameter reveals the uni-
fied description of the natural properties of the binding liquid
and the impact speed on the tensile strength of agglomerates in
the case of considering the absence of the confining pressure.

As previously mentioned in the paper, the results represent
the tensile stress and scaling behavior of the tensile strength
of viscocohesive agglomerates which are extracted from the
assembly of spherical particles by applying a spherical probe.
Although the agglomerate is not created from the agglomer-
ation process of wet primary particles in a rotating drum in
which the raw properties of particles and the liquid content
become more important, the impact test of the agglomerates
on a flat surface considering the effects of the liquid properties
and the impact speed also reflects the real existence of such
agglomerates during impacting with storage walls, intruders,
and other agglomerates. Thus, the impact test of agglomerates
on a rigid surface is a simple way to understand the underlying
tensile strength of wet granules. Therefore, we are proposing
experimental investigations that allow for the validation of the
numerical results.
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APPENDIX: NUMERICAL METHOD

The numerical modelings are employed by using the cFGd-
3D + + code that was a private code program, initially
developed by Patrick Mutabaruka; the author then developed
this coding program in order to perform the current sim-
ulations. The code also has been extensively used in the
simulations of granular media based on the molecular dy-
namics approach, with the available implementation of the
solid-liquid interaction [6,12,17–20,42–44]. This discrete ele-
ment method (DEM) has been used to simulate the granular
materials over the last few decades [45–47]. In DEM, the
particles are assumed to be rigid with the requirements of
a large repulsive stiffness and a high time resolution. A
particle interacts with its others via the local contact force
laws [47–49]. The contact forces between particles are ex-
pressed as a function of their relative displacements. The
relative displacements are computed by using the stepwise
resolution of the Newton second law [47,50]. Due to the
presence of the liquid bridges between particles, the cohesive
and viscous forces are also implemented in each particle in-
teraction [12,19]. The equation of motion of a particle i with
its radius Ri is described under the action of all the forces
involving the normal contact forces, the tangential contact
forces, and the cohesive and viscous forces, as shown in
Fig. 9 [12,20,51]:

mi
d2ri

dt2
=

∑ (
f i jni j + f iknik + f ik

t tik
) + mig,

Ii
dωi

dt
=

∑
f ik
t cik × tik, (A1)

where j and k are the neighboring particles, in noncontacting
and contacting with particle i, respectively. f i j = f i j

c + f i j
v

and f ik = f ik
n + f ik

c + f ik
v denote the normal forces exerted on

the particle i from noncontacting with particle j and contact-
ing with particle k, where f ik

n , f i j(ik)
c , and f i j(ik)

v are the normal
contact force, the capillary cohesion forces, and the viscous
forces. mi, ri, and Ii are the mass, position, and inertia matrix
vector of particle i. ωi is the rotation vector of the particle
i, and g denotes the gravitational acceleration vector. ni j(ik)

is the unit vector that is perpendicular to the contact plane
between the particles i and j(k) and pointing from j(k) to i. tik

denotes the unit vector in the contact plane and pointing in the
direction opposite to the relative tangential displacement be-
tween particle i and k. cik is the vector pointing from the center
of particle i to the contact point with particle k. f ik

n = f e
n + f d

n
is the normal contact force between particle i and particle k,
where f e

n = knδn denotes the normal elastic force, kn and δn

are the normal stiffness and the normal displacement at the
contact point between two particles, respectively. f d

n = γnδ̇n is
the normal damping force that depends on the normal damp-
ing parameter γn and the relative normal velocity δ̇n [47,52].

The tangential force ( f ik
t = −min {(ktδt + γt δ̇t ), μ fnc}) is

defined as the minimum value of the sum of the tangential-
elastic force f e

t = ktδt and the tangential-damping force f d
t =

γt δ̇t as compared to the threshold of the frictional force μ fnc

according to the Coulomb friction law, where kt and δt denote
the tangential stiffness and tangential displacement of particle
i, respectively, and γt and δ̇t are the tangential damping param-
eter and the relative tangential velocity. μ is the interparticle
friction coefficient [47,53,54].

For the consideration of the presence of the intersti-
tial liquid in granular media, the liquid is assumed to be
distributed homogeneously inside agglomerates as in the pen-
dular state [13,14,16–18]. In this pendular regime, the liquid
is assumed to be in the form of the capillary bridges [12,51],
considered for noncontact between particle i and j as a
common case of the capillary bonds. The capillary bridges
commonly induce the capillary attraction forces fc and the
lubrication forces fv. Upon the collision of wet particle ag-
glomerates on a flat surface, the capillary bonds may be
broken and re-formed as a consequence of insufficient time
for evaporating or draining the liquid.

The cohesion force fc between two spherical particles de-
pends on the liquid volume Vb of the capillary bridge, the
liquid-vapor surface tension γs, and the solid-liquid-gas con-
tact angle θ between them. In these simulations, the particles
are assumed to be perfectly wetted (θ = 0), and the capillary
cohesion force is the approximate solution of the Laplace-
Young equation, as follows [42,55,56]:

fc =

⎧⎪⎨
⎪⎩

−κR, for δn < 0

−κRe−δn/λ, for 0 � δn � δmax
n

0, for δn > δmax
n .

(A2)

R = √
RiRj denotes the geometrical mean radius of two spher-

ical particles i and j. κ = 2πγs cos θ denotes the capillary
attraction force prefactor. This cohesion force showed ex-
cellent agreement with previous experimental results on the
cohesion of wet granular materials [55]. δmax

n is the rupture
distance (debonding distance), as given by [13]

δmax
n =

(
1 + θ

2

)
V 1/3

b . (A3)

λ is the characteristic length that is considered as the falloff of
the capillary cohesion force in Eq. (A2),

λ = ch(r)
(Vb

R′
)1/2

, (A4)

where R′ = 2RiRj/(Ri + Rj ) is the harmonic mean radius, r =
max{Ri/Rj; Rj/Ri} is the ratio of two particle diameters i and
j in the contact, h(r) = r−1/2, and c � 0.9 [14,55,57].
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The liquid viscous force fv is due to the lubrication effects
of the capillary bridges and is given here by the following
expression [11,20,58]:

fv =

⎧⎪⎨
⎪⎩

3
2πR2η vn

δ0
, for δn � 0

3
2πR2η vn

δn+δ0
, for 0 < δn � δmax

n

0, for δn > δmax
n ,

(A5)

where η is the liquid viscosity of the capillary bonds, and vn

denotes the relative velocity between two spherical particles
i and j during the contact; this velocity is assumed to be
negative when the separation distance δn tends to increase. δ0

is the characteristic length of the particle roughness, assumed
to equal δ0 = 5.0 × 10−4dmin in this current work, with dmin

the smallest particle diameter.
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