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More than 30 years ago Edwards and co-authors proposed a model to describe the statistics of granular
packings by an ensemble of equiprobable jammed states. Experimental tests of this model remained scarce
so far. We introduce a simple system to analyze statistical properties of jammed granular ensembles to test
Edwards theory. Identical spheres packed in a nearly two-dimensional geometrical confinement were studied
in experiments and numerical simulations. When tapped, the system evolves toward a ground state, but due to
incompatible domain structures it gets trapped. Analytical calculations reproduce relatively well our simulation
results, which allows us to test Edwards theory on a coupled system of two subsystems with different properties.
We find that the joint system can only be described by the Edwards theory if considered as a single system due
to the constraints in the stresses. The results show counterintuitive effects as in the coupled system the change in
the order parameter is opposite to what is expected from the change in the compactivity.
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I. INTRODUCTION

For a statistical description of arrangements of solid macro-
scopic particles and for an analysis of the probabilities
that certain states are realized by the ensemble, Boltzmann
statistics are commonly not suitable. Granular packings are
athermal, and the systems cannot explore the configuration
space by thermal fluctuations. In consideration of this, Ed-
wards and Oakeshott proposed an ensemble of equiprobable
jammed states to describe granular packings [1]. The seem-
ingly contradictory concept of describing static jammed states
using equilibrium statistical physics had a mixed reception
at first, but recent advances showed the strength of it by
deriving analytically the phase space of the random packing
including the packing fraction of random close and random
loose packings [2].

The calculation of the partition function of the Edwards
volume [1,3] and stress ensemble [4] is difficult, and up to now
was done only in a limited number of cases. Two notable ex-
ceptions are random packing of spheres and circles [2,5–10],
and packings in two-dimensional narrow channels [11,12].

*slevay@phy.bme.hu

Direct experimental and numerical verification of calculated
properties are even more scarce [6,12]. In this paper, we con-
sider a system where the partition function can be expressed
analytically, and our calculated expectation values of observ-
ables agree well with the experiments and simulations.

Another important aspect which we focus on is the inter-
action of jammed systems. The statistical theory of Edwards
is in principle an ideal framework for such coupled systems,
but up to now there is hardly any result regarding equilibria of
jammed systems [6,13]. We will show that the denomination
“compactivity” of the control parameter can be misleading:
In certain cases, a subsystem with higher compactivity (less
compact part) will expand rather than the connected subsys-
tem with smaller compactivity. Nevertheless, the interaction
of the two subsystems can be described by the Edwards en-
semble but only as a whole.

The system studied here consists of identical spheres. They
are contained in a flat cuboid with dimensions (L,W, H ) in the
(x, y, z) directions with gravity in the z direction. Note that H
was much larger than the system height, allowing the system
to freely shake and compactify. If the width W =(1 + δ)dp is
only slightly larger than the particle diameter (dp), namely
0 < δ < 0.45, the ground state of the system in the x-z plane
is still a triangular lattice, although slightly distorted, with
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FIG. 1. Top: central parts of the simulated system for the normal
cell (uniform width) (left) and for the coupled cell with different
widths of the two sides (right). Bottom: The 13 local configurations
(see bottom line) of the packed spheres. Dark and bright circles in-
dicate positions at opposite cell plates. All these configuration states
are degenerate; they are found twofold with the central particle posi-
tioned either at the rear or front cell walls. Most of the configurations
are also found in rotated or mirrored forms. The minimal possible
Voronoi area of the central particle of the given configuration is
shown by the red curve (for δ = 0.3), calculated by kinetic Monte
Carlo simulations. Ai values on the right-hand side are the minimal
Voronoi areas associated with the five configuration groups defined
in the text.

alternating stripes of particles touching the front and back
walls in the y direction (see Fig. 1, top).

In the following, we use dimensionless lengths, in units
of the particle diameter, i.e., dp = 1. Starting from a random
configuration, the system begins to evolve when it is shaken
periodically in the z direction. States of the system between
the shaking periods are jammed and thus they are ideal can-
didates for an Edwards ensemble. In earlier publications, it
was shown that the shaken system evolves toward the ground
state but the dynamics slows down and the configurations
apparently get stuck in metastable states [12,14]. Snapshots
of the jammed states between excitation phases are presented
in the Supplemental Material (SM) [15] (Figs. S1 and S2 and
movies) for both experiments and simulations. Note that a
substantial amount of experimental data has been collected in
colloidal systems as well [16–19].

It was shown in Ref. [14] that the system can be described
by 13 local particle configurations of a central particle and its
six neighbors as shown in the bottom of Fig. 1. The ground
state is compatible with configurations 4 and 5 only (zigzag
paths or stripes of particles touching alternatively the front

and back walls), so the statistical weight of these configura-
tions (ρ4,5) can serve as an order parameter of the system.
The different configurations have theoretical minimal areas
(determined by sphere centers projected onto the x-z plane),
which were calculated using simulated annealing. As area, we
consider the area of the Voronoi cell of the central particle
of a given configuration. Areas corresponding to the tightest
packings are shown in Fig. 1.

The system can be treated as two dimensional, since the
third dimension (y) is only relevant for the selection of local
configurations. The global volume is determined by the (x, z)
positions of the particles and thus the relevant quantity is the
area of the system in the x-z plane. The volume is considered
to be (1 + δ)dp times the area of a given subsystem.

II. RESULTS

A. Introduction of configuration groups

As shown in Fig. 1, the minimal area of certain subsets
of configurations is (almost) the same and we can define
configuration groups to facilitate the mean field analysis as
follows: a = {4, 5}, b = {7, 8}, c = {2, 3, 6}, d = {9, 10, 11},
e = {1, 12, 13}. (Note that configuration 13 is practically
nonexistent and ρa = ρ4,5 is the order parameter.) The cor-
responding minimal Voronoi area of the central particle in
a configuration group can be approximated by the follow-
ing discrete values using the areas A1 = √

3/12 and A2 =√
3 − 4δ2/12. These are areas of triangles discussed in detail

in Ref. [14]: A1 is the third of an equilateral triangle formed
by three particles touching the same cell side, while A2 corre-
sponds to the third of an isosceles triangle with one particle
located at the opposite cell side than the others. (So the
Voronoi area of a perfect configuration 13 would be 6A1.) The
minimal area associated with the above configuration groups
can be approximated by Aa = 6A2, Ab = 4.5A2 + 1.5A1, Ac =
3.8A2 + 2.2A1, Ad = 3A2 + 3A1, and Ae = 1.5A2 + 4.5A1,
shown as dotted lines in Fig. 1.

B. Elementary processes during shaking

In our study, we use the following assumption: The system
is considered to form a (slightly distorted) triangular lattice in
the x-z plane with one principal direction parallel to the x axis.
The spheres are touching the two particles below them [20]
(and consequently the two particles above them) and either
the front or rear wall in the y direction. Furthermore, we will
consider all volume changes up to the first order in δ.

During shaking, the following processes are possible: (i)
horizontal lines gain or lose one particle, (ii) a particle changes
its y position (switches side), and (iii) in the lowest row the
particles move horizontally. Process (i) has the highest impact
on the volume of the system and happens simultaneously in all
lines generally due to global slip lines (see SM movies [15]).
Process (ii) allows the particles to use the third dimension and
optimize the volume beyond the flat triangular lattice. This
optimization is responsible for building up the stripes in the
system. This process will create gaps between particles which
permits further compaction of the system by allowing the next
layer of particles to occupy some of the released volume.

042901-2



INTERACTING JAMMED GRANULAR SYSTEMS PHYSICAL REVIEW E 103, 042901 (2021)

Process (iii) has no impact on the volume in first order of δ

but contributes to the entropy of the system.

C. Edwards volume ensemble

The configurational statistics were found, experimentally
as well as in the simulations, to be independent of z and hence
of pressure (see Sec. II in SM [15]). Thus, we regard a row
of N particles as an independent subsystem described by the
canonical Edwards volume ensemble and the whole system
as a sample from the grand canonical ensemble. Let L be the
length of the container in the x direction (in dp units), M be
the total number of particles, and K = M/N be the number of
rows, and by ρi (i ∈ {a, b, c, d, e}) we denote the fraction of
different configuration groups in the system.

In order to express our partition function for a given row,
we need the following quantities: volume of the system and
degeneracy depending on the configuration density. The vol-
ume of the system is significantly influenced by the number
of particles in a row which is changed by process (i); process
(ii) also changes the volume by optimizing configurations.

In our system, the horizontal dimension is fixed. So if some
free volume is available inside the system, only a part of it is
eligible for compaction at the top. The extra space allows the
particles to have a little horizontal gap between them in which
the next layer may sink.

For the Edwards ensemble, we only need the volume
change with respect to the perfect two-dimensional triangular
placement of the particles. Therefore, we calculate the free
space created by the above processes and we enumerate what
fraction of it will be apparent at the top of the system. If
Vf denotes the available free space around a particle, then a
simple geometric calculation yields that to first order in δ,
Vg=Vf /(1 + √

3/2) will be the volume gain by the system
which is visible at the top, and the volume of the Voronoi cell
will be larger than the minimum by an amount of Vf (

√
3 −

1/3)/(1 + √
3/2). So, our approach is the following: We as-

sume that there are K rows, so the perfect triangular lattice of
particles would make up a volume of V0(K ) =

√
3

2 (1 + δ)KL.
Naturally if N < L then there is free space horizontally

next to the particles, but we distribute that between global
volume gain and the extra Voronoi volume. Thus, the free
volume inside the system can be expressed as

V0 f (K ) =
√

3

2
(1 + δ)(KL − M ), (1)

and Vp(e) =
√

3
2 (1 + δ)M denotes the volume of the M par-

ticles in a perfect triangular lattice. The formula in Eq. (1)
gives zero if the number of particles in a row is the same
as the length of the container N = L. The advantage of
working with the free volume is that both processes can
be easily incorporated in the formulation. Process (ii) fur-
ther decreases the volume of the configurations, which will
read as

Vp([ρi]) = M
∑

i

ρiVi. (2)

Thus, the free space generated in the system is

Vf (K ) =
√

3

2
(1 + δ)KL − M

∑
i

ρiVi. (3)

Note that due to the optimization using the third dimension
we may be able to put more than L particles in a row, if the
second term in Eq. (3) produces enough free volume.

In order to calculate the partition function we have to con-
sider all possible configuration density distributions. Next we
have to consider the degeneracy of the systems with a given
configuration density. We have two components here: First,
the empty space in the first row must be distributed among the
particles and then the configurations can be permuted in the
system.

The first part of the degeneracy (gs) is the following: The
free space in the first row creates gaps between the particles
which allows for their horizontal displacement. First, we cal-
culate the degeneracy in a discretized approach assuming an
elementary unit length of ��. If the total gap in a line is �g and
k ≡ �g/��, then the number of ways particles can be placed
in the line is

gs(N, k,��) =
(

N + k

k

)
. (4)

This, of course, diverges in the limit �� → 0, but we can
normalize this quantity using a well-defined system which we
chose to be the ground state. Thus, �g,0 is the free space when
we have only configurations a in the system and k′ ≡ �g,0/��,
so then

gs(N, k) = lim
��→0

gs(N, k,��)

gs(N, k′,��)
=

(
k

k′

)N

=
(

L f

L f (a)

)N

,

(5)
where L f is the free space horizontally. In first order in Vf /V ,
we have

gs(N, k) =
(

Vf

Vf (a)

)N

. (6)

The second part of the degeneracy (gc) is because the same
set of configurations can be distributed in the system in many
ways. Let ni ≡ Mρi be the number of different configurations
in the system. Then, the number of different cases for posi-
tioning the different configurations in the lattice is

gc([ni]) = M!

na!nb!nc!nd !ne!
. (7)

Since configurations overlap, pair correlations are ex-
tremely important; we denote by Ci j the number of ways
configuration j can be placed adjacent to a given configuration
from group i. We obtained Ci j by generating all (219) possible
placement of particles in a 19 particle hexagon and counted
the number of times configurations i and j were adjacent.
This counting of adjacent configurations has the advantage
that it also includes configuration degeneracy in the pair cor-
relations, so the probability of finding a configuration j next
to i is proportional to Ci j . A more detailed description can be
found in Sec. III of the SM [15].

Since all particles have six neighbors, we will have 3M
neighboring particle pairs for which the probability of finding
a configuration i is proportional to ρi. Thus, the probability of
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a configuration with a given configuration density is propor-
tional to ∏

i, j

C
3Mρiρ j

i j . (8)

The grand canonical partition function up to normalization
constants is thus the following:

Z =
∑

N

∑
{ρi}

gs gc

∏
i, j

C
3Mρiρ j

i j eVf /X , (9)

where the positive sign in the exponential indicates that Vf is
the free volume the system generated on the top. Later we will
also use the partition function for a system with N particles in
a row:

Z (N ) =
∑
{ρi}

gs gc

∏
i, j

C
3Mρiρ j

i j eVf /X . (10)

The partition sum was calculated for N = 6000 particles
and system length of L = 69.

D. Experiments and discrete element method simulations

We used the LIGGGHTS (LAMMPS Improved for Gen-
eral Granular and Granular Heat Transfer Simulations) [21]
discrete element method (DEM) simulations to study the sys-
tem. A detailed description can be found in Ref. [14] and
in the Methods section. In the cuboid cell, we simulated
≈6000 particles with periodic boundary conditions in the x
direction. The width W of the cell was varied in the range
1.15 dp . . . 1.4 dp. The length of the cell was exactly 69 times
the diameter dp of the particles. As initial conditions, we
arranged the particles into a triangular lattice with (i) random
y positions and (ii) ordered y positions: a striped pattern of
particles touching either the front or the rear wall. The grav-
itation was varied between 1 g and 10 g. In order to simulate
the shaking process, particles were lifted up and released to
fall down. This resulted in different agitation energies in the
range 3 mgdp ...100 mgdp (m is the particle mass). In the SM
movie [15], snapshots of a simulation can be seen.

Reference [14] and the Methods section provide a detailed
description of the experimental setup as well. Images of the
jammed states between shaking periods can be seen in the SM
movie [15].

E. Calculations according to the canonical ensemble

The first quantity we calculate is the number of particles
per row:

〈N〉 =
∑M

N=1 NZ (N )∑M
N=1 Z (N )

. (11)

Surprisingly, we get 〈N〉 
 L with high accuracy in the low
compactivity regime where the experimental data can be
fitted. It means that on average we should observe a quasi-
two-dimensional system, which has exactly as many particles
in a row as the strictly two-dimensional system would have. In
all our simulations, we observed this law. We have performed
simulations by compressing or expanding the simulated con-
tainer in the x direction and let the particles reorganize to
accommodate to the new container size, and we recovered this

FIG. 2. Configuration group density vs average area for the five
configuration groups for different cell thicknesses. Blue (dotted),
simulation; red (dashed), calculation for S=100 shaking periods.
Fitted values of compactivity can be seen in Table I.

result. This was also the case when we started from a perfect
lattice with striped initial y positions with some extra space in
the x direction. The same result was observed independently
of the gravity (varied in the simulations). So from now on, we
fix N = L in all calculations, and all results presented will be
done in the canonical ensemble. We have one single parameter
to fit: X . We fit it using a single point, the order parameter. The
calculation is done for different values of X and we find the
fitted value by interval halving which we iterate until precision
±0.005 is reached on the order parameter.

F. Calculations reproducing observations and
the dependence on δ

In experiments and simulations, we can determine two av-
erage quantities, 〈Ai〉 and 〈ρi〉, where the former is the average
Voronoi area of configuration group i including the extra space
around the central particle. The latter is simply the frequency
of occurrences of the group. In Fig. 2, we plot 〈ρi〉 versus 〈Ai〉
for simulations for different values of δ and for calculations
which were performed with X best fitting a single point, the
order parameter (ρa). One can see that the calculated values
reproduce well the observations and the dependence on δ. The
error increases with δ as expected since we have used free
space calculations in O(δ).

The fitted values of the compactivity X in simulations
(cf. Fig. 2) are very different from each other. Meanwhile,
the order parameter for different δ differs less than 10% for
S = 100 shaking periods, as can be seen in Table I. This is
just a coincidence; later we will show that for longer shaking
also the order parameters will be different for different δ.

TABLE I. Fitted compactivities and the order parameter in case
of DEM simulations with different cell widths for S = 100 shaking
periods.

δ 0.15 0.20 0.25 0.30 0.35

X 0.0576 0.0975 0.1494 0.2343 0.3405
ρa 0.514 0.542 0.583 0.568 0.561
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FIG. 3. The order parameter (the statistical weight of configu-
rations 4 and 5 (configuration group a) as function of the maximal
allowed area change (normalized by A1 − A2) in the Monte Carlo
model for δ = 0.2 (red) and δ = 0.3 (blue). (Each data point is an
ensemble average of 10 simulations using a given dA. For the blue
data set, the standard deviation of different simulations is shown as
well, while the red data set is shown only as a validation for different
system width and thus the lesser number of data points.)

G. Incompatible domain structure can be described by Monte
Carlo simulations

We are intrigued by what sets the compactivity in our
system. As the system is agitated, X is decreasing, but its de-
crease slows down enormously around the above listed values.
Looking at snapshots of our system (see SM [15]), one can
see that the dynamics formed domains of perfectly ordered
subsystems, but these subsystems are either incompatible with
each other (different stripe structures) or divided by seemingly
stable boundary structures.

It seems that the system develops a metastable domain
structure which prevents it from reaching the ground state. In
order to verify this, we use the Monte Carlo model introduced
in Ref. [14]. (Details of the model can be found in the Meth-
ods section.) In this dynamics, we consider a system of two
state spins (spheres of front or rear position) in a triangular
lattice, where the energy is defined by the sum of the minimal
Voronoi area of the resulting configurations. The elementary
step of the dynamics is a particle switch from one side of
the cell to the other. Here, we ran the simulation, instead of
in a temperature-controlled way, by allowing volume changes
up to a maximal limiting value. In Fig. 3, we show the order
parameter of the system as function of the maximum allowed
volume change dA, normalized by the difference A1 − A2 > 0
(which is just the difference between the area of the equilateral
and isosceles triangles for a given δ discussed earlier). dA < 0
means we allow changes only if the total area is reduced by
an amount greater than |dA|, while dA > 0 means we allow
slightly unfavorable changes as well: Only those changes are
suppressed, which are increasing the total area by an amount
greater than dA. One can observe a monotonically increasing
stepped curve shown in Fig. 3. The ground state, which corre-
sponds to X = 0, is not reached at dA = 0.

Surprisingly, if we flip a configuration c in its average
neighborhood, on average we will increase the volume of the
system. Thus, configurations in group c are locally stable.

In order to compactify our frustrated system further, one
needs to allow unfavorable moves (�A > 0). This is respon-
sible for the slow dynamics of the system. Furthermore, it
also hinders the calculation of the compactivity of a particular
system.

There is also an indication that the system is not ergodic
and does not explore the whole phase space. In Ref. [12], in
the two-dimensional version of the system, the authors show
that ergodicity is not observed.

H. Coupling of two jammed subsystems

Our setup allows to perform a unique experiment in which
we can bring two well-defined jammed subsystems in contact.
This can be done by changing the width (W ) of the cell in one
half of the system. This has been done both in experiments
and in simulations (see SM movies [15] and the top of Fig. 1)
with δ = 0.2 and δ = 0.3 for the different sides of the cell (in
simulations, we used periodic boundary conditions in the x
direction).

When we would like to apply the Edwards theory to this
setup, we have to take into account the stress equilibrium
of the two halves [2]. We assume that the forces between
the vertical plates and the particles are negligible compared
to the interparticle forces, so in principle apart from local
variations we should observe hydrostatic pressure in the sys-
tem which is verified in the simulations. The equilibrium
between the two halves requires that we have the same
height on both sides (we assume and verified that the N =
L condition still holds). Horizontally, however, one of the
subsystems may gain volume on the expense of the other
side. This stress equilibrium must hold for all admissible
microstates [22].

This feature prohibits the simple application of a common
compactivity of two subsystems since the narrower side in
general occupies more space than the other. One may try to
shift the interface in the direction of the wider system and
apply independent subsystems, but the problem remains that
in this way we would consider countless microstates which
violate the stress equilibrium or have negligible weight in one
subsystem.

The only way around this problem is to consider a joint
system. We prescribe the same height on both sides for each
microstate and do the same calculation as in Eq. (9), but now
we use the product of two partition functions, Z0.2(N/2) ×
Z0.3(N/2), with the above mentioned constraint. For the cou-
pled system as compactivity, we chose the average of the
compactivities of the standalone systems with the same num-
ber of taps. Values of the compactivity and order parameter
can be found in Table II for DEM simulations.

In Fig. 4, we plot the results using the mean compactivity
of the two uncoupled subsystems with same number of taps. A
good match between the calculation and the numerical results
can be seen [see Figs. 4(a)–4(c)]. Let us stress that the calcu-
lations are not fits but enumerations with the above-described
joint partition function and compactivity.

In the experiments, the cell of the coupled system was a bit
wider and had δ = 0.25 on one side and δ = 0.35 on the other.
Values of the compactivity and order parameter can be found
in Table III for experiments.
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TABLE II. Compactivities and the order parameter in case of
DEM simulations with pure and connected cells. S denotes the num-
ber of shaking periods.

System Pure Coupled

δ 0.2 0.3 0.2 0.3

X 0.0996 0.2355 0.1677
S = 100 ρa 0.545 0.565 0.573 0.554

ρa (calc) 0.545 0.565 0.582 0.534

X 0.0984 0.2031 0.1509
S = 300 ρa 0.550 0.628 0.645 0.628

ρa (calc) 0.551 0.628 0.614 0.592

X 0.0933 0.1818 0.1377
S = 600 ρa 0.573 0.674 0.679 0.660

ρa (calc) 0.573 0.674 0.641 0.642

The biggest difference between calculated and measured
values were found in experiments, where we can observe
much higher fraction of configuration groups d and e than
either in the simulations or in the calculations. The reason be-
hind this is that due to some experimental artifact we observed
an extra 5–6% particles at the back plate than at the front and
thus higher frequencies of configurations with many particles
at the same wall.

TABLE III. Compactivities and the order parameter in case of
experiments with the connected cell.

System Pure Coupled

δ 0.25 0.35 0.25 0.25a 0.35

X 0.1800 0.1698 0.1749
ρa 0.505 0.825 0.515 0.637 0.722
ρa (calc) 0.505 0.825 0.647 0.744

aIn this case, during the evaluation we neglected the top 10 layers of
particles and only the lower triangular part of the remaining particles
was taken into account.

The other difference is that we have found only a small
order parameter increase in the narrow part. In this sense,
it seems that the two subsystems are not interacting as in
the numerical simulation. However, there is a substantial dif-
ference between the boundary conditions in the x direction,
which is periodic for the simulations and walls for the exper-
iments. In the numerical simulations, the top of the system is
always horizontal with some small irregularities, whereas in
the experiments large slopes were also found. The reason is
that the walls can support forces due to friction and thus our
assumption of equal height does not hold. Since it is easier to
exchange volume with the empty space above the system, this
is what happens.

(a) (b)

(c) (d)

FIG. 4. Comparison of the configuration group density versus average area in the coupled system for the five configuration groups. [(a),
(b), (c)] Comparison of simulation and calculation after S = 100, 300, and 600 shaking periods, respectively; (d) comparison of experiment
and calculation after S = 100 shaking periods. Values of the compactivity and order parameter can be found in Tables II and III for simulations
and experiments, respectively.
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On the other hand, we have observed that on the nar-
rower side the system is more ordered in a triangle (with
30◦ angle) adjacent to the wider part. We have already re-
ported that forces are transmitted predominantly by the lower
two particles. So in this sense only configurations located
in this triangular region are affected by the structure of the
wider side. Indeed, in this region, we find an order parameter
(denoted by ρ∗

a in Table III) which is compatible with the
predictions of the Edwards calculation.

III. CONCLUSION

In summary, we have shown that a simple system consist-
ing of uniform spheres in a nearly two-dimensional cell is an
excellent example to be described by the Edwards ensemble
in the sense that the partition function can be formulated
analytically. The observables can be calculated exactly and
the calculation matches reasonably well with simulations.
We have shown that the system cannot reach its ground
state due to frustration in the domain structure which can
only be dissolved through unfavorable events with very small
probability. Our results raise another question for a possi-
ble future study: What sets the apparent compactivity of the
system?

We have also tested the applicability of the Edwards
ensemble for two coupled subsystems. We found that the re-
sulting system can only be described if the stress equilibrium
is taken into account at the microstate level and the partition
function of the full system is calculated. The problem of de-
scribing the coupled system as independent subsystem comes
from the fact that it requires the prescribing of a previously
unknown common volume distribution on both sides, which
is in our case an impossible task.

In summary, we have found that Edwards ensemble is ca-
pable of reproducing the observables of a jammed system but
fails to help in combining subsystems when there is volume
exchange not only between the subsystems but also between
the subsystems and the environment.

IV. METHODS

A. Discrete element method simulations

The simulations were implemented using the
LIGGGHTS [21] DEM method, consisting of a cell with
sizes (69dp, W, ≈75dp), where the width W of the cell
was varied between 1.15dp and 1.35dp. Periodic boundary
conditions were applied in the x direction. Walls had the
same mechanical and frictional properties as the grains. The
cell was filled with ≈ 6000 spherical particles with uniform
diameter dp. As initial filling, we applied two different
methods: We arranged the particles into a triangular lattice
with (i) random y positions and (ii) ordered y positions, a
striped pattern of particles touching either the front or rear
wall. (In Ref. [14], it is compared with simulations using
completely random initial filling.)

In order to simulate shaking, particles were lifted up and
released to fall down. The strength of gravitation was varied
between 1 g and 10 g, so the agitation energy was in the range
3 mgdp and 100 mgdp. The equilibrated configuration of parti-
cles after each shaking period is considered as a jammed state,

a sample from the Edwards ensemble. The grains are interact-
ing when in contact via the Hertz model. The mechanical and
frictional properties of particles were also varied: the coef-
ficient of restitution between 0.25 . . . 0.75, the coefficient of
friction between 0.0 . . . 0.2, and the Young modulus between
5 × 106 Pa . . . 5 × 108 Pa. Changing these parameters had no
considerable effect on the results studied in this paper. A more
detailed description can be found in Ref. [14], and a series of
snapshots of the jammed states in the coupled cell can be seen
in SM movie [15].

B. Experiments

In experiments, we used vertical sandwich cells. The walls
were made from glass plates and 3D printed borders. The size
of the cell was (140 mm,W, 140 mm), and the width W was
varied between 1.2dp and 1.3dp. For the coupled case, two
transparent sheets were glued to one half of the glass plates
to reduce the width of the cell. Precision glass spheres with
a diameter dp = 2.0 ± 0.02 mm were placed randomly in the
cell by gravitational filling from the top. A sinusoidal signal
generated by a voice coil was applied as agitation, the vertical
vibration of the cell. Amplitude and frequency of the signal
were varied leading to vertical accelerations between 1 g and
5 g, measured by an acceleration sensor. After each shaking
period, a photo from the current jammed state was taken. Uni-
form background illumination allowed the clear distinction of
particles located at the front and rear sides of the cell by their
brightness. The positions of particles and resulting configura-
tions were determined by image analysis. A series of images
of the jammed states in the coupled cell can be seen in SM
movie [15].

C. Monte Carlo model

Monte Carlo simulations were performed to test the ef-
fect of mechanism (ii) of compactification (particle switches
side). We were interested in the question whether the sys-
tem can reach its striped ground state by particles switching
sides.

To this end, we made a model where the particles were
placed in a triangular lattice. The volume of the system was
determined by the sum of configuration volumes of all parti-
cles as given by the minimal volume in Fig. 1.

We have created a MCMC (Markov Chain Monte Carlo)
algorithm using particles switching sides as elementary step
and the complete volume of the system as energy. It turned
out that the system compactifies more at finite temperature
than at zero. To measure the volume of the necessary unfa-
vorable elementary steps for further compaction, we have run
the system instead of temperature at energy control; namely
we have accepted elementary steps with volume change
less than �V . The results of the simulations are shown in
Fig. 3.
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