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Wetting behavior of a colloidal particle trapped at a composite liquid-vapor
interface of a binary liquid mixture
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A partially miscible binary liquid mixture, composed of A and B particles, is considered theoretically under
conditions for which a stable A-rich liquid phase is in thermal equilibrium with the vapor phase. The B-rich
liquid is metastable. The liquids and the thermodynamic conditions are chosen such that the interface between the
A-rich liquid and the vapor contains an intervening wetting film of the B-rich phase. In order to obtain information
about the large-scale fluid structure around a colloidal particle, which is trapped at such a composite liquid-
vapor interface, three related and linked wetting phenomena at planar liquid-vapor, wall-liquid, and wall-vapor
interfaces are studied analytically, using classical density functional theory in conjunction with the sharp-kink
approximation for the number density profiles of the A and B particles. If in accordance with the so-called
mixing rule the strength of the A-B interaction is given by the geometric mean of the strengths of the A-A and
the B-B interactions, and similarly the ratio between the wall-A and the wall-B interaction, the scenario, in which
the colloid is enclosed by a film of the B-rich liquid, can be excluded. Up to six distinct wetting scenarios are
possible, if the above mixing rules for the fluid-wall and for the fluid-fluid interactions are relaxed. The way the
space of system parameters is divided into domains corresponding to the six scenarios, and which of the domains
actually appear, depends on the signs of the deviations from the mixing rule prescriptions. Relevant domains,
corresponding, e.g., to the scenario in which the colloid is enclosed by a film of the B-rich liquid, emerge, if the
ratio between the strengths of the wall-A and the wall-B interactions is reduced as compared to the mixing rule
prescription, or if the strength of the A-B interaction is increased to values above the one from the mixing rule
prescription. The range, within which the contact angle may vary inside the various domains, is also studied.
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I. INTRODUCTION

Interfaces involving fluids, i.e., fluid-fluid and fluid-wall
(solid) interfaces, are very common and thus their study has
received much interest for decades (see, e.g., Refs. [1,2]).
In this context, wetting transitions are of particular interest
[3]. Numerous studies have been devoted to the classification
of the wetting behavior at individual, planar fluid-fluid and
fluid-solid interfaces, including binary liquid mixtures [4–11].
Wetting in more complicated surface geometries [12–18] and
at chemically inhomogeneous surfaces [19–22] has been ex-
tensively studied as well. In addition, premelting of ice [23]
and wetting of a substrate [24] close to three-phase coexis-
tence are of current interest. In these studies the adsorption
equilibrium depends on the thicknesses of two intervening
wetting layers.
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Wetting-induced or fluid-mediated effective interactions
between spherical particles [25,26] located inside a fluid are
related topics, too. In the context of fluid interfaces, further
studies are devoted to cylindrical particles approaching the
interface between two coexisting liquid phases in binary liquid
mixtures close to the critical point [27] or to colloidal particle
located at the interface between two fluids [28,29]. We also
mention a practical example in which a meniscus acts as a
capillary filter for colloidal particles. The thickness of the
liquid film on the surface of a solid object determines the
effectivity of the filter, as demonstrated in recent experimental
studies [30,31].

Despite numerous investigations concerning wetting of
liquid-vapor and fluid-solid interfaces in binary liquid mix-
tures, a number of seemingly simple questions remain
unanswered. For instance, considering a partially miscible
binary liquid mixture, composed of A and B particles, one may
think of the following scenario: A stable A-rich liquid phase
in equilibrium and in contact with the vapor phase allows for
the formation of a composite liquid-vapor interface contain-
ing an intervening film of the B-rich liquid phase, which is
metastable in bulk. This scenario can be realized by prop-
erly selecting the liquids and by tuning the thermodynamic
conditions. For such a setup one can pose the question as
to what kind of fluid structures emerge if such a composite
liquid-vapor interface meets a solid wall, for instance, the
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one provided by a large colloidal particle trapped at such
an interface. A film of the B-rich phase at the liquid-vapor
interface for instance could surround the colloidal particle
completely. Alternatively, it could extend into the liquid α

phase only, or only into the colloid-vapor interface, or it
could disappear completely around the colloid. Here we are
not interested in the detailed, molecular structure in close
vicinity of the three-phase contact line; instead, we focus
on the large-scale structures. Therefore, we can make use
of studies for extended liquid-vapor and wall-fluid interfaces
(see, e.g., Ref. [8]) and combine the results of those in order
to develop a picture describing the entire scenario around a
colloid at a composite liquid-vapor interface. In order to ob-
tain analytical expressions, which are urgently needed in view
of the many parameters involved, we use a reduced version
of classical density functional theory (DFT) in which only the
long-ranged van der Waals type of interactions are taken into
account explicitly and in which the number density profiles
are assumed to vary only steplike between their correspond-
ing bulk values, which is known as the so-called sharp-kink
approximation (see, e.g., Ref. [8]). The above scheme is de-
signed to produce reasonably accurate free-energy differences
of configurations involving wetting films with thicknesses
above several times the diameter of the fluid particles. These
are the configurations considered here. In order to reduce the
number of cases to be considered, we assume certain inequal-
ities for the number densities of the two components forming
the three phases. They are satisfied for typical partially misci-
ble liquids at liquid-vapor coexistence. The analytical results
allow us to find the domains in the space of system parameters
which correspond to the various conceivable wetting scenar-
ios. We also analyze whether there are connections between
these wetting domains and the contact angle, considered to
be either smaller or larger than 90o. The aim of this study is
also to provide a basis for a broader understanding of cap-
illarity induced interactions between colloidal particles and
eventually to design the self-assembly of colloidal particles
at liquid-vapor interfaces.

II. MODEL

We consider a region of the bulk phase diagram of a binary
liquid mixture, composed of A and B particles, in which the
vapor phase (γ phase) coexists with a stable A-rich liquid
phase (α phase), whereas the B-rich liquid phase (β phase)
is metastable. We focus on the special situation in which the
interface between the coexisting phases (i.e., the α-γ inter-
face) is composite in the sense that between the α phase and
the vapor a film of the β phase intrudes. The thermodynamic
state is taken to be only slightly off α-β coexistence, such
that the thickness of the β film is larger than a few molecular
diameters and the β film can be treated like a genuine β phase.

Here, we analyze the kind of fluid structures which form
if the composite liquid-vapor interface meets a solid wall.
In this study we address the simple situation in which the
composite liquid-vapor interface meets a planar solid wall,
and we explore which of the conceivable wall-liquid and
wall-vapor structures are compatible with the aforementioned
composite liquid-vapor interface. We consider the wall-liquid
(wall-α) interface, which is either wetted by a film of the β

FIG. 1. A binary liquid mixture exhibits three fluid bulk phases:
vapor (γ ), an A-rich liquid (α), and a B-rich liquid (β). (a) Liquid-
vapor interface in a binary liquid mixture which is wetted by the β

phase. (b) The composite liquid-vapor interface from (a) meets the
surface of a colloidal particle. In the gray area various interfacial
structures are conceivable. The second row in (b) magnifies the
structure within the square of the first row.

phase or, alternatively, is a plain interface without any wetting
film, the wall-vapor (wall-γ ) interface, which is either wetted
by a β film or by an α film or is a plain interface without a
wetting film. The issue as to what happens to the β film of
the composite liquid-vapor interface once it meets the solid
wall, can be resolved if one knows which combination of
interfacial structures is realized for a given case. The type
of structure which emerges depends on the fluid-fluid and
the fluid-wall interactions as well as on the thermodynamic
state. These parameters can be varied within certain limits
imposed by the presupposed liquid-vapor interfacial structure.
The results directly apply to the case in which the wall is
the curved surface of a colloid. The linear size of the col-
loidal particle should exceed the thicknesses of the wetting
films. In turn, the thicknesses of the films should be above
several times the diameters of the fluid particles, otherwise
the concepts used in the following discussion are not safely
applicable. For molecular fluids this implies that the size of the
colloidal particle should be tens of nanometers or larger. In our
discussion, the shape of the particles does not play a particular
role. We only assume that the curvature radii are in the same
range as the particle size. Given that, curvature effects for
interfacial tensions can be safely disregarded. The considered
configurations are sketched in Fig. 1. In order to simplify
these sketches and also the ones shown later in Fig. 2, there
the liquid-vapor interface meets the wall at an angle of 90o.
However, in our analysis, there is no assumption concerning
the value of this angle; the actual angle is given by Young’s
contact angle.

In order to rephrase the issue, it is our goal to find out
which wall-vapor (wall-γ ) interfacial structure and which
wall-liquid (wall-α) interfacial structure are realized together
for a certain fluid at given thermodynamic conditions and for
a given wall, under the proposition that for the chosen fluid
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and the given thermodynamic conditions the α-γ interface is a
composite one with an intervening film of phase β. Moreover,
we want to identify various domains in the space of system
parameters, each of which can be related to a particular com-
bination of the structures of the three interfaces involved. In
order to proceed we make use of previous results [8] in which
wetting of individual planar interfaces has been studied based
on a simplified version of classical density functional theory
(DFT). In these studies, long-ranged van der Waals type of
interactions are treated explicitly within a mean-field approx-
imation whereas other contributions to the free energy are
treated within a local-density approximation. Furthermore, the
so-called sharp-kink approximation has been used according
to which the number densities of the A and B particles are
considered to be piecewise constant and to vary discontinu-
ously, at the interface positions, between their respective bulk
values. The corresponding analytic expressions, which can be
derived based on these approximations, contain the interaction
parameters as well as the equilibrium number densities of the
A and B particles in the various phases. These equilibrium
number densities follow from minimizing the bulk free energy
with respect to the bulk number densities. The equilibrium
number densities depend on both the fluid-fluid interaction
parameters as well as on the thermodynamic state (i.e., the
thermodynamic variables). We do not try to express the equi-
librium number densities in terms of the thermodynamic
variables and the fluid-fluid interaction parameters, as this
would require to introduce a specific expression for the free
energy contribution, which is local in the densities. Instead,
we introduce variables which combine interaction parameters
and densities, and we identify various domains in the space
of these parameters. In addition, we use knowledge and plau-
sible assumptions concerning certain inequalities between the
two number densities characterizing each of the phases and
inequalities between the number densities in different phases.

For the long-ranged part of the fluid-fluid interac-
tion we choose the Lennard-Jones potential w̃i j (r) =
4εi j[(ai j/r)12 − (ai j/r)6] or, rather, in order to avoid spuri-
ous singularities in certain expressions, a modified (shifted)
version of it: w̃i j (r) = 4εi j[(

ai j

r+ai j
)
12 − ( ai j

r+ai j
)
6
] , where εi j

and ai j represent the interaction strengths and the length
parameters for the interaction between the i and j compo-
nents, respectively. For reasons of simplicity we assume that
all length parameters are equal (aAA = aAB = aBB). However,
we provide an approximate mapping of the general case
onto this specific case. This mapping is highly accurate for
the scenarios to which our analysis applies. Thus, the rele-
vant parameters describing the fluid-fluid interaction are the
three interaction strengths εAA, εAB, and εBB. The interac-
tion strength εAB between unlike particles is expressed in
terms of those between the two sorts of like particles: εAB =
ξ f

√
εAAεBB for the fluid-fluid interactions [2,9,32,33]. The

case of ξ f = 1 is called the strict mixing rule [34–36]; simpli-
fied expressions for the dispersion forces give rise to the strict
mixing rule. Similar expressions can be put forward for the
strengths of the interactions between a wall particle and a fluid
particle of sort A or B, respectively; i.e., εwA = ξwA

√
εwwεAA

and εwB = ξwB
√

εwwεBB. Introducing ξw = ξwA/ξwB, the ratio
between the wall-A and the wall-B interaction can be ex-

pressed as εwA/εwB = ξw
√

εAA/εBB. Again, the case ξw = 1
is called the strict mixing rule for the fluid-wall interaction.
We first assume that the strict mixing rules apply to both
the fluid-fluid and the fluid-wall interactions, which cuts in
half the dimension of the parameter space. We then identify
domains in the space of reduced parameters such that each
domain represents a particular combination of the structures
of the three interfaces involved. Next, we relax the strict
mixing rules and keep track of the consequences for the map
of domains. Before presenting in the next section the map of
domains, in the next two subsections we provide the presently
available results for the three different interfaces and express
them in a form which is suitable for our discussion.

A. Planar liquid-vapor interface

In order to determine the conditions for which a planar α-γ
interface is wetted by a film of the β phase, we introduce a
wetting parameter Wαβγ defined as

Wαβγ := σαβγ − σαγ , (1)

where σαβγ is the surface free energy (surface tension) of a
composite configuration in which an intervening wetting film
of the β phase occurs at the α-γ interface; σαγ is the surface
free energy (surface tension) of a plain configuration in which
such a film is absent. If Wαβγ < 0, the stable configuration
is the one in which the α-γ interface is wetted by a film of
the β phase. Otherwise, if Wαβγ > 0, the liquid (α phase) and
the vapor (γ phase) are in direct spatial contact and the α-γ
interface is a plain one without an intruding β film.

We now follow the discussion in Ref. [8] and first separate
the grand canonical potential functional � into a bulk (b) and
a surface (s) contribution:

�[{ρi(r)}, T, {μi}] = V �b + S�s, (2)

where i = A and B denote the two types of fluid particles and
V and S denote the volume and the surface area, respectively;
T is the temperature, and μi is the chemical potential of
species i. In the next step, the surface contribution to the grand
canonical potential for a composite configuration of the α-γ
interface with an intruding film of the β phase can be written
as

�αβγ
s (l ) = l (�β − �γ ) + ωαβγ (l ) + σαβ + σβγ . (3)

The first term in Eq. (3) is the bulk free energy needed to
replace a slab of thickness l of the γ phase by the β phase.
The second term in Eq. (3) is the correction to the surface
free energy due to the finite thickness l of the slab. The terms
σαβ and σβγ denote the surface tensions of plain interfaces
between the bulk phases α, β and β, γ , respectively.

In thermal equilibrium the thickness l of the slab of the β

phase attains its equilibrium value lαβγ . The surface tension
of the composite configuration, i.e., the first term in Eq. (1), is
determined in terms of this equilibrium configuration by

σαβγ = min
{ρi (r)}

�αβγ
s [{ρi(r)}, T, {μi}]

= min
l

�αβγ
s (l, T, {μi})

= �αβγ
s (lαβγ , T, {μi}) (4)
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and

∂�
αβγ
s (l )

∂l

∣∣∣∣
l=lαβγ

= 0. (5)

(Note that �
αβγ
s [{ρi(r)}] and �

αβγ
s (l ) are distinct functionals

and functions, respectively, as indicated by their arguments.)
It should be stressed that lαβγ is a solution of Eq. (5) corre-
sponding to a minimum of the free energy. Furthermore, the
subdivision of the free energy used in Eq. (3) is applicable
only if lαβγ is sufficiently large such that the β film can be
treated like a piece of genuine β phase. By inserting Eqs. (3)
and (4) into Eq. (1), the wetting parameter defined in Eq. (1)
for the α-γ interface can be expressed as

Wαβγ = lαβγ (�β − �γ ) + ωαβγ (lαβγ )

+ σαβ + σβγ − σαγ . (6)

Further, using Eq. (3) one can rewrite Eq. (5) as

�β − �γ = −∂ωαβγ (l )

∂l

∣∣∣∣
l=lαβγ

. (7)

From here onwards the sharp-kink approximation is used.
Within this approximation the following expressions are ob-
tained for ωαβγ (l ) and the interfacial tensions of the various
plain interfaces:

ωαβγ (l ) = −
∑
i, j

(ρi,α − ρi,β )(ρ j,β − ρ j,γ )
∫ ∞

l
dy ti j (y),

(8)

σαβ = −1

2

∑
i, j

(ρi,α − ρi,β )(ρ j,α − ρ j,β )
∫ ∞

0
dy ti j (y), (9)

σβγ = −1

2

∑
i, j

(ρi,β − ρi,γ )(ρ j,β − ρ j,γ )
∫ ∞

0
dy ti j (y), (10)

and

σαγ = −1

2

∑
i, j

(ρi,α − ρi,γ )(ρ j,α − ρ j,γ )
∫ ∞

0
dy ti j (y), (11)

respectively, where

ti j (y) =
∫ ∞

y
dx

∫
d2r‖ w̃i j

[(
r2
‖ + x2) 1

2
]
.

Here, i and j denote the species A and B forming the binary
liquid mixture and ρi,ζ is the number density of particles of
species i in the bulk phase ζ = α, β, and γ .

Regular analytic expressions are obtained by replacing in
Eqs. (9)–(11), for the long-ranged part w̃i j (r) of the fluid-fluid
interaction, the simple Lennard-Jones potential by its shifted
version:

w̃i j (r) = 4εi j

[(
ai j

r + ai j

)12

−
(

ai j

r + ai j

)6]
, (12)

where εi j and ai j denote the strength of the interaction energy
and the length parameters for the interactions between the
components i and j. In order to evaluate Eq. (8) we use
the additional assumption l � ai j , which is justified by the

above requirement of a sufficiently thick β film. Eventually
the following results are obtained:

ωαβγ (l ) = π
∑
i, j

{
εi ja

4
i j (ρi,α − ρi,β )(ρ j,β − ρ j,γ )

×
[

1

3

(
ai j

l

)2

− 4

5

(
ai j

l

)3]}
, (13)

σαβ = 13

132
π

∑
i, j

εi ja
4
i j (ρi,α − ρi,β )(ρ j,α − ρ j,β ), (14)

σβγ = 13

132
π

∑
i, j

εi ja
4
i j (ρi,β − ρi,γ )(ρ j,β − ρ j,γ ), (15)

and

σαγ = 13

132
π

∑
i, j

εi ja
4
i j (ρi,α − ρi,γ )(ρ j,α − ρ j,γ ). (16)

Due to Eq. (13), we can rewrite Eq. (7) as

�β − �γ = π
∑
i, j

{
εi ja

3
i j (ρi,α − ρi,β )(ρ j,β − ρ j,γ )

×
[

2

3

(
ai j

lαβγ

)3

− 12

5

(
ai j

lαβγ

)4]}
. (17)

Using Eqs. (13)–(17), Eq. (6) for Wαβγ can be rewritten as

Wαβγ = π
∑
i, j

εi ja
4
i j (ρi,β − ρi,α )(ρ j,β − ρ j,γ )Fi j (lαβγ ), (18)

where

Fi j (l ) = 13

66
−

(
ai j

l

)2

+ 16

5

(
ai j

l

)3

, (19)

and lαβγ is the equilibrium thickness of the β film intruding
the α-γ interface.

If the components A and B of the binary liquid mixture have
equal molecular radii, the length parameters in Eq. (12) are all
equal, i.e., aAA = aAB = aBB. In this case Eq. (18) reduces to

Wαβγ = πa4
AASαβγ FAA(lαβγ ), (20)

where

Sαβγ = (ρA,β − ρA,α )(ρA,β − ρA,γ )εAA

+ (ρA,β − ρA,α )(ρB,β − ρB,γ )εAB

+ (ρB,β − ρB,α )(ρA,β − ρA,γ )εBA

+ (ρB,β − ρB,α )(ρB,β − ρB,γ )εBB. (21)

The sign of FAA(lαβγ ) in Eq. (20) is always positive if lαβγ > 0
[see Eq. (19), actually the relation lαβγ � a should hold,
otherwise there is no composite interface]. The sign of Wαβγ

is therefore entirely determined by the sign of Sαβγ , which
depends on the bulk number densities of the two species in
the various phases and on the three interaction strengths. If
Sαβγ < 0, the stable configuration is a composite α-γ inter-
face with an intruding β film between the α and the γ phase.
If Sαβγ > 0, the stable configuration is a plain α-γ interface.

Equations (20) and (21) can be generalized to the case in
which the length parameters are not all equal, if one takes into
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account the fact that the functions Fi j are not very sensitive to
the actual values of the length parameters in cases in which
the film thicknesses exceed several diameters of the fluid
particles; this is the range of film thicknesses to which our
study applies. For example, for a film thickness of 10 times
the diameters of a fluid particle A (aAA), Fi j varies by only
a few percent if the length parameter is varied by a factor
of 2. Therefore, it is a good approximation to replace the
various functions Fi j by just one function FAA. Using this
approximation, Eq. (20) remains intact, if in Eq. (21) one
introduces rescaled interaction strengths

ε̄i j = (ai j/aAA)4εi j

instead of the original εi j .
In order to obtain a statement concerning the sign of Sαβγ ,

we inspect the various contributions in Eq. (21). First, all
interaction strengths εAA, εAB, and εBB are positive. The pref-
actors may be positive or negative depending on the relations
between the various number densities. Since the β phase is a
liquid phase, the γ phase is vapor, and the number densities
in the liquid phases are much higher than in the vapor (at
least away from the critical point), and ρB,β − ρB,γ is always
positive. Typically, ρA,β − ρA,γ should be positive as well. On
the other hand, because by definition the β phase is a B-rich
phase, it cannot be excluded that the component A is very
diluted in the β phase but present in a much higher concen-
tration in the vapor, such that ρA,β − ρA,γ could be negative.
We exclude such exceptional cases from our discussion and
always assume in the following that ρA,β − ρA,γ is positive.

Next, we consider the sign of ρA,β − ρA,α and ρB,β − ρB,α .
The possibility that ρA,β − ρA,α > 0 and ρB,β − ρB,α > 0
would result in a positive sign of Sαβγ , irrespective of the
values of the interaction strengths. This case is not of interest
to our present study because it excludes the occurrence of
an intervening β film at the liquid-vapor interface. In the
following we consider the case ρA,β − ρA,α < 0 and ρB,β −
ρB,α > 0. In this case the sign of Sαβγ depends on the values
of the interaction strengths and the magnitude of the den-
sity differences. A case in which both ρA,β − ρA,α < 0 and
ρB,β − ρB,α < 0, which would always lead to a negative sign
of Sαβγ , we consider as an untypical case for a liquid-liquid
mixture. In this case ρB,β < ρB,α , i.e., the number density
of the B particles in the B-rich β phase would be smaller
than the number density of the B particles in the A-rich α

phase. This would require that the total number density in
the α phase is substantially higher than the one in the β

phase and that the β phase is only marginally rich in B par-
ticles and the α phase only marginally rich in A particles.
The remaining case ρA,β − ρA,α > 0 and ρB,β − ρB,α < 0 is
not possible. This can be seen as follows. The definition of
the A-rich α phase implies ρA,α > ρB,α . Next, we use the
first of the two conditions, i.e., ρA,β − ρA,α > 0, which leads
to the sequence ρA,β > ρA,α > ρB,α of inequalities. Finally,
using the definition of the B-rich β phase, i.e., ρB,β > ρA,β ,
one obtains ρB,β > ρA,β > ρA,α > ρB,α , i.e., ρB,β − ρB,α > 0,
which is in contradiction to the second of the two conditions,
which means that both conditions cannot be satisfied together.
To conclude the above discussion, from here onwards the
following inequalities between the various number densities

are assumed:

ρA,α > ρA,β , ρB,α < ρB,β ,

ρA,β > ρA,γ , and ρB,β > ρB,γ . (22)

Now, given the inequalities in Eq. (22), the sign of Sαβγ

is studied. First, the (rescaled) interaction parameter εAB (ε̄AB)
between unlike particles is expressed in terms of the corre-
sponding ones between like particles εAA and εBB (ε̄AA and ε̄BB)
as

εAB = ξ f
√

εAAεBB (ε̄AB = ξ̄ f
√

ε̄AAε̄BB), (23)

with ξ f > 0 (ξ̄ f > 0); the bracketed part of Eq. (23) applies to
the general case and defines a modified “mixing parameter”
ξ̄ f , where ξ̄ f = (aAB/aAA)2(aAB/aBB)2ξ f . Next, we introduce
the dimensionless variable

X = ρB,β

ρA,β

√
εBB

εAA

(
X̄ = ρB,β

ρA,β

√
ε̄BB

ε̄AA

)
, (24)

which characterizes the relative strengths of the (rescaled) A-A
and the (rescaled) B-B interactions, weighted according to the
abundance of the two species in the β phase. X (X̄ ) is always
positive. In the following we do not distinguish X and X̄ or ξ f

and ξ̄ f ; X always can be understood as representing also X̄ and
ξ f as representing ξ̄ f . Using Eq. (23) and the dimensionless
variable X , Eq. (21) can be expressed as

Sαβγ = εAAρ2
A,β

[(
1 − ρB,α

ρB,β

)(
1 − ρB,γ

ρB,β

)
X 2

+
(

1 − ρB,α

ρB,β

)(
1 − ρA,γ

ρA,β

)
ξ f X

+
(

1 − ρA,α

ρA,β

)(
1 − ρB,γ

ρB,β

)
ξ f X

+
(

1 − ρA,α

ρA,β

)(
1 − ρA,γ

ρA,β

)]
. (25)

Based on Eq. (25), the range of X is determined for which
Sαβγ < 0 (see Appendix A). Equivalently, one can state that
at a planar α-γ interface a β film can occur if X is in the range

0 < X <

√[
ξ f

2
(Dαβ + Dβγ )

]2

− DαβDβγ

+ ξ f

2
(Dαβ + Dβγ ), (26)

where

Dαβ =
(

ρA,α

ρA,β

− 1

)/(
1 − ρB,α

ρB,β

)
(27)

and

Dβγ =
(

1 − ρA,γ

ρA,β

)/(
ρB,γ

ρB,β

− 1

)
. (28)

Otherwise, given the inequalities in Eq. (22), no β film can
occur at the planar α-γ interface. In the case that the strict
mixing rule applies (ξ f = 1), the condition in Eq. (26) for the
occurrence of a β film reduces to [note that the inequalities in
Eq. (22) imply Dαβ > 0 and Dβγ < 0]

0 < X < Dαβ.
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B. Planar wall-fluid interfaces

In analogy to Eq. (1) we introduce three additional wetting
parameters, the signs of which determine whether a configura-
tion with an intruding wetting film at the wall-α or the wall-γ
interface, respectively, has a lower free energy than the corre-
sponding one without such a wetting film. The configurations
considered are a β film wetting the wall-α interface, a β film
wetting the wall-γ interface, and an α film wetting the wall-γ
interface. The corresponding three wetting parameters Wwβα ,
Wwβγ , and Wwαγ are given by

Wwβα = σwβα − σwα, (29)

Wwβγ = σwβγ − σwγ , (30)

and

Wwαγ = σwαγ − σwγ . (31)

Here, w represents the wall; σwβα is the surface tension (sur-
face free energy) of the wall-α interface which is wetted by a
β film; σwβγ and σwαγ are the surface tensions (surface free
energies) of the wall-γ interface which is wetted by a β or
an α film, respectively; σwα and σwγ are the surface tensions
(surface free energies) of the wall-α and the wall-γ interface,
respectively, without any intruding wetting film. If Wwβα < 0,
the wall-α interface is wetted by the β phase. If Wwβγ < 0,
it is more favorable to have a film of the β phase at the
wall-γ interface than to have a direct wall-γ contact without
an intruding wetting film. If Wwαγ < 0, a wetting film of the
α phase at the wall-γ interface is more favorable than a direct
wall-γ contact. Additional considerations might be necessary
in order to decide whether wetting of a wall-γ interface by a
film of the β phase or by a film of the α phase renders the
more favorable configuration.

By using the shifted Lennard-Jones potential [see Eq. (12)]
for the fluid-fluid interaction w̃i j (r), and also for the fluid-wall
interaction potential ṽi(r),

ṽi(r) = 4εwi

[(
awi

r + awi

)12

−
(

awi

r + awi

)6]
, (32)

with the length parameters awi and the strengths εwi of the
wall-i interactions, the above wetting parameters can be ex-
pressed as (see Appendix B)

Wwβα = π
∑
i, j

(ρi,β − ρi,α )
[
εi ja

4
i jρ j,βFi j (lwβα )

− δi jεwia
4
wiρwFwi(lwβα )

]
, (33)

Wwβγ =π
∑
i, j

(ρi,β − ρi,γ )
[
εi ja

4
i jρ j,βFi j (lwβγ )

− δi jεwia
4
wiρwFwi(lwβγ )

]
, (34)

and

Wwαγ = π
∑
i, j

(ρi,α − ρi,γ )
[
εi ja

4
i jρ j,αF̂i j (lwαγ )

− δi jεwia
4
wiρwF̂wi(lwαγ )

]
, (35)

respectively, where i, j represent the fluid components A and
B, δi j is the Kronecker symbol, Fi j (l ) is defined in Eq. (19),

and Fwi(l ) is defined by the same equation but with the length
parameters awi. The functions F̂i j (l ) and F̂wi(l ) in Eq. (35) are
defined by

F̂i j (l ) = 13

66
− 1

3

(
ai j

l

)2

+ 4

5

(
ai j

l

)3

; (36)

the functional form of F̂wi(l ) is the same but with the length
parameters awi. Here, lwβα is the equilibrium thickness of the
intruding β film at the wall-α interface and lwβγ (lwαγ ) is the
equilibrium thickness of the intruding β (α) film at the wall-
γ interface. (We only consider films with thicknesses much
larger than the length parameters of the interactions.)

If the length parameters of all interactions, i.e., the ones
between the components A and B of the binary liquid mixture
and those between the two components and the wall, are
all equal, i.e., aAA = aAB = aBB = awA = awB, Eqs. (33)–(35)
reduce to

Wwβα = πa4
AASwβαFAA(lwβα ), (37)

Wwβγ = πa4
AASwβγ FAA(lwβγ ), (38)

and
Wwαγ = πa4

AASwαγ F̂AA(lwαγ ), (39)
where

Swβα = (ρA,β − ρA,α )(εAAρA,β − εwAρw)

+ (ρA,β − ρA,α )(εABρB,β )

+ (ρB,β − ρB,α )(εBAρA,β )

+ (ρB,β − ρB,α )(εBBρB,β − εwBρw), (40)
Swβγ = (ρA,β − ρA,γ )(εAAρA,β − εwAρw)

+ (ρA,β − ρA,γ )(εABρB,β )

+ (ρB,β − ρB,γ )(εBAρA,β )

+ (ρB,β − ρB,γ )(εBBρB,β − εwBρw), (41)

and

Swαγ = (ρA,α − ρA,γ )(εAAρA,α − εwAρw)

+ (ρA,α − ρA,γ )(εABρB,α )

+ (ρB,α − ρB,γ )(εBAρA,α )

+ (ρB,α − ρB,γ )(εBBρB,α − εwBρw). (42)

The signs of the various wetting parameters in Eqs. (37)–
(39) and thus the structures of the wall-α and the wall-γ
interfaces are determined by the signs of the various quan-
tities S given by Eqs. (40)–(42) because FAA and F̂AA are
positive within the range of film thicknesses of interest [see
Eqs. (19) and (36)]. The signs of the various quantities S
depend on various differences between bulk densities and
on the strengths of the interactions. As discussed above we
only consider binary liquid mixtures and conditions such that
the inequalities in Eq. (22) between the number densities
of the two species in different phases hold. In order to iden-
tify the regions in the parameter space corresponding to a
negative or a positive sign of the various wetting parameters,
we use the notation already introduced in the description of
our model. We write εAB = ξ f

√
εAAεBB, εwA = ξwA

√
εwwεAA,

and εwB = ξwB
√

εwwεBB. Introducing ξw = ξwA/ξwB the ratio
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between the wall-A and the wall-B interaction can be ex-
pressed as εwA/εwB = ξw

√
εAA/εBB. The case ξ f = 1 (ξw = 1)

is called the strict fluid-fluid (fluid-wall) mixing rule.
In order to complete the approximate mapping of the

general case onto the specific case, we again replace the
various functions Fi j by one function FAA as well as
the functions F̂i j by just one function F̂AA. Furthermore, once
the rescaled interaction strengths ε̄wi = (awi/aAA)4εwi and the
modified “mixing parameter” ε̄wA/ε̄wB = ξ̄w

√
ε̄AA/ε̄BB, with

ξ̄w = (aBB/aAA)2(awA/awB)4ξw, are introduced, the equations
derived for the special case remain unchanged if they are
expressed in terms of the rescaled quantities.

We now consider the reduced space spanned by the
two dimensionless variables X = (ρB,β/ρA,β )

√
εBB/εAA [X̄ =

(ρB,β/ρA,β )
√

ε̄BB/ε̄AA in the general case, see Eq. (24)] and

Y = ρw

ρA,β

εwA

εAA

(
Ȳ = ρw

ρA,β

ε̄wA

ε̄AA

)
, (43)

characterizing the parameter space of the system; one has
X > 0 (X̄ > 0) and Y > 0 (Ȳ > 0). X (X̄ ) characterizes the
relative strengths of the (rescaled) A-A and the (rescaled) B-B
interactions in the β phase, Y (Ȳ ) gives the relative strengths
of the (rescaled) wall-A interaction and the (rescaled) A-A
interaction in the β phase. The two additional parameters ξ f

and ξw (ξ̄ f and ξ̄w) eventually determine how the reduced
parameter space (X,Y ) or (X̄ , Ȳ ) is subdivided into various
“wetting domains”. In the following X , Y , ξ f , and ξw should
be always understood as representing X̄ , Ȳ , ξ̄ f , and ξ̄w, respec-
tively, if the equations and figures are applied to the general
case. In the general case the modified strict mixing rules
ξ̄ f = 1 and ξ̄w = 1 refer to the relations between the rescaled
interaction strengths, which means that the original interaction
strengths, in general, do not obey the strict mixing rules. We
divide the (X,Y ) parameter space, for each wall-fluid interface
separately, into regions within which the wall is wetted by an
intruding phase (wet state) and regions within which there is
no intruding phase (nonwet state) (see Appendix C).

The planar wall-α interface is wetted by a β film (Swβα < 0)
if

0 < X < ξwDαβ and

0 <Y < X + 1 + (ξw − 1)
X

(X − ξwDαβ )
(X + 1)

+ ξw(ξ f − 1)(1 − Dαβ )
X

(X − ξwDαβ )
(44)

or if

X > ξwDαβ and

Y > X + 1 + (ξw − 1)
X

(X − ξwDαβ )
(X + 1)

+ ξw(ξ f − 1)(1 − Dαβ )
X

(X − ξwDαβ )
(45)

[with Dαβ as given in Eq. (27)]. Otherwise, the wall is in direct
contact with the α phase without an intruding film of the β

phase.
A wall-γ interface which is wetted by an intervening β film

is more favorable than a wall-γ interface without any wetting

film (Swβγ < 0) if

X > 0 and

Y > X + 1 + (ξw − 1)
X

(X − ξwDβγ )
(X + 1)

+ ξw(ξ f − 1)(1 − Dβγ )
X

(X − ξwDβγ )
(46)

[with Dβγ as given in Eq. (28)]. Otherwise, the wall which is
in direct contact with the γ phase, i.e., without a β film gives
rise to a lower free energy.

A wall-γ interface which is wetted by an intruding α film
is more favorable than a wall-γ interface without any wetting
film (Swαγ < 0) if

X > 0 and

Y >
ρB,α

ρB,β

X + ρA,α

ρA,β

+ (ξw − 1)
X

(X − ξwDαγ )

(
ρB,α

ρB,β

X + ρA,α

ρA,β

)
+ ξw(ξ f − 1)

(
ρA,α

ρA,β

− ρB,α

ρB,β

Dαγ

)
X

(X − ξwDαγ )
, (47)

where

Dαγ =
(

ρA,α

ρA,β

− ρA,γ

ρA,β

)/(
ρB,γ

ρB,β

− ρB,α

ρB,β

)
. (48)

Otherwise, the wall which is in direct contact with the γ

phase, i.e., without an α film, leads to a lower free energy. In
regions, in which wetting of the wall-γ interface with both
a film of the β phase and a film of the α phase is more
favorable than a configuration without any wetting film, a
direct comparison of these two wetting scenarios is required.
This is discussed below.

III. DISCUSSION

A. Colloid particle at a composite α-β-γ interface:
Possible wetting scenarios

In Fig. 2 we sketch the possible wetting scenarios around a
colloid floating at a composite α-γ interface with a β film in-
truding between the adjacent phases. In addition we depict the
simplified system actually studied, which is a composite α-γ
interface meeting a planar wall, instead of a curved wall as
provided by the surface of a colloid. The information obtained
in the previous chapter on the individual interfacial wetting
problems in binary liquid mixtures, can now be combined in
order to assign to each of the six scenarios sketched in Fig. 2
a domain in the parameter space (X,Y ).

The images shown in Fig. 2 are simplified in several re-
spects. The α-γ interface meets the wall at Young’s contact
angle; for simplicity in the drawings we use a contact an-
gle of 90◦. In general the film thickness at the wall-vapor
(wall-γ ) interface is different from the one at the wall-liquid
(wall-α) interface and not equal as drawn in Fig. 2. From
the information on the individual interfaces, only the gross
features can be deduced. The fluid structure in the spatial
region close to the core of the three-phase contact line cannot
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FIG. 2. Possible wetting scenarios around a colloid floating at a composite α-γ interface with an intruding β film. (a) Wetting domain
(i): the β film terminates near the wall. (b) Wetting domain (ii): the β film extends down into the wall-α interface. (c) Wetting domain (iii):
the β film extends up into the wall-γ interface. (d) Wetting domain (iv): the β film terminates near the wall, and a film of the α phase forms
at the wall-γ interface. (e) Wetting domain (v): the β film extends into the wall-α interface and into the wall-γ interface, surrounding the
colloid entirely. (f) Wetting domain (vi): the β film extends into the wall-α interface, and a wetting film of the α phase forms at the wall-γ
interface. Within our approach the fluid structure around the three-phase contact line (indicated by dashed lines) remains unknown. In the
wetting domains (iv) and (vi) the wall-α-γ interface actually might be replaced by one involving in addition a wetting film of the β phase, thus
resulting in a wall-α-β-γ interface.

be determined within the present approach but requires a fully
fledged density functional calculation.

The first possible wetting scenario is shown in Fig. 2(a). In
this case the β film at the α-γ interface neither extends up into
the wall-γ interface nor down into the wall-α interface. The
β film just terminates near the wall. This scenario is called
wetting domain (i).

The wetting scenarios shown in Figs. 2(b)–2(d) [wetting
domains (ii)–(iv)] are characterized by a thick wetting film at
just one of the two wall-fluid interfaces, either at the wall-α or
at the wall-γ interface. In the wetting domain (ii) the β film

at the α-γ interface extends down into the wall-α interface
whereas no wetting film is present at the wall-γ interface. In
the wetting domain (iii) the β film extends up into the wall-
γ interface whereas no wetting film is present at the wall-α
interface. In the wetting domain (iv) the β film at the α-γ
interface terminates near the wall, but a film of the α phase
intrudes at the wall-γ interface.

If wetting films are present at both wall-fluid interfaces,
two scenarios are conceivable. In the wetting domain (v) the
β film at the α-γ interface extends into the wall-α interface
as well as into the wall-γ interface; a colloid would be com-
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pletely surrounded by a film of the β phase [see Fig. 2(e)]. In
the wetting domain (vi) the β film at the α-γ interface extends
into the wall-α interface, but at the wall-γ interface a wetting
film of the α phase forms [see Fig. 2(f)].

In the wetting domains (iv) and (vi) the α wetting film at
the wall-γ interface might split into two wetting films with
a β film forming at the α-γ interface, eventually resulting
in a wall-α-β-γ interface. This interfacial structure is similar
to the one discussed in Refs. [23,24]. In the following fluid
structures involving two subsequent wetting films are not con-
sidered.

B. Fluid-fluid and fluid-wall interactions exhibiting
the strict mixing rules

The relations between the strengths of the fluid-fluid and
the fluid-wall interactions imposed by the strict mixing rules
lead to a number of simplifications. The strict mixing rule
ξ f = 1 for the fluid-fluid interactions together with the in-
equalities in Eq. (22) between the number densities constrain
the range of X , which we have to consider, to 0 < X < Dαβ .
Here, Dαβ is given by Eq. (27). Otherwise, there is no β film
at the α-γ interface [see Eq. (26)]. We do not pursue this latter
case.

Second, the condition for the formation of a β film at a
wall-α interface simplifies if the strict mixing rules for the
fluid-fluid as well as for the fluid-wall interactions are valid
(ξ f = 1 and ξw = 1). Within the range 0 < X < Dαβ one ob-
tains from Eq. (44)

0 < Y < X + 1.

Third, for the wall-γ interface, the two distinct compar-
isons which have been made [see Eqs. (46) and (47)] also
simplify if the strict mixing rules ξ f = 1 and ξw = 1 apply.

From Eq. (46) one finds that the formation of a β film is
more favorable than having a plain wall-γ interface without
an interleaving film if

Y > X + 1.

The formation of an α film at the wall-γ interface is favored
with respect to a plain wall-γ interface without an interleaving

film if

Y >
ρB,α

ρB,β

X + ρA,α

ρA,β

,

which follows from Eq. (47) and the strict mixing rules.
Within the range 0 < X < Dαβ , on which we can focus

here, the inequality
ρB,α

ρB,β

X + ρA,α

ρA,β

> X + 1

is satisfied. This inequality leads to the following sequence of
wetting scenarios at the wall-γ interface.

(a) 0 < Y < X + 1: both a β wetting film and an α wet-
ting film can be excluded and a plain wall-γ interface is the
preferred structure.

(b) X + 1 < Y <
ρB,α

ρB,β
X + ρA,α

ρA,β
: a β wetting film is the pre-

ferred structure; a plain wall-γ interface and wetting by the α

phase can be excluded.
(c) Y >

ρB,α

ρB,β
X + ρA,α

ρA,β
: wetting by the α phase becomes

possible in addition to wetting by the β phase; a plain wall-γ
interface can be excluded.

In the range Y >
ρB,α

ρB,β
X + ρA,α

ρA,β
, one still has to find another

boundary which determines whether wetting of the wall-γ
interface by a film of the β phase or by a film of the α phase
is the preferred configuration. In order to find this boundary
we introduce a further wetting parameter Wwβ(α)γ = σwβγ −
σwαγ , which is the difference between the surface tensions of
a wall-γ interface with an intruding β film and of one with
an intruding α film. If Wwβ(α)γ > 0, the wall-γ interface is
wetted by the α phase. Otherwise, an intruding β phase wets
the wall-γ interface. By using Eqs. (30) and (31), Wwβ(α)γ can
be written as Wwβγ − Wwαγ . Again we make the simplifying
assumption that all length parameters are equal: aAA = aAB =
aBB = awA = awB. Under this condition, by using Eqs. (38)
and (39) one finds

Wwβ(α)γ = πa4
AA

[
Swβγ FAA(lwβγ ) − Swαγ F̂AA(lwαγ )

]
=: πa4

AAK (X,Y ). (49)

Expressing Swβγ and Swαγ , as given in Eqs. (C7) and (C8),
one finds

K (X,Y ) = εAAρ2
A,β

{[(
1 − ρB,γ

ρB,β

)
X + 1 − ρA,γ

ρA,β

]
(X + 1 − Y )FAA(lwβγ )

−
[(

ρB,α

ρB,β

− ρB,γ

ρB,β

)
X + ρA,α

ρA,β

− ρA,γ

ρA,β

](
ρB,α

ρB,β

X + ρA,α

ρA,β

− Y

)
F̂AA(lwαγ )

}
. (50)

The sign of Wwβ(α)γ is determined by the sign of K (X,Y ). Accordingly, for K (X,Y ) > 0 a configuration with an intruding α film
at the wall-γ interface is more stable than one with an intruding β film. For K (X,Y ) < 0 the configuration with an intruding
β film becomes more stable. (However, for Y < X + 1 a plain wall-γ interface without any wetting film is the configuration
preferred most.) The condition K (X,Y ) < 0 can be rewritten as

PK (X,Y )×Y >

[(
1 − ρB,γ

ρB,β

)
X +1 − ρA,γ

ρA,β

]
(X + 1)FAA(lwβγ )−

[(
ρB,α

ρB,β

− ρB,γ

ρB,β

)
X + ρA,α

ρA,β

− ρA,γ

ρA,β

](
ρB,α

ρB,β

X + ρA,α

ρA,β

)
F̂AA(lwαγ ) ,

(51)

where

PK (X,Y ) =
[(

1 − ρB,γ

ρB,β

)
X + 1 − ρA,γ

ρA,β

]
FAA(lwβγ ) −

[(
ρB,α

ρB,β

− ρB,γ

ρB,β

)
X + ρA,α

ρA,β

− ρA,γ

ρA,β

]
F̂AA(lwαγ ). (52)
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In order to determine the sign of PK (X,Y ) within the relevant range of X values it is convenient to rewrite Eq. (52) as

PK (X,Y ) =
(

1 − ρB,α

ρB,β

)
(X − Dαβ )FAA(lwβγ ) −

(
ρB,α

ρB,β

− ρB,γ

ρB,β

)
(X − Dαγ )[F̂AA(lwαγ ) − FAA(lwβγ )]. (53)

Given the inequalities in Eq. (22) between the number densities we have ρB,α/ρB,β < 1, Dαβ > 0, ρB,α/ρB,β − ρB,γ /ρB,β > 0,
and Dαγ < 0. Moreover, we have 0 < FAA(lwβγ ) < F̂AA(lwαγ ). As a result, PK (X,Y ) is negative in the range 0 < X < Dαβ .

The inequality in Eq. (51) can be rewritten as Y < YK (X,Y ), where the separatrix YK (X,Y ) between the β phase and the α phase
wetting of the wall-γ interface is given by [see Eq. (53)]

YK (X,Y ) = ρB,α

ρB,β

X + ρA,α

ρA,β

+
[(

1 − ρB,γ

ρB,β

)
X + 1 − ρA,γ

ρA,β

][(
1 − ρB,α

ρB,β

)
X + 1 − ρA,α

ρA,β

]
FAA(lwβγ )

PK (X,Y )
. (54)

In the X range of interest, i.e., 0 < X < Dαβ , YK (X,Y ) is always
located above the straight line Y = ρB,α

ρB,β
X + ρA,α

ρA,β
, which in turn

is located above Y = X + 1. Interestingly, the three curves
YK (X,Y ), Y = X + 1, and Y = ρB,α

ρB,β
X + ρA,α

ρA,β
meet at the same

point (X = Dαβ, Y = Dαβ + 1), at that X value above which
the β wetting film at the α-γ interface ceases to exist.

We now consider the special case of three-phase (α-β-γ )
coexistence. In this case one has both lwβγ →∞ and lwαγ →∞
(see Appendix D), and FAA(lwβγ ) = F̂AA(lwαγ ) = 13

66 . Thus, the
sign of K (X,Y ) depends only on the sign of Swβγ − Swαγ . By
inspecting this expression, one finds that wetting of the wall-γ
interface by the β phase is more favorable than wetting by the
α phase (0 < X < Dαβ) if

Y <
ρB,α

ρB,β

X + ρA,α

ρA,β

+
[(

1 − ρB,γ

ρB,β

)
X + 1 − ρA,γ

ρA,β

]
. (55)

The curve represented by the right hand side of the inequality
in Eq. (55) is, for 0 < X < Dαβ , always located above the
curve YK (X,Y ). Thus, the separatrix YK (X,Y ) must be located in
the interval given by

ρB,α

ρB,β

X + ρA,α

ρA,β

< YK (X,Y )

<
ρB,α

ρB,β

X + ρA,α

ρA,β

+
[(

1 − ρB,γ

ρB,β

)
X + 1 − ρA,γ

ρA,β

]
.

Accordingly, in the X range of interest, i.e., 0 < X < Dαβ ,
the wetting behavior at the wall-γ interface can now be clas-
sified as follows:

(a) 0 < Y < X + 1: the wall-γ interface is a plain one
without any intervening wetting film.

(b) X + 1 < Y < YK (X,Y ): the wall-γ interface is wetted
by a film of the β phase.

(c) Y > YK (X,Y ): the wall-γ interface is wetted by a film of
the α phase.

Finally, the information about wetting at the three indi-
vidual interfaces can be combined in order to deliminate a
domain in the space (X,Y ) of system parameters, which cor-
respond to a certain wetting scenario as sketched in Fig. 2. We
only have to consider the interval 0 < X < Dαβ because only
in this X range a composite α-γ interface with an intervening
wetting film of the β phase can occur. This subspace is divided
into three different domains as indicated in Fig. 3. In domain
(ii) [see the corresponding scenario depicted in Fig. 2(b)],
below the straight line Y = X + 1 (red line in Fig. 3), the

wall-α interface is wetted by the β phase. On the other hand
below Y = X + 1 no film of the β phase can occur at the
wall-γ interface. Thus, this interface is a plain one without
any wetting film. The domain (iii), which corresponds to the
scenario depicted in Fig. 2(c), is bounded from below by
Y = X + 1 (straight red line in Fig. 3) and from above by
Y = YK (X,Y ) (curved blue line in Fig. 3). In this domain the
wall-α interface is a plain one without an intervening wetting

FIG. 3. Wetting domains in the space (X,Y ) of system param-
eters, in the case that the fluid-fluid and the fluid-wall interactions
obey the strict mixing rules. Further, the inequalities in Eq. (22)
between the number densities are assumed to hold. The domains (ii),
(iii), and (iv) correspond to the scenarios depicted in Figs. 2(b)–2(d).
The domains (i), (v), and (vi) are not realized in this case. Only to the
left of the black line (X = Dαβ ), the desired composite α-γ interface
with an intruding β film can occur. Below the red line (Y = X + 1),
the wall-α interface is wetted by a film of the β phase whereas the
wall-γ interface is a plain one without an intervening wetting film.
Between the straight red line and the curved blue line [Y = YK (X,Y ),
see Eq. (54)], a β film occurs at the wall-γ interface, whereas the
wall-α interface is a plain one. Above the blue line the wall-γ
interface is wetted by an α film. The curved blue line [Y = YK (X,Y )] is
always located above the straight green line (Y = ρB,α

ρB,β
X + ρA,α

ρA,β
). All

curves meet at the special point (X = Dαβ, Y = Dαβ + 1) (see the
main text). The dashed lines extend the domain boundaries into the
region where the α-γ interface is a plain one without an intruding β

film; this region is beyond the interest of this study. The curves cor-
respond to the choices ρA,α/ρA,β = 4, ρB,α/ρB,β = 2

3 , which implies
Dαβ = 9, FAA(lwβγ ) = 13

132 , and F̂AA(lwαγ ) = 13
66 .
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film, whereas the wall-γ interface is wetted by a film of the
β phase. The domain (iv) above the curve Y = YK (X,Y ) corre-
sponds to the scenario shown in Fig. 2(d). In this domain the
wall-α interface is a plain one, whereas the wall-γ interface is
wetted by a film of the α phase. The remaining three scenarios
depicted in Fig. 2 are not realized if the strict mixing rules
are imposed on both the strengths of the fluid-fluid and the
fluid-wall interactions (the corresponding domains are absent
in Fig. 3). In particular, the scenario depicted in Fig. 2(e)
cannot occur, featuring wetting films of the β phase at all three
interfaces, i.e., with a β film completely surrounding a colloid.

Some of the lines shown in Fig. 3, which separate the
domains, depend on the ratios of various number densities.
These ratios are not independent of X , but are also not
uniquely determined by X ; these ratios also depend on the
thermodynamic state. The fluid model used here is also not
complete and does not allow one to predict the number densi-
ties in the different phases at given thermodynamic conditions.
Thus, the boundaries between the domains still depend para-
metrically on ratios between the number densities; we only
made use of the inequalities in Eq. (22). Moreover, the equa-
tion defining the separatrix YK (X,Y ) implicitly depends even
on Y via the equilibrium thicknesses lwβγ and lwαγ of the
wetting films. Nevertheless, strict statements about possible
and impossible wetting scenarios can be made.

C. Relaxed mixing rule for the fluid-wall interactions
and strict mixing rule for the fluid-fluid interactions

Here, we consider the case in which the relations between
the strengths of the fluid-fluid interactions still follow the strict
mixing rule ξ f = 1; this constraint, however, is no longer
imposed on the fluid-wall interactions (i.e., ξw �= 1). Since
the condition for the formation of a composite α-γ interface
with an intervening β film is still the same as in the previous
subsection, the parameter space can again be constrained to
the interval 0 < X < Dαβ , where Dαβ is given by Eq. (27).
The conditions for the formation of an intruding β film at the
wall-α interface follow from Eqs. (44) and (45) and are given
by

0 < Y < Ywβα (X ) for 0 < X < ξwDαβ

with

Ywβα (X ) = X + 1 + (ξw − 1)
X

(X − ξwDαβ )
(X + 1) (56)

and

Y > Ywβα (X ) for X > ξwDαβ.

In the above conditions, the following distinctions have to be
made in accordance with the magnitude of ξw.

(1) For 0 < ξw < 1, Ywβα (X ) is positive within the inter-
val 0 < X < ξwDαβ and negative within ξwDαβ < X < Dαβ .
Therefore, a β film wets the wall-α interface if the following
conditions are fulfilled:

0 < Y < Ywβα (X ) for 0 < X < ξwDαβ

or

Ywβα (X ) < 0 < Y for ξwDαβ < X < Dαβ .

(2) For ξw > 1, Ywβα (X ) is positive in the whole range
0 < X < Dαβ of interest. Therefore, a β film wets the wall-α
interface if the following condition is satisfied:

0 < Y < Ywβα (X )

for the whole range 0 < X < Dαβ .

A wetting film of the β phase at the wall-γ interface is
more favorable than a plain interface without a wetting film if
[see Eq. (46)]

Y > Ywβγ (X )

with

Ywβγ (X ) = X + 1 + (ξw − 1)
X

(X − ξwDβγ )
(X + 1). (57)

Here, Dβγ is given by Eq. (28).
A wetting film of the α phase at the wall-γ interface is

more favorable than a plain interface if [see Eq. (47)]

Y > Ywαγ (X )

with

Ywαγ (X ) = ρB,α

ρB,β

X + ρA,α

ρA,β

+ (ξw − 1)
X

(X − ξwDαγ )

(
ρB,α

ρB,β

X + ρA,α

ρA,β

)
.

(58)

Here, Dαγ is given by Eq. (48).
In order to figure out whether the configuration with an

α film or the one with a β film at the wall-γ interface is
more favorable, one has to inspect the sign of Wwβ(α)γ [see
Eq. (49)]. By applying Eqs. (C7) and (C8), with Wwβ(α)γ =:
πa4

AAL(X,Y ), one has

L(X,Y ) = εAAρ2
A,β

({[(
1 − ρB,γ

ρB,β

)
X + 1 − ρA,γ

ρA,β

]
(X + 1) −

[(
1 − ρB,γ

ρB,β

)
X

ξw
+ 1 − ρA,γ

ρA,β

]
Y

}
FAA(lwβγ )

−
{[(

ρB,α

ρB,β

− ρB,γ

ρB,β

)
X + ρA,α

ρA,β

− ρA,γ

ρA,β

](
ρB,α

ρB,β

X + ρA,α

ρA,β

)
−

[(
ρB,α

ρB,β

− ρB,γ

ρB,β

)
X

ξw
+ ρA,α

ρA,β

− ρA,γ

ρA,β

]
Y

}
F̂AA(lwαγ )

)
.

Wetting of the wall-γ interface by the β phase is preferred as compared to wetting by the α phase, if L(X,Y ) < 0. The condition
L(X,Y ) < 0 can be expressed as

PL(X,Y )×Y >

[(
1 − ρB,γ

ρB,β

)
X +1 − ρA,γ

ρA,β

]
(X + 1)FAA(lwβγ ) −

[(
ρB,α

ρB,β

− ρB,γ

ρB,β

)
X + ρA,α

ρA,β

− ρA,γ

ρA,β

](
ρB,α

ρB,β

X + ρA,α

ρA,β

)
F̂AA(lwαγ ),
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where

PL(X,Y ) =
[(

1 − ρB,γ

ρB,β

)
X

ξw
+ 1 − ρA,γ

ρA,β

]
FAA(lwβγ ) −

[(
ρB,α

ρB,β

− ρB,γ

ρB,β

)
X

ξw
+ ρA,α

ρA,β

− ρA,γ

ρA,β

]
F̂AA(lwαγ )

= 1

ξw

{(
1 − ρB,α

ρB,β

)
(X − ξwDαβ )FAA(lwβγ ) −

(
ρB,α

ρB,β

− ρB,γ

ρB,β

)
(X − ξwDαγ )[F̂AA(lwαγ ) − FAA(lwβγ )]

}
.

The inequalities between the number densities [Eq. (22)] imply ρB,α/ρB,β < 1, Dαβ > 0, ρB,α/ρB,β − ρB,γ /ρB,β > 0, and Dαγ <

0. Furthermore, we have 0 < FAA(lwβγ ) < F̂AA(lwαγ ).
If 0 < X < ξwDαβ , one has PL(X,Y ) < 0. If X > ξwDαβ , PL(X,Y ) can be positive or negative. Which possibility prevails depends

on the magnitude of ξw.
(1) If 0 < ξw < 1, the inequalities 0 < ξwDαβ < Dαβ hold. For 0 < X < ξwDαβ , PL(X,Y ) is negative. Within the interval

ξwDαβ < X < Dαβ , PL(X,Y ) can be positive or negative.
(2) If ξw > 1, one has ξwDαβ > Dαβ . Thus, PL(X,Y ) < 0 in the whole range of X values of interest, i.e., for 0 < X < Dαβ .
In the case PL(X,Y ) < 0 and if 0 < Y < YL(X,Y ), an intruding β film at the wall-γ interface is more favorable than a wetting

film of the α phase; here,

YL(X,Y ) =
[(

1 − ρB,γ

ρB,β

)
X + 1 − ρA,γ

ρA,β

]
(X + 1)

FAA(lwβγ )

PL(X,Y )
−

[(
ρB,α

ρB,β

− ρB,γ

ρB,β

)
X + ρA,α

ρA,β

− ρA,γ

ρA,β

](
ρB,α

ρB,β

X + ρA,α

ρA,β

)
F̂AA(lwαγ )

PL(X,Y )
.

(59)

If PL(X,Y ) > 0 and if Y > YL(X,Y ), the β wetting film at the
wall-γ interface is preferred.

The separatrix Y = YL(X,Y ) [Eq. (59)] is always located
above the curve Ywαγ (X ) [Eq. (58)] as long as Ywβγ (X ) <

Ywαγ (X ) [Ywβγ (X ) is defined in Eq. (57)]. Otherwise, YL(X,Y )

is located below the line Ywαγ (X ). The intersection between
YL(X,Y ) and Ywαγ (X ) lies on the curve Ywβγ (X ), i.e., the three
curves have a common intersection.

By admitting deviations from the strict mixing rule for
the fluid-wall interactions, additional wetting scenarios may
be realized as compared to those which are possible in the
case that the strict mixing rules apply to both the fluid-fluid
and the fluid-wall interactions (see Fig. 3). The main rea-
son for this is that in the latter case the domain boundary
for wetting of the wall-α interface by the β phase and the
domain boundary for wetting of the wall-γ interface by the
β phase (red line in Fig. 3) coincide, whereas these two
boundaries are different (orange and red lines in Fig. 4)
once the mixing rules for the fluid-wall interactions are
relaxed.

If 0 < ξw < 1 (i.e., the wall-A interaction is weaker than
the one prescribed by the strict mixing rule) the two additional
scenarios (v) and (vi) [Figs. 2(e) and 2(f)] become possible
in their corresponding domains in the parameter space (X,Y )
[see Fig. 4(a)]. In scenario (v) the β wetting film extends
into both the wall-α interface and into the wall-γ interface. In
this case the surface of a colloidal particle floating at the α-γ
interface would be fully covered by a film of the β phase [see
Fig. 2(e)]. In scenario (vi) the wall-α interface is wetted by a
film of the β phase, whereas the wall-γ interface is wetted by
the α phase [see Fig. 2(f)].

If ξw > 1 (i.e., the wall-A interaction is stronger than the
one prescribed by the strict mixing rule) only the additional
domain (i) appears [see Fig. 4(b)]. In this scenario, the wall-
α and the wall-γ interfaces are both plain ones without an
intruding wetting film [see Fig. 2(a)].

D. Relaxed mixing rule for the fluid-fluid interactions
and strict mixing rule for the fluid-wall interactions

Here, we consider deviations from the strict mixing rule
for the fluid-fluid interactions ξ f �= 1, whereas the ratio of the
strengths of the interactions of the A and B particles with the
wall is strictly fixed by the fluid-wall mixing rule (ξw = 1).
The condition for the formation of a composite α-γ interface
with an intervening β film is now given by the general expres-
sion in Eq. (26), and thus the parameter space of interest is
constrained to 0 < X < Xξ f , with

Xξ f =
√[

ξ f

2
(Dαβ + Dβγ )

]2

− DαβDβγ

+ ξ f

2
(Dαβ + Dβγ ). (60)

Here, Dαβ and Dβγ are given by Eqs. (27) and (28), re-
spectively. Depending on whether ξ f < 1 or ξ f > 1, one has
Xξ f < Dαβ or Xξ f > Dαβ .

The conditions for the formation of an intruding β film at
the wall-α interface follow from Eqs. (44) and (45) and can be
expressed as

0 < Y < Ỹwβα (X ) for 0 < X < Dαβ

with

Ỹwβα (X ) = X + 1 + (ξ f − 1)(1 − Dαβ )
X

(X − Dαβ )
(61)

and

Y > Ỹwβα (X ) for X > Dαβ.

Within the interesting range 0 < X < Xξ f of X , depending on
the magnitude of ξ f , the following distinctions can be made in
the above conditions:
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FIG. 4. Wetting domains (i)–(vi) in the parameter space (X,Y ), in the case that the fluid-fluid interactions obey the strict mixing rule, but
the fluid-wall interactions are not constrained (ξw �= 1). Further, the inequalities between the number densities [Eq. (22)] are assumed. The
domains correspond to the scenarios depicted in Fig. 2. Two distinct scenarios emerge, depending on whether (a) 0 < ξw < 1 or (b) ξw > 1.
Only to the left of the black line (X = Dαβ ) one encounters the composite α-γ interface of interest with an intruding β film. Above the red
line Ywβγ (X ) [Eq. (57)] the wall-γ interface is potentially wetted by a β film. Above the green line Ywαγ (X ) [Eq. (58)] the wall-γ interface is
potentially wetted by an α film. The separatrix between wetting of this interface by the β phase and wetting by the α phase is given by the blue
line YL(X,Y ) [Eq. (59)]. Depending on whether the green line lies above the red line or below, wetting of the wall-γ interface by an α film is
found above or below the blue line. Below the orange line Ywβα (X ) [Eq. (56)] the wall-α interface is wetted by a film of the β phase. The dashed
lines extend the domain boundaries into the region within which the α-γ interface is a plain one without an intruding β film; this region is
beyond the interest of this study. In particular, the dashed orange line in (a) represents Ywβα (X ) for X > Dαβ . Ywβα (X ) has a vertical asymptote
and changes sign at X = ξwDαβ ; it returns to positive values for X > Dαβ [see Eq. (56)]. The lines correspond to the choices ρA,α/ρA,β = 4,
ρB,α/ρB,β = 2

3 , which implies Dαβ = 9, FAA(lwβγ ) = 13
132 , and F̂AA(lwαγ ) = 13

66 . In (a) we have ξw = 0.8 and in (b) ξw = 1.2.

(1) For 0 < ξ f < 1 and thus Xξ f < Dαβ , the wall-α in-
terface is wetted by an intruding film of the β phase
if

0 < Y < Ỹwβα (X )

for the whole range 0 < X < Xξ f .

(2) For ξ f > 1 and thus for Xξ f > Dαβ , an intruding β film
at the wall-α interface occurs if

0 < Y < Ỹwβα (X ) for 0 < X < Dαβ

or

Y > Ỹwβα (X ) for Dαβ < X < Xξ f .

From Eq. (46) one obtains that a wetting film of the β phase
at the wall-γ interface is more favorable than a plain interface

without a wetting film if

Y > Ỹwβγ (X )

with

Ỹwβγ (X ) = X + 1 + (ξ f − 1)(1 − Dβγ )
X

(X − Dβγ )
. (62)

From Eq. (47) one finds that an intruding α film at the wall-
γ interface is more favorable than a plain interface if

Y > Ỹwαγ (X )

with

Ỹwαγ (X ) = ρB,α

ρB,β

X + ρA,α

ρA,β

+ (ξ f − 1)

(
ρA,α

ρA,β

− ρB,α

ρB,β

Dαγ

)
X

(X − Dαγ )
. (63)

Here, Dαγ is given by Eq. (48). We recall that in addition we are interested only in X values within the interval 0 < X < Xξ f .
In the parameter region, in which wetting of the wall-γ interface both by the α and by the β phase is more favorable than a

plain wall-γ interface without any wetting film, we still have to determine whether wetting by a film of the α phase or of the β

phase is preferred. This distinction hinges on the sign of Wwβ(α)γ =: πa4
AAM(X,Y ) [see Eq. (49)] with

M(X,Y ) = εAAρ2
A,β

({[(
1 − ρB,γ

ρB,β

)
X + 1 − ρA,γ

ρA,β

]
(X + 1 − Y ) +

[(
1 − ρB,γ

ρB,β

)
+

(
1 − ρA,γ

ρA,β

)]
(ξ f − 1)X

}
FAA(lwβγ )

−
{[(

ρB,α

ρB,β

− ρB,γ

ρB,β

)
X + ρA,α

ρA,β

− ρA,γ

ρA,β

](
ρB,α

ρB,β

X + ρA,α

ρA,β

− Y

)
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+
[(

ρB,α

ρB,β

− ρB,γ

ρB,β

)
ρA,α

ρA,β

+
(

ρA,α

ρA,β

− ρA,γ

ρA,β

)
ρB,α

ρB,β

]
(ξ f − 1)X

}
F̂AA(lwαγ )

)
.

For M(X,Y ) > 0 wetting of the wall-γ interface by an α film is more favorable than wetting by a β film; for M(X,Y ) < 0
wetting by the β phase is preferred. The condition M(X,Y ) < 0 can be rewritten as

PM(X,Y ) × Y >

{[(
1 − ρB,γ

ρB,β

)
X + 1 − ρA,γ

ρA,β

]
(X + 1) +

[(
1 − ρB,γ

ρB,β

)
+

(
1 − ρA,γ

ρA,β

)]
(ξ f − 1)X

}
FAA(lwβγ )

−
{[(

ρB,α

ρB,β

− ρB,γ

ρB,β

)
X + ρA,α

ρA,β

− ρA,γ

ρA,β

](
ρB,α

ρB,β

X + ρA,α

ρA,β

)

+
[(

ρB,α

ρB,β

− ρB,γ

ρB,β

)
ρA,α

ρA,β

+
(

ρA,α

ρA,β

− ρA,γ

ρA,β

)
ρB,α

ρB,β

]
(ξ f − 1)X

}
F̂AA(lwαγ ),

with PM(X,Y ) = PK (X,Y ), where PK (X,Y ) is given by Eqs. (52) and (53).
Depending on the magnitude of ξ f , the following distinctions can be made:
(1) For 0 < ξ f < 1 and thus Xξ f < Dαβ , PM(X,Y ) is negative in the whole range 0 < X < Xξ f of interest, because PM(X,Y ) < 0

for 0 < X < Dαβ .
(2) For ξ f > 1 and thus Xξ f > Dαβ , two regions have to be distinguished: PM(X,Y ) < 0 for 0 < X < Dαβ , whereas within

Dαβ < X < Xξ f PM(X,Y ) can be positive or negative.
For PM(X,Y ) > 0 the wall-γ interface is wetted by a β film only if Y > YM(X,Y ), with

YM(X,Y ) =
{[(

1 − ρB,γ

ρB,β

)
X + 1 − ρA,γ

ρA,β

]
(X + 1) +

[(
1 − ρB,γ

ρB,β

)
+

(
1 − ρA,γ

ρA,β

)]
(ξ f − 1)X

}
FAA(lwβγ )

PM (X,Y )

−
{[(

ρB,α

ρB,β

− ρB,γ

ρB,β

)
X + ρA,α

ρA,β

− ρA,γ

ρA,β

](
ρB,α

ρB,β

X + ρA,α

ρA,β

)

+
[(

ρB,α

ρB,β

− ρB,γ

ρB,β

)
ρA,α

ρA,β

+
(

ρA,α

ρA,β

− ρA,γ

ρA,β

)
ρB,α

ρB,β

]
(ξ f − 1)X

}
F̂AA(lwαγ )

PM(X,Y )
. (64)

If PM(X,Y ) < 0, wetting of the wall-γ interface by a β film is
preferred only if 0 < Y < YM(X,Y ).

For

Ỹwβγ (X ) < Ỹwαγ (X ),

YM(X,Y ) [Eq. (64)] lies always above Ỹwαγ (X ). Otherwise,
YM(X,Y ) lies below Ỹwαγ (X ) [Eq. (63)]. The intersection be-
tween YM(X,Y ) and Ỹwαγ (X ) is located on the curve Ỹwβγ (X )
[Eq. (62)], which means that Ỹwαγ (X ), Ỹwβγ (X ), and YM(X,Y )

have a common intersection point.
In Fig. 5 we illustrate how the parameter space (X,Y )

is subdivided into domains, which are associated with the
various wetting scenarios, in the case that deviations from the
strict mixing rule for the fluid-fluid interactions are admitted.
In Fig. 5(a) the division into domains for 0 < ξ f < 1 (i.e., the
strength of the A-B interaction is smaller than prescribed by
the strict mixing rule) is shown. Figure 5(a) resembles closely
Fig. 4(b) (i.e., deviations from the mixing rule concerning the
fluid-wall interactions and ξw > 1). However, in the present
case an additional domain associated with the wetting sce-
nario (v) appears, although only in a very small region of
the parameter space. In the case ξ f > 1 [see Fig. 5(b)] one
obtains a picture which is very similar to the one shown in
Fig. 4(a), but with an additional domain, occupying also only
a very small region of the parameter space, corresponding to
scenario (i).

E. Contact angles

The equilibrium contact angle θ , with which the liquid-
vapor (α-γ ) interface meets the wall, is a measurable
observable. It can be expressed via Young’s equation

cos θ = σ
eq
wγ − σ

eq
wα

σ
eq
αγ

, (65)

in terms of the interfacial tensions of the wall-γ , wall-α,
and α-γ interfaces. The tensions correspond to the respective
equilibrium structures. The various wetting domains intro-
duced above are characterized by combinations of interfacial
structures at the wall-γ and the wall-α interfaces. One may
pose the question whether this is reflected by the possi-
ble values of the contact angle θ . For instance, it might
be the case that in one domain the wall must be lyophilic
(i.e., θ < π

2 ) whereas in another domain the wall must be
lyophobic (i.e., θ > π

2 ). However, it is also conceivable that
in one domain both lyophilic and lyophobic behaviors are
possible and that there is a dividing line, inside the domain,
separating the two behaviors.

Here, we focus on the case in which the mixing rules
apply to both the fluid-fluid and the fluid-wall interactions. In
this particular case the parameter space is divided into three
distinct wetting domains. Now we relate Eq. (65) to this case
and to the three wetting domains (ii), (iii), and (iv) by inserting

042802-14



WETTING BEHAVIOR OF A COLLOIDAL PARTICLE … PHYSICAL REVIEW E 103, 042802 (2021)

FIG. 5. Wetting domains in the parameter space (X,Y ), in the case that the fluid-wall interactions obey the strict mixing rule, but that
the fluid-fluid interactions are not constrained (ξ f �= 1). Furthermore the inequalities in Eq. (22) between the number densities are respected.
The domains correspond to the wetting scenarios depicted in Fig. 2. Two different scenarios emerge in addition, depending on whether
(a) 0 < ξ f < 1 or (b) ξ f > 1. Only to the left of the black line X = Xξ f [Eq. (60)], the desired composite α-γ interface with an intruding β film
can occur. Above the red line Ỹwβγ (X ) [Eq. (62)] the wall-γ interface is potentially wetted by a β film. Above the green line Ỹwαγ (X ) [Eq. (63)]
the wall-γ interface is potentially wetted by an α film. The separatrix between wetting by the β phase and the α phase, respectively, is given
by the blue line YM(X,Y ) [Eq. (64)]. Depending on whether the green line lies above the red line or below, wetting of the wall-γ interface by an
α film is found above or below the blue line. Below the orange line Ỹwβα (X ) [Eq. (61)] the wall-α interface is wetted by a film of the β phase.
The dashed lines extend the domain boundaries into the region within which the α-γ interface is a plain one without an intruding β film. In
particular, the dashed orange line in (b) represents Ỹwβα (X ) for X > Xξ f . The vertical asymptote of Ỹwβα (X ), at which in addition this function
changes sign, is located at X = Dαβ . Ỹwβα (X ) returns to positive values for X > Xξ f [see Eq. (61)]. The brown vertical line shows X = Dαβ .
The lines are drawn using ρA,α/ρA,β = 4, ρB,α/ρB,β = 2

3 , which implies Dαβ = 9, FAA(lwβγ ) = 13
132 , and F̂AA(lwαγ ) = 13

66 . In (a) we have chosen
ξ f = 0.5 and in (b) ξ f = 1.5 so that Xξ f = 5.605 in (a) and Xξ f = 12.709 in (b). The insets are magnifications of the regions indicated by
arrows in the main figures.

the interfacial tensions for the respective interfacial structures
and by using the notation introduced above. This leads to the
three expressions

cos θ(ii) = σwγ − σwβα

σαβγ

,

cos θ(iii) = σwβγ − σwα

σαβγ

,

and

cos θ(iv) = σwαγ − σwα

σαβγ

.

Here, θκ is the contact angle according to Young’s equa-
tion specialized to domain κ , with κ = (ii), (iii), and (iv). If
cos θκ > 0, we have θκ < π

2 . Otherwise, θκ > π
2 . The sign of

cos θκ is determined by the numerators in the above expres-
sions because σαβγ is positive. By using Eqs. (29)–(31), these
numerators, called ψκ , can be expressed as follows:

ψ(ii) = σwγ − σwβα

= σwγ − σwα − Wwβα, (66)

ψ(iii) = σwβγ − σwα

=Wwβγ + σwγ − σwα, (67)

and

ψ(iv) = σwαγ − σwα

=Wwαγ + σwγ − σwα. (68)

Preliminary conclusions regarding the sign of cos θ can
be drawn based already on the sign of σwγ − σwα and our
knowledge that Wwβα , Wwβγ , and Wwαγ are negative within
the respective domain for which Eqs. (66), (67), and (68) are
applicable. We find σwγ − σwα = 0 if Y = Yref(X ) with

Yref(X ) = 1

2

[(
ρB,α

ρB,β

+ ρB,γ

ρB,β

)
X + ρA,α

ρA,β

+ ρA,γ

ρA,β

]
(69)

(see Appendix E). The difference σwγ − σwα is positive if
Y > Yref, and it is negative if 0 < Y < Yref. Based on the
inequalities in Eq. (22) between the number densities, we
also know that Yref(X ) lies above Y = X + 1, which is the
boundary between the domains (ii) and (iii) for small X .
Yref(X ) intersects Y = X + 1 at Xint [see, cf., Eq. (73)] and
is located below Y = X + 1 for X > Xint. It also follows that
Yref(X ) is located below the green line in Fig. 3 and thus it
is located below the domain (iv). From Eq. (68) and the sign
of Wwαγ we infer that the line, above which θκ < π

2 , must be
located above Yref(X ); only if this shift is unexpectedly large
this boundary would move up into domain (iv). Thus, it is very
likely that domain (iv) does not contain a boundary between
lyophilic and lyophobic behavior so that the whole domain
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(iv) is linked to lyophilic walls. The knowledge acquired up to
this point can be summarized as follows:

(a) In the wetting domain (ii) one has θ(ii) < π
2 for Y >

Yref(X ); the actual boundary θ(ii) = π
2 is located below Yref(X ).

(b) In the wetting domain (iii) one has θ(iii) > π
2 within

the interval 0 < Y < Yref(X ); the actual boundary θ(iii) = π
2 is

located above Yref(X ).
(c) In the wetting domain (iv), it is likely that θ(iv) < π

2
inside the entire domain.

In order to locate the boundary θκ = π
2 precisely, we study

the full expressions on the right hand sides of Eqs. (66)–(68)
and determine the separatrix YGκ

between lyophilic behavior
(θκ < π

2 , ψκ > 0) and lyophobic behavior (θκ > π
2 , ψκ < 0)

in each case.
For the domain (ii) we find

YG(ii) (X,Y ) = X + 1+ 13

132

[(
ρB,α

ρB,β

− ρB,γ

ρB,β

)
X + ρA,α

ρA,β

− ρA,γ

ρA,β

][(
ρB,α

ρB,β

+ ρB,γ

ρB,β

− 2

)
X + ρA,α

ρA,β

+ ρA,γ

ρA,β

− 2

]
1

PG(ii) (X,Y )
(70)

with

PG(ii) (X,Y ) = 13

66

[(
1 − ρB,γ

ρB,β

)
X + 1 − ρA,γ

ρA,β

]
+

[
13

66
− FAA(lwβα )

][(
ρB,α

ρB,β

− 1

)
X + ρA,α

ρA,β

− 1

]
.

PG(ii) (X,Y ) is positive in the relevant interval 0 < X < Dαβ . In these terms we can state that θ(ii) < π
2 for Y > YG(ii) (X,Y ) and θ(ii) > π

2
for 0 < Y < YG(ii) (X,Y ).

For the domain (iii) we find

YG(iii) (X,Y ) = X + 1+ 13

132

[(
ρB,α

ρB,β

− ρB,γ

ρB,β

)
X + ρA,α

ρA,β

− ρA,γ

ρA,β

][(
ρB,α

ρB,β

+ ρB,γ

ρB,β

− 2

)
X + ρA,α

ρA,β

+ ρA,γ

ρA,β

− 2

]
1

PG(iii) (X,Y )
(71)

with

PG(iii) (X,Y ) = 13

66

[(
ρB,α

ρB,β

− 1

)
X + ρA,α

ρA,β

− 1

]
+

[
13

66
− FAA(lwβγ )

][(
1 − ρB,γ

ρB,β

)
X + 1 − ρA,γ

ρA,β

]
.

PG(iii) (X,Y ) is positive in the relevant interval 0 < X < Dαβ . Accordingly, we obtain θ(iii) < π
2 for Y > YG(iii) (X,Y ) and θ(iii) > π

2 for
0 < Y < YG(iii) (X,Y ).

Finally, for the domain (iv) we find

YG(iv) (X,Y ) = 1

2

{[(
ρB,α

ρB,β

+ ρB,γ

ρB,β

)
X + ρA,α

ρA,β

+ ρA,γ

ρA,β

]
+

[(
ρB,α

ρB,β

− ρB,γ

ρB,β

)
X + ρA,α

ρA,β

− ρA,γ

ρA,β

]
F̂AA(lwαγ )

}
. (72)

Because F̂AA(lwαγ ) � 13
66 and due to the inequalities in Eq. (22)

we find that YG(iv) (X,Y ) is always located below the green line
in Fig. 3 and thus below the domain (iv). This confirms that
θ(iv) < π

2 in the entire domain.
It is also interesting to note that YG(ii) (X,Y ), YG(iii) (X,Y ), and

Y = X + 1 meet at the same point (Xint, Yint) at which Yref(X )
and Y = X + 1 intersect. This intersection point (Xint, Yint) is
given by

Xint =
( ρA,α

ρA,β
+ ρA,γ

ρA,β

) − 2

2 − ( ρB,α

ρB,β
+ ρB,γ

ρB,β

) and

Yint =
( ρA,α

ρA,β
+ ρA,γ

ρA,β

) − ( ρB,α

ρB,β
+ ρB,γ

ρB,β

)
2 − ( ρB,α

ρB,β
+ ρB,γ

ρB,β

) . (73)

Our findings are summarized in Fig. 6 where we show
the three wetting domains in the parameter space (X,Y ) to-
gether with the two domains corresponding to either lyophilic
(θ < π

2 ) or lyophobic (θ > π
2 ) behavior.

IV. CONCLUSIONS AND SUMMARY

A region of the bulk phase diagram of a binary liquid mix-
ture, composed of A and B particles, has been considered in
which the vapor phase (γ phase) coexists with a stable A-rich

liquid phase (α phase), whereas the B-rich phase (β phase)
is metastable. For such fluids possible scenarios have been
discussed, which may occur, if a composite liquid-vapor (α-γ )
interface with an intruding film of the β phase meets a solid
wall. The study is based on classical density functional theory,
using the so-called sharp-kink approximation for the fluid
density profiles. Furthermore, certain inequalities [Eq. (22)]
have been assumed among the number densities of the A and
B particles in the three phases α, β, and γ . These are valid
for typical mixtures of two partially miscible liquids. Within
the theoretical framework presented here, we have considered
also cases in which one or two of these inequalities are re-
versed. We refrain from including these into this presentation
in order to avoid an unnecessary complexity of the discussion
and because these cases correspond to very special situations,
which should be discussed separately by focusing on a partic-
ular system. In order to simplify the analytical expressions, we
have also assumed that the various length parameters, which
characterize the range of the repulsive core of the various
fluid-fluid and fluid-wall interactions, are all equal. However,
the general case in which the length parameters are all differ-
ent can be approximately mapped onto the special case. This
mapping is accurate if the wetting films are of mesoscopic
thicknesses.
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FIG. 6. In (a) the three wetting domains depicted in Fig. 3 are shown again together with Yref [cyan straight line, Eq. (69)] and YGκ (X,Y )

[magenta curve, Eqs. (70) and (71)] for κ = (ii) and (iii). The latter is the separatrix between lyophobic (θ > π

2 ) and lyophilic (θ < π

2 )
behavior; the first is an approximation to this separatrix. The model used here (such as the constraints to interaction parameters, etc.) is
the same as the one explained in Fig. 3. In (b) the domains of lyophobic and lyophilic behavior are shown. In (c) and (d) sketches of the two
contact angle scenarios are given, for a planar wall and for a colloid floating at a liquid-vapor interface, neglecting gravity effects. The wetting
films at the α-γ interface as well as further wetting films which might be present, depending on the wetting domain under discussion, are
suppressed for reasons of clarity. In (a) and (b) the curves correspond to the choices ρA,α/ρA,β = 4, ρB,α/ρB,β = 2

3 , which implies Dαβ = 9,
FAA(lwβγ ) = 13

132 , and F̂AA(lwαγ ) = 13
66 .

In a first step we have assumed that the so-called mixing
rule, or the modified version of it if the length parameters
are not all equal, applies to both the fluid-fluid and the
fluid-wall interactions. In this case the strength of the A-B
interaction is the geometric mean of the strengths of the A-A
and the B-B interactions, and the ratio of the wall-A and
the wall-B interaction strengths is related to the ratio of the
A-A and the B-B interactions by a corresponding relation.
Given these relations, the three distinct wetting scenarios
(ii), (iii), and (iv) sketched in Figs. 2(b)–2(d) can occur.
These are tied to the three domains (ii), (iii), and (iv) in
the two-dimensional space of system parameters as shown
in Fig. 3. A scenario, in which the β film extends into
both the wall-vapor (wall-γ ) and the wall-liquid (wall-α)
interface [i.e., the wetting domain (v) in Fig. 2(e)], is not
possible.

As further steps we have relaxed the mixing rules for
the fluid-wall and for the fluid-fluid interactions. Up to
six different wetting scenarios can occur, if the mixing
rules for the fluid-wall (see Fig. 4) and for the fluid-fluid

interactions (see Fig. 5) are relaxed. It depends on the sign
of the deviations from the mixing rule prescriptions how the
space of system parameters is divided into the corresponding
domains and which domains actually appear, e.g., whether a
domain (v) is present.

For the special case that the mixing rules apply to both
the fluid-fluid and the fluid-wall interactions, we searched for
relations between these wetting domains and the contact angle
θ . For the scenario in which the β film ends at the wall, but an
α film forms at the wall-γ interface, one always finds θ < 90o.
Concerning the other two scenarios, the respective domains
are subdivided into subdomains within which θ > 90o or θ <

90o, respectively.
We note that the system parameters may be varied in two

ways. Either via varying the various interaction strengths (i.e.,
by using different liquids or a wall with modified properties)
or via changing the thermodynamic state and thus the bulk
number densities, which enter into the definition of the di-
mensionless system parameters X and Y [Eqs. (24) and (43),
respectively]. Both routes facilitate to switch between the
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wetting domains. The insight we have gained concerning the
wetting scenarios around a colloidal particle floating at a com-
posite liquid-vapor interface, is potentially useful for tuning
the capillarity induced interactions between such colloidal

particles. The particles could be fabricated from the same or
from different materials. Such knowledge is essential for de-
signing the self-assembly of colloidal particles at liquid-vapor
interfaces.

APPENDIX A: CONDITION FOR Sαβγ < 0

In this Appendix, we determine the range of X values within which Sαβγ < 0, which is the condition for having an intruding
wetting film of the β phase at the α-γ interface. We start from Eq. (25), i.e.,

Sαβγ = εAAρ2
A,β

[(
1 − ρB,α

ρB,β

)(
1 − ρB,γ

ρB,β

)
X 2 +

(
1 − ρB,α

ρB,β

)(
1 − ρA,γ

ρA,β

)
ξ f X

+
(

1 − ρA,α

ρA,β

)(
1 − ρB,γ

ρB,β

)
ξ f X +

(
1 − ρA,α

ρA,β

)(
1 − ρA,γ

ρA,β

)]
.

The condition Sαβγ < 0 implies(
1 − ρB,α

ρB,β

)(
1 − ρB,γ

ρB,β

)
X 2 +

(
1 − ρB,α

ρB,β

)(
1 − ρA,γ

ρA,β

)
ξ f X +

(
1 − ρA,α

ρA,β

)(
1 − ρB,γ

ρB,β

)
ξ f X +

(
1 − ρA,α

ρA,β

)(
1 − ρA,γ

ρA,β

)
< 0.

(A1)

In order to solve the inequality in Eq. (A1), we consider Sαβγ = 0. There are two solutions X1 and X2 > X1:

X1 = −
√[

ξ f

2
(Dαβ + Dβγ )

]2

− DαβDβγ + ξ f

2
(Dαβ + Dβγ )

and

X2 =
√[

ξ f

2
(Dαβ + Dβγ )

]2

− DαβDβγ + ξ f

2
(Dαβ + Dβγ ),

where Dαβ and Dβγ are given by Eqs. (27) and (28), respectively.
Here we use the assumed inequalities ρA,α > ρA,β and ρB,α < ρB,β [Eq. (22)], from which we infer that the prefactor of X 2

in Eq. (A1) is positive. In order to have Sαβγ < 0, X must be in the range of X1 < X < X2. It is known that X1 < 0 and X2 > 0
because Dαβ > 0, Dβγ < 0, and X > 0 by definition. As a result, we have Sαβγ < 0 within the range 0 < X < X2 [see Eq. (26)].

APPENDIX B: WALL-FLUID WETTING PARAMETERS

In this Appendix, the explicit expressions [see Eqs. (33)–(35)] for the wetting parameters Wwβα , Wwβγ , and Wwαγ are derived
from the definitions in Eqs. (29)–(31).

By using relations similar to the ones in Eqs. (4) and (5), we find the surface tensions σwβα , σwβγ , and σwαγ of the partially
wet interfaces (see below). With the corresponding equilibrium wetting film thicknesses l = lwβα , lwβγ , and lwαγ one has

σwβα = �wβα
s (lwβα, T, {μi}) with

∂�
wβα
s (l )

∂l

∣∣∣∣
l=lwβα

= 0, (B1)

and similarly for σwβγ and σwαγ .
Using the sharp-kink approximation, the surface contributions to the grand canonical potential for the various partially wet

interfaces are given by

�wβα
s (l ) = l (�β − �α ) + ωwβα (l ) + σwβ + σβα, (B2)

and similarly for �
wβγ
s (l ) and �

wαγ
s (l ), where σwβ is the surface tension of the plain wall-β interface, without any intruding

wetting film.
Therefore, Eq. (29), Wwβα , can be expressed as

Wwβα = lwβα (�β − �α ) + ωwβα (lwβα ) + σwβ + σβα − σwα, (B3)

and similarly for Wwβγ and Wwαγ [Eqs. (30) and (31), respectively]. We also make use of the relations

�β − �α = −∂ωwβα (l )

∂l

∣∣∣∣
l=lwβα

, (B4)

and similarly for �β − �γ and �α − �γ .
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The expressions for the surface tensions of various fluid interfaces have already been derived within the sharp-kink
approximation [see Eqs. (9)–(11)]. In addition, the surface tensions and the various interface potentials ω characterizing the
wall-fluid interfaces are given by

σwα = −1

2

∑
i, j

ρi,αρ j,α

∫ ∞

0
dy ti j (y) +

∑
i

ρi,αρw

∫ ∞

0
dy Vi(y), (B5)

ωwβα (l ) =
∑
i, j

(ρi,β − ρi,α )ρ j,β

∫ ∞

l
dy ti j (y) −

∑
i

(ρi,β − ρi,α )ρw

∫ ∞

l
dy Vi(y), (B6)

and similarly for σwβ , σwγ , ωwβγ (l ), and ωwαγ (l ), where

ti j (y) =
∫ ∞

y
dx

∫
d2r‖ w̃i j

[(
r2
‖ + x2

) 1
2
]

and

Vi(y) =
∫ ∞

y
dx

∫
d2r‖ ṽi

[(
r2
‖ + x2

) 1
2
]
.

By taking the explicit expressions for w̃i j and ṽi [see Eqs. (12) and (32)], one obtains for Eqs. (B5) and (B6)

σwα = 13

132
π

∑
i, j

εi ja
4
i jρi,αρ j,α − 13

66
π

∑
i

εwia
4
wiρi,αρw, (B7)

ωwβα (l ) = −π
∑
i, j

εi ja
4
i j (ρi,β − ρi,α )ρ j,β

[
1

3

(
ai j

l

)2

− 4

5

(
ai j

l

)3]

+ π
∑

i

εwia
4
wi(ρi,β − ρi,α )ρw

[
1

3

(
awi

l

)2

− 4

5

(
awi

l

)3]
, (B8)

and similarly for σwβ , σwγ , ωwβγ (l ), and ωwαγ (l ).
Using the derivative of Eq. (B8) with respect to the wetting film thickness, Eq. (B4) turns into

�β − �α = −π
∑
i, j

εi ja
3
i j (ρi,β − ρi,α )ρ j,β

[
2

3

(
ai j

lwβα

)3

− 12

5

(
ai j

lwβα

)4]

+ π
∑

i

εwia
3
wi(ρi,β − ρi,α )ρw

[
2

3

(
awi

lwβα

)3

− 12

5

(
awi

lwβα

)4]
, (B9)

and similarly for �β − �γ and �α − �γ . Here, �α − �γ is zero because we consider the bulk phases α and γ to be in thermal
equilibrium.

Finally, based on Eq. (B7), Eq. (B3) can be expressed as

Wwβα = π
∑
i, j

εi ja
4
i j (ρi,β − ρi,α )ρ j,β

[
13

66
−

(
ai j

lwβα

)2

+ 16

5

(
ai j

lwβα

)3]

− π
∑

i

εwia
4
wi(ρi,β − ρi,α )ρw

[
13

66
−

(
awi

lwβα

)2

+ 16

5

(
awi

lwβα

)3]
,

and similarly for Wwβγ and Wwαγ . Upon changing notation and by introducing the Kronecker symbol δ, we arrive at the
expressions in Eqs. (33)–(35).

APPENDIX C: DOMAINS CHARACTERIZED BY Swβα < 0, Swβγ < 0, OR Swαγ < 0

In this Appendix, we search for domains in the (X,Y ) parameter space within which the conditions Swβα < 0, Swβγ < 0, or
Swαγ < 0 hold. We start this discussion with the condition Swβα < 0. To this end we introduce the notations εAB = ξ f

√
εAAεBB,

εwA = ξwA
√

εwwεAA, and εwB = ξwB
√

εwwεBB so that εwA/εwB = (ξwA/ξwB)
√

εAA/εBB =: ξw
√

εAA/εBB. Accordingly, we express
Swβα [Eq. (40)] as

Swβα = (ρA,β − ρA,α )(εAAρA,β − ξwA
√

εwwεAAρw + ξ f
√

εAAεBBρB,β )

+ (ρB,β − ρB,α )(ξ f
√

εAAεBBρA,β + εBBρB,β − ξwB
√

εwwεBBρw).
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In terms of the dimensionless parameters X = ρB,β

ρA,β

√
εBB
εAA

and Y = ρw

ρA,β

εwA
εAA

, Swβα can be written as

Swβα = εAAρ2
A,β

{[(
1 − ρB,α

ρB,β

)
X +

(
1 − ρA,α

ρA,β

)]
(X + 1) +

[(
1 − ρB,α

ρB,β

)
+

(
1 − ρA,α

ρA,β

)]
(ξ f − 1)X

−
[(

1 − ρB,α

ρB,β

)
X

ξw
+

(
1 − ρA,α

ρA,β

)]
Y

}
. (C1)

The condition Swβα < 0, together with Eq. (C1), leads to the inequality[(
1 − ρB,α

ρB,β

)
X

ξw
+

(
1 − ρA,α

ρA,β

)]
Y >

[(
1 − ρB,α

ρB,β

)
X +

(
1 − ρA,α

ρA,β

)]
(X + 1) +

[(
1 − ρB,α

ρB,β

)
+

(
1 − ρA,α

ρA,β

)]
(ξ f − 1)X.

(C2)

In order to proceed we analyze the sign of the prefactor of Y . It is positive, if(
1 − ρB,α

ρB,β

)
X

ξw
> −

(
1 − ρA,α

ρA,β

)
. (C3)

Taking into account the assumed inequalities ρA,α > ρA,β and ρB,α < ρB,β [Eq. (22)], Eq. (C3) leads to X > ξwDαβ with Dαβ > 0.
Under this condition of a positive prefactor of Y , we find

Y > X + 1 +
(
1 − ρB,α

ρB,β

)(
1 − 1

ξw

)
X[(

1 − ρB,α

ρB,β

)
X
ξw

+ (
1 − ρA,α

ρA,β

)] (X + 1) +
[(

1 − ρB,α

ρB,β

) + (
1 − ρA,α

ρA,β

)]
(ξ f − 1)[(

1 − ρB,α

ρB,β

)
X
ξw

+ (
1 − ρA,α

ρA,β

)] X (C4)

or, expressed in terms of Dαβ [Eq. (27)],

Y > X + 1 + (ξw − 1)
X

(X − ξwDαβ )
(X + 1) + ξw(ξ f − 1)(1 − Dαβ )

X

(X − ξwDαβ )
. (C5)

In the case of a negative prefactor of Y , i.e., within the X interval 0 < X < ξwDαβ , we obtain the inequality

0 < Y < X + 1 + (ξw − 1)
X

(X − ξwDαβ )
(X + 1) + ξw(ξ f − 1)(1 − Dαβ )

X

(X − ξwDαβ )
. (C6)

In summary, the conditions for wetting of the wall-α interface by a film of the β phase are given by

0 < X < ξwDαβ and 0 < Y < X + 1 + (ξw − 1)
X

(X − ξwDαβ )
(X + 1) + ξw(ξ f − 1)(1 − Dαβ )

X

(X − ξwDαβ )

or if

X > ξwDαβ and Y > X + 1 + (ξw − 1)
X

(X − ξwDαβ )
(X + 1) + ξw(ξ f − 1)(1 − Dαβ )

X

(X − ξwDαβ )
,

which coincide with Eqs. (44) and (45).
Now, we determine the domains in the (X,Y ) parameter space within which the conditions Swβγ < 0 and Swαγ < 0 are valid.

By using the same notation as introduced above we can rewrite Swβγ and Swαγ as

Swβγ = εAAρ2
A,β

{[(
1 − ρB,γ

ρB,β

)
X +

(
1 − ρA,γ

ρA,β

)]
(X + 1) +

[(
1 − ρB,γ

ρB,β

)
+

(
1 − ρA,γ

ρA,β

)]
(ξ f − 1)X

−
[(

1 − ρB,γ

ρB,β

)
X

ξw
+

(
1 − ρA,γ

ρA,β

)]
Y

}
(C7)

and

Swαγ = εAAρ2
A,β

{[(
ρB,α

ρB,β

− ρB,γ

ρB,β

)
X +

(
ρA,α

ρA,β

− ρA,γ

ρA,β

)](
ρB,α

ρB,β

X + ρA,α

ρA,β

)
+

[(
ρB,α

ρB,β

− ρB,γ

ρB,β

)
ρA,α

ρA,β

+
(

ρA,α

ρA,β

− ρA,γ

ρA,β

)
ρB,α

ρB,β

]
(ξ f − 1)X

−
[(

ρB,α

ρB,β

− ρB,γ

ρB,β

)
X

ξw
+

(
ρA,α

ρA,β

− ρA,γ

ρA,β

)]
Y

}
. (C8)
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The condition Swβγ < 0 leads to the inequality[(
1 − ρB,γ

ρB,β

)
X

ξw
+

(
1 − ρA,γ

ρA,β

)]
Y >

[(
1 − ρB,γ

ρB,β

)
X +

(
1 − ρA,γ

ρA,β

)]
(X + 1)

+
[(

1 − ρB,γ

ρB,β

)
+

(
1 − ρA,γ

ρA,β

)]
(ξ f − 1)X. (C9)

Analogously, the condition Swαγ < 0 leads to the inequality[(
ρB,α

ρB,β

− ρB,γ

ρB,β

)
X

ξw
+

(
ρA,α

ρA,β

− ρA,γ

ρA,β

)]
Y >

[(
ρB,α

ρB,β

− ρB,γ

ρB,β

)
X +

(
ρA,α

ρA,β

− ρA,γ

ρA,β

)](
ρB,α

ρB,β

X + ρA,α

ρA,β

)
+

[(
ρB,α

ρB,β

− ρB,γ

ρB,β

)
ρA,α

ρA,β

+
(

ρA,α

ρA,β

− ρA,γ

ρA,β

)
ρB,α

ρB,β

]
(ξ f − 1)X. (C10)

In both inequalities [Eqs. (C9) and (C10)], the prefactors of Y are positive for all X > 0, due to the assumed inequalities between
the number densities [Eq. (22)]. Therefore, one can reformulate Eqs. (C9) and (C10) as

Y > X + 1 +
(
1 − ρB,γ

ρB,β

)(
1 − 1

ξw

)
X[(

1 − ρB,γ

ρB,β

)
X
ξw

+ (
1 − ρA,γ

ρA,β

)] (X + 1) +
[(

1 − ρB,γ

ρB,β

) + (
1 − ρA,γ

ρA,β

)]
(ξ f − 1)[(

1 − ρB,γ

ρB,β

)
X
ξw

+ (
1 − ρA,γ

ρA,β

)] X (C11)

and

Y >
ρB,α

ρB,β

X + ρA,α

ρA,β

+
( ρB,α

ρB,β
− ρB,γ

ρB,β

)(
1 − 1

ξw

)
X[( ρB,α

ρB,β
− ρB,γ

ρB,β

)
X
ξw

+ ( ρA,α

ρA,β
− ρA,γ

ρA,β

)](
ρB,α

ρB,β

X + ρA,α

ρA,β

)
+

[( ρB,α

ρB,β
− ρB,γ

ρB,β

) ρA,α

ρA,β
+ ( ρA,α

ρA,β
− ρA,γ

ρA,β

) ρB,α

ρB,β

]
(ξ f − 1)[( ρB,α

ρB,β
− ρB,γ

ρB,β

)
X
ξw

+ ( ρA,α

ρA,β
− ρA,γ

ρA,β

)] X.

(C12)

By introducing the expressions for Dβγ [Eq. (28)] and Dαγ [Eq. (48)], Eqs. (C11) and (C12) render the conditions expressed via
Eqs. (46) and (47), respectively.

APPENDIX D: EQUILIBRIUM WETTING FILM THICKNESSES

In this Appendix, we investigate the equilibrium wetting film thicknesses at fluid-fluid or wall-fluid interfaces. �s(l ) attains
its minimum at the equilibrium wetting film thickness. First, we consider the case of a planar α-γ interface with an intruding β

wetting film. From Eqs. (3) and (5), we find

∂�
αβγ
s (l )

∂l

∣∣∣∣
l=lαβγ

= �β − �γ + ∂ωαβγ (l )

∂l

∣∣∣∣
l=lαβγ

= 0. (D1)

Here, �β − �γ is positive, given that the α phase is the stable phase and the β phase is slightly off coexistence. Therefore,
∂ωαβγ (l )

∂l must be negative at l = lαβγ . By using Eq. (13) and taking all length parameters to be equal, one obtains

∂ωαβγ (l )

∂l
= πa3

AASαβγ

[
2

3

(
aAA

l

)3

− 12

5

(
aAA

l

)4]
. (D2)

We have to consider only the case that Sαβγ is negative because only then a sufficiently thick β wetting film can occur. This
implies that the expression in square brackets in Eq. (D2) must be positive. As a result, lαβγ is definitely larger than 18

5 aAA.
By inserting Eq. (D2) into Eq. (D1), one finds that it is possible that Eq. (D1) has no solution, only one solution, or two

solutions, depending on the magnitude of �β − �γ . If Eq. (D1) has no solution or one solution, �
αβγ
s (l ) has a minimum at

l → 0, i.e., there is no β wetting film.
If Eq. (D1) has two solutions l1 and l2 > l1, one knows that 18

5 aAA < l1 < l2 (see above). In order to find out which of the

two solutions corresponds to a minimum or rather to a maximum, we explore the sign of ∂�
αβγ
s (l )
∂l near l1 and l2:

(1) If l < l1, one has ∂�
αβγ
s (l )
∂l > 0, i.e., the slope of �

αβγ
s (l ) is positive for l < l1.

(2) If l1 < l < l2, ∂�
αβγ
s (l )
∂l < 0, i.e., the slope of �

αβγ
s (l ) is negative for l1 < l < l2.

(3) If l > l2, ∂�
αβγ
s (l )
∂l > 0, i.e., the slope of �

αβγ
s (l ) is again positive for l > l2.

Thus, �
αβγ
s (l ) has its maximum at l = l1 and its minimum at l = l2. Therefore, the equilibrium film thickness is given by

l2 =: lαβγ . At three-phase coexistence, we have �β − �γ → 0 so that l1 → 18
5 aAA and l2 → ∞, i.e., lαβγ → ∞.

Analogously the equilibrium thickness of the β wetting film at a planar wall-α interface is determined. Based on Eqs. (B1),
(B2), and (B8) with equal length parameters for all interactions, one finds lwβα > 18

5 aAA. At three-phase coexistence, i.e., �β −
�α → 0, we have lwβα → ∞.
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In the case of a planar wall-γ interface wetted by a film of the β phase we find again lwβγ > 18
5 aAA and lwβγ → ∞ at

three-phase coexistence. For the planar wall-γ interface with an intruding α wetting film, we have

∂�
wαγ
s (l )

∂l

∣∣∣∣
l=lwαγ

= �α − �γ + ∂ωwαγ (l )

∂l

∣∣∣∣
l=lwαγ

= 0, (D3)

where

∂ωwαγ (l )

∂l
= πa3

AASwαγ

[
2

3

(
aAA

l

)3

− 12

5

(
aAA

l

)4]
. (D4)

Again, all length parameters are taken to be equal. Here, �α and �γ are equal because the system is at α-γ coexistence. With
Swαγ < 0, the equilibrium wetting film thickness lwαγ → ∞ is found.

APPENDIX E: CONDITION FOR σwα < σwγ

In this Appendix, we determine the domain in the (X,Y ) parameter space for which σwα < σwγ is satisfied. By using Eq. (B7)
and the similar expression for σwγ , we find

σwα − σwγ = 13

132
π

[∑
i, j

εi ja
4
i j (ρi,αρ j,α − ρi,γ ρ j,γ ) − 2

∑
i

εwia
4
wi(ρi,α − ρi,γ )ρw

]
< 0. (E1)

Assuming that all length parameters in Eq. (E1) are equal, i.e., aAA = aAB = aBB = awA = awB, we find

(ρA,α − ρA,γ )[(ρA,α + ρA,γ )εAA − 2εwAρw] + (ρA,αρB,α − ρA,γ ρB,γ )(2εAB) + (ρB,α − ρB,γ )[(ρB,α + ρB,γ )εBB − 2εwBρw] < 0.

(E2)

By introducing the dimensionless parameters X and Y , Eq. (E2) can be written as[(
ρB,α

ρB,β

− ρB,γ

ρB,β

)
X + ρA,α

ρA,β

− ρA,γ

ρA,β

][(
ρB,α

ρB,β

+ ρB,γ

ρB,β

)
X + ρA,α

ρA,β

+ ρA,γ

ρA,β

− 2Y

]
< 0.

Here, one has ( ρB,α

ρB,β
− ρB,γ

ρB,β
)X + ρA,α

ρA,β
− ρA,γ

ρA,β
> 0 for all X > 0.

In conclusion, σwα < σwγ is satisfied if

Y >
1

2

[(
ρB,α

ρB,β

+ ρB,γ

ρB,β

)
X + ρA,α

ρA,β

+ ρA,γ

ρA,β

]
.

Otherwise, we have σwα > σwγ .
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