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Impact of the prequench state of binary fluid mixtures on surface-directed spinodal decomposition
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Using lattice Boltzmann simulations we investigate the impact of the amplitude of concentration fluctuations
in binary fluid mixtures prior to demixing when in contact with a surface that is preferentially wet by one of the
components. We find a bicontinuous structure near the surface for an initial, prequench state of the mixture close
to the critical point where the amplitude of concentration fluctuations is large. In contrast, if the initial state of the
mixture is not near the critical point and concentration fluctuations are relatively weak, then the morphology is
not bicontinuous but remains layered until the very late stages of coarsening. In both cases, it is the morphology
of a depletion layer rich in the nonpreferred component that dictates the growth exponent of the thickness of the
fluid layer that is in direct contact with the substrate. In the early stages of demixing, we find a growth exponent
consistent with a value of 1/4 for a prequench state away from the critical point, which is different from the usual
diffusive scaling exponent of 1/3 that we recover for a prequench state close to the critical point. We attribute
this to the structure of a depletion layer that is penetrated by tubes of the preferred fluid, connecting the wetting
layer to the bulk fluid even in the early stages if the initial state is characterized by concentration fluctuations
that are large in amplitude. Furthermore, we find that in the late stages of demixing the flow through these tubes
results in significant in-plane concentration variations near the substrate, leading to dropletlike structures with a
concentration lower than the average concentration in the wetting layer. This causes a deceleration in the growth
of the wetting layer in the very late stages of the demixing. Irrespective of the prequench state of the mixture, the
late stages of the demixing process produce the same growth law for the layer thickness, with a scaling exponent
of unity usually associated with the impact of hydrodynamic flow fields.
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I. INTRODUCTION

The kinetics of phase separation in binary fluid mixtures
has attracted interest in the scientific community for a very
long time, yet many aspects of this process remain unclear.
For example, what precisely the impact is of hydrodynamics,
thermal fluctuations, the quenching protocol, or the presence
of a confining surface, is not all that well understood in
spite of all this attention [1]. Apart from scientific inter-
est, the theoretical investigation of phase separation kinetics
is currently also inspired by a wide range of technological
applications that include membrane fabrication and plastic
electronics such as organic photovoltaics [2–6]. These require
a detailed understanding of the demixing process under a
variety of conditions, if the morphology of the mixture is to be
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tailored before solidification of the fluid sets in. Most of the
focus in this field is on determining the growth mechanisms
following a so-called quench, in which the thermodynamic
conditions of the fluid mixture are suddenly changed. These
depend critically on whether the demixing is taking place
in bulk, so away from the impact of any physical boundary,
or whether it is taking place in the vicinity of a substrate,
especially if that substrate is preferentially wet by one of the
components of the mixture.

If a binary mixture is quenched in the spinodal region
of the phase diagram, where the mixture is thermodynami-
cally absolutely unstable, then phase separation occurs in a
process known as spinodal decomposition and subsequently
followed by coarsening [7–15]. In the early stages of spinodal
decomposition, a scattering peak emerges due to the selective
amplification of concentration fluctuations with a character-
istic length scale. Once the two phases more or less attain
their respective equilibrium concentrations, the peak shifts
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toward smaller wave vectors with time, indicating the removal
of the interfacial area by coarsening of the structure that has
emerged. The characteristic domain size both in bulk mixtures
and in mixtures in contact with preferentially wetting surfaces
follows a power law with a growth exponent that itself, in
fact, depends on time and represents the different prevalent
subsequent coarsening mechanisms at play.

In bulk, the domain growth is isotropic whereas in mixtures
in contact with a preferentially wetting surface, the interplay
between bulk phase separation and wetting kinetics at the
surface leads to anisotropic domain growth. This phenomenon
is commonly referred to as surface-directed spinodal decom-
position, and has been studied extensively in experiments
[16–18] and simulations [19–28]. It is well-established that
the preferentially wetting surface gives rise to a concentration
wave which consists of alternating wetting and depletion lay-
ers of the preferred component. In this case the characteristic
length scale is the width of the first wetting layer right next
to the surface. However, the growth dynamics and hence the
growth exponent of the characteristic length scale may de-
pend, in principle, on the conditions such as the composition
of the mixture, the quench depth, the thickness of the film
and the initial structure of the mixture immediately before
quench [15–32]. Out of these different influencing factors, the
structure of the blend prior to the quench has so far received
only limited attention [15,31].

The structure of the blend before the quench refers to the
amplitude and spatial correlations of the concentration fluc-
tuations that characterise the otherwise homogeneous mixture
before it is suddenly brought out of thermodynamic equilib-
rium. Near to the critical point of the blend, concentration
fluctuations are large in magnitude and correlations carry fur-
ther in space than when the blend occupies a state further away
from the critical point in the phase diagram. Remarkably,
although there is experimental evidence of the influence of
the prequench state on the onset of coarsening in demixing
fluids [15], relatively little work has been done to investigate
this systematically, theoretically nor experimentally [33,34].
In order to remedy this state of affairs, we shed light in this
work on how the thermodynamic state of the blend prior to the
quench impacts upon the growth dynamics, in particular if the
fluid is in contact with a preferentially adsorbing surface. For
this purpose, we make use of lattice Boltzmann simulations
that take full account of the impact of hydrodynamics. As
we shall see, both the structure and the time evolution of that
structure, as well as the impact of hydrodynamics, are strongly
affected by the initial state of the mixture. Hydrodynamics,
in particular, plays a significant role from early times on,
resulting in a faster domain growth for a prequench state close
to the critical point, both in bulk mixtures and in mixtures in
contact with preferentially wetting surfaces.

We model the impact of equilibrium concentration fluctu-
ations by imposing them in the starting configurations of our
simulations, where we compare the behavior of bulk mixtures
and mixtures in contact with a surface that is preferentially
wet by one of the components. For simplicity, we impose only
the amplitude of these fluctuations and presume them to be
randomly correlated in space, that is, uncorrelated between the
grid points of our simulation box that represent a mesoscopic
volumes of fluid. Hence, we ignore the exponential decay

away from the critical point and the algebraic decay at the
critical point, realizing that high wave-number fluctuations
are anyway penalized very strongly in the simulation and
relax swiftly. Even with this simplification, we recover the
influence of the prequench state on demixing in bulk found
experimentally [15].

We find that in bulk, large initial concentration fluctuations
accelerate the demixing process, leading to isotropic coarsen-
ing from the early times of the process onward. As reported in
experimental studies for various prequench states of the bulk
mixture [15], the onset of coarsening occurs at earlier times
for a prequench state close to the critical point, and the growth
exponents associated with the coarsening that we find turn out
to not depend on the corresponding amplitude of the concen-
trations fluctuations in the initial state. Indeed, independent
of the amplitude of the initial concentration fluctuations the
demixing initiates via a spinodal mode wherein the peak in
the structure factor remains stationary at a characteristic wave
number for a while, after which it shifts toward lower values
due to coarsening setting in. This then leads to domain growth
with an exponent of unity.

In the vicinity of a substrate that prefers to be in contact
with one of the two components of the mixture, we do find
a growth exponent of the relevant length scale that depends
on the prequench state of the mixture. The relevant length
scale is, in that case, associated with the width of the wetting
layer, rich in the preferred component. For large initial con-
centration fluctuations, implying a prequench state close to the
critical point, we recover the usual Lifshitz-Slyosov-Wagner
[35] diffusive growth exponent of 1/3 followed by a viscous
hydrodynamic regime exponent of 1 [10–14]. If we impose
weak initial concentration fluctuations, then we find in clear
contrast to this a growth exponent consistent with a value
of 1/4. This matches the growth exponent we obtain if we
impose no concentration fluctuations prior to the quench, and
start off with a perfectly uniform mixture. For the latter, we do
not find the late-stage exponent of unity that we find for the
former, as these are driven by Marangoni-type flows linked to
curved interfaces that cannot develop in the absence of some
level of structural inhomogeneity. Parenthetically, the scaling
exponent 1/4 is consistent with an interface-limited growth
of a wetting film predicted by time-dependent Ginzburg–
Landau-type models [36].

The different growth exponents that we find for small and
large amplitudes of the zero-time fluctuations are associated
with different local morphologies that form. Close to the
substrate, we find a layered morphology for weak prequench
concentration fluctuations and a bicontinuous one for large
initial concentration fluctuations. For large prequench fluctua-
tions, the depletion layer next to the wetting layer is penetrated
by tubes of the preferred fluid, connecting the wetting layer to
the bulk mixture from the early stages of demixing onward.
These tubes accelerate the growth of the wetting layer. For
small prequench fluctuations, however, these tubes form only
in the later stages of the demixing, resulting in a delayed
crossover to the viscous hydrodynamic coarsening regime.

Our simulations reveal that for a prequench state close to
the critical point, the surface-tension-assisted hydrodynamic
flow of preferred fluid through the depletion layer occurs
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essentially from the start of the demixing process. In the late
stages, however, the flow of fluid from bulk to the wetting
layer through the tubes results in significant in-plane concen-
tration variation in the wetting layer, and dropletlike structures
with a smaller concentration of the wetting phase form on the
substrate. This causes a temporary deceleration in the growth
of the wetting layer. We believe that these findings can help
rationalize the dynamics of demixing in the presence of a
wetting substrate, and help optimize structural morphologies
in the production of thin films.

The remainder of this paper is organized as follows. In
Sec. II, we describe our model to simulate phase separation
in binary mixtures, and how we implement the surface in-
teraction and different amplitudes of the initial concentration
fluctuations. The simulation results are presented and dis-
cussed in Sec. III. Finally, we conclude this paper with a
summary in Sec. IV.

II. MODELING AND SIMULATION DETAILS

We make use of lattice Boltzmann (LB) model simulations
to investigate the structural evolution of binary fluid mixtures,
in bulk and in contact with a substrate. Lattice Boltzmann
models are widely used in the studies of phase-separating
fluids, owing to their ease to handle multicomponent fluids
and providing an efficient description of hydrodynamic flow
fields in such fluids [37–40]. In our implementation of the
lattice Boltzmann framework, we introduce the interactions
between the fluid components driving the phase-separation
by means of the Shan-Chen pseudopotential method [39,40].
We implement surface interactions by means of a boundary
condition at one boundary of our cubic computational domain,
wherein the fluid density field at that boundary is used to con-
trol the strength of the fluid-solid interaction and parametrize
the equilibrium contact angle. The method has been validated
extensively, and allows for the investigation of a wide spec-
trum of substrate interaction strengths that we denote by ϕ

[41,42]. For a quick introduction to the lattice Boltzmann
method, the numerical implementation of the interaction of
the fluids with substrate, and the simulation parameters, we
refer to Appendix A.

For all our simulations, we use a cubic computational
domain consisting of 2563 grid points, representing an in-
compressible binary fluid mixture of components A and B
with number densities ρA and ρB. The corresponding volume
fractions are φA and φB. For definiteness and simplicity we
assume a symmetric mixture with equal volume fractions,
so φA = φB = 0.5 corresponding to the critical volume frac-
tion in our simulations. We initialize the densities ρA and
ρB such that the initial order parameter field ψ , defined as
ψ ≡ (ρB − ρA)/(ρB + ρA) ≡ φA − φB, has a random spatial
distribution of values ±ψ0. The amplitude α ∈ [0, 100] of the
fluctuation we relate to the binodal (equilibrium) values of
order parameter in the coexisting phases ±ψb, via the defi-
nition ψ0 ≡ α × 10−2|ψb|. A large amplitude α of the initial
concentration fluctuations mimics a state of the mixture near
the critical point right before the quench [15,43]. If α = 0,
then we initialize the simulation with a homogeneous density
distribution.

We report all the simulation parameters in lattice Boltz-
mann units [37]. The ratio G/Gcr of the value of the
Shan-Chen [39] interaction potential right after the quench,
G, and that at the critical point, Gcr , can be interpreted as the
ratio of the corresponding Flory-Huggins interaction param-
eters, we set at a value of 1.18. This yields for the binodals
ρA = 0.4 = 1.2 − ρB and ρB = 2.0 = 1.2 − ρB, implying that
ψb = ±2/3 [40]. A phase diagram of the Shan-Chen fluid can
be found in Refs. [41,44]. Hence, the quench is rather deep,
corresponding in temperature to, say, a sudden temperature
drop of up to tens of Kelvin. The kinematic viscosity of both
the fluids we fix at ν = 5 × 10−3 [45].

In order to model demixing on a preferentially wetting
substrate, the value of surface interaction at the bottom and top
boundaries we set to ϕ = 0.3 and ϕ = 0.0. The latter choice
leads to a neutral wall boundary condition at the top surface of
the simulation box, that is, it has a neutral affinity for both the
components. This we do to recover bulk behavior away from
the substrate and to avoid any coupling of wetting effects from
opposite walls. A value of ϕ = 0.3 at the substrate boundary
should in equilibrium lead to partial wetting of a sessile drop
of a B-rich phase on the substrate with 60 deg contact angle.
At the remaining four boundaries of our simulation box we
impose periodic boundary conditions.

Even though our choice of value of the contact potential ϕ

should lead to partial wetting of the phase with the majority
component B at the surface, the finite size of the domain
in our simulations and the condensation of material at the
substrate do lead to complete wetting within our simulation
times. We note that we do not vary the strength of surface
interaction in this work, because in a recent study we show
that the characteristic length scale remains unaffected by its
value within the ranges of 0.1–0.5 studied, both in the early
and in the late stages of coarsening [44].

In this work, we model demixing with the amplitudes of the
initial concentration inhomogeneities ranging between α = 0
and 100. Particularly, we focus on the extreme amplitudes of
strong initial concentration variations with α = 100, and weak
ones with α = 0 and 1. Again, a value of α = 0 corresponds
to a scenario where there are no concentration fluctuations in
the mixture at time zero, and all the grid points are initialized
with the critical densities of the two components. In this case,
the mixture needs an external stimulus, such as the presence
of a preferentially wetting wall, to explore the energy land-
scape and initiate phase separation. Apart from α = 0, we
consider many different values between α = 1 and 100. As
we find from our simulations on bulk demixing, the extreme
values of α = 1 and 100 represent a prequench state rela-
tively far away and close to the critical point of the mixture,
respectively.

It is important to note that we do not include in our numeri-
cal model the role of thermal fluctuations during the demixing
process. These thermal fluctuations are often modeled at the
hydrodynamic level in terms of fluctuating hydrodynamics
[46] in the lattice Boltzmann model [47]. While these fluc-
tuations could potentially produce some influence on the
dynamics of multicomponent fluids [48], these are not of
interest for our study that is mostly focusing on the influence
of a large quench.
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FIG. 1. (left) Sketch of the order parameter field ψ (x, y, z) in a plane at a distance z away from the substrate at some time τ . The maximum
and minimum values of the order parameter in the field are indicated by ψ+ and ψ−, respectively. To estimate the characteristic length scale
normal to the substrate, the order parameter is laterally averaged over each plane parallel to the substrate. (right) Sketch of the in-plane average
profile of the order parameter, ψ̄ (z). The contact value of the order parameter we denote a(τ ) = ψ̄ (0, τ ), which is a function of the time τ . The
position of the first zero crossing of the order parameter we define as the wetting layer thickness L⊥(τ ), and the position of the plane half way
between the first and second zero crossing at c(τ ) we denote by b(τ ). The front propagates toward the bulk, to a higher distance z, resulting
in an increase of the layer thickness L⊥(τ ). The area shaded in blue indicates the wetting domain, that shaded in red a the primary depletion
zone, poor in the wetting component.

Further, we scale the simulation time by the spinodal time
scale, which is the time at which the peak in the structure
factor starts to move toward a lower wave number. We obtain
this time from our lattice Boltzmann simulations on bulk
demixing in a simulation box with periodic boundary con-
ditions in all directions [15], for which we set α = 100. We
choose this time as among the various values of α we inves-
tigate, it is the fastest relevant timescale in a bulk mixture.
Results of these simulations are elaborated on at the end of
the main text and are captioned as Appendix B.

Finally, the bulk length L and the in-plane length scale
L‖(z) we estimate from the first moment of the (in-plane)
structure factor [45], while the normal length scale, L⊥, that
we identify corresponds to the first zero crossing of the or-
der parameter ψ = ψ (z), laterally averaged over each plane
parallel to the substrate; see Fig. 1. The characteristic length
scales are presented in the units of the lattice size.

The prevalent bulk length scale we estimate from the po-
sition of the peak of the structure factor, allowing us also to
clearly pinpoint the onset of coarsening, which happens when
it starts to shift to a lower wave number. For bulk systems,
we find the growth exponents associated with coarsening to be
independent of the amplitude of the concentration fluctuations
at zero time, as expected. The same is true for the morphology,
showing that the white noise that we use to describe the
equilibrium fluctuations in the prequench state does not alter
the structure of the demixing bulk fluid reference.

III. RESULTS AND DISCUSSION

Before presenting a more quantitative discussion of our
results, we first show representative snapshots of morpholo-
gies that develop with time, when a thermodynamically

unstable binary fluid mixture is in contact with a substrate that
preferentially attracts one of the two fluids. Figure 2 shows
images of a two-dimensional cut through the order parameter
field ψ = ψ (x, y, z) of a phase separating symmetric fluid AB
mixture on a substrate that is preferentially wet by B in the
xz plane, for different times τ . For a homogeneous initial
condition α = 0 (top row), alternate layers of fluid rich and
poor in the preferred component form. At the surface, we have
a layer rich in component B, next to it a layer poor in B and
rich in A, next to that one poor in A rich in B, and so on. The
number of such alternating layers rich and poor in B increases
with time. The first layer rich in B we call the wetting layer,
and the next layer rich in A but poor in B we call the depletion
layer.

For α = 1, representing one percent fluctuations in the
background mixture composition at time zero, a morphology
resembling that of the case α = 0 forms in the early stages of
demixing. However, as shown in the middle row of Fig. 2, the
layers are less well defined and break up to slowly form an in-
terconnected morphology in the later stages of the demixing.
We can clearly see the development of the wetting layer and
the depletion layer that both increase in width with time. The
depletion layer is the last to break up to connect the wetting
layer to a layer rich in B, allowing for the wetting layer to
grow wider faster. Note that this layer connects to the mixture
further away from the substrate that resembles in structure and
predominant length scale a bulk system.

For very large amplitude of fluctuations α = 100 (bottom
row), the stratified structure never forms. The wetting layer
does form and remains intact while the depletion layer that
develops exhibits holes or tubes from the early times on, con-
necting the wetting layer to what resembles the interconnected
morphology of a bulk fluid in the process of demixing and
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FIG. 2. Snapshots of the morphology resulting from the phase separation of a symmetric fluid mixture in the central plane normal to the
substrate that is situated at the bottom of the panels. Time runs from left to right for three amplitudes of concentration fluctuations (from top to
bottom). For the amplitudes of the initial concentration fluctuations, we set α = 0 (top row), 1 (middle row), and 100 (bottom row). Snapshots
are shown at dimensionless times τ = 4, 8, 12, 16, and 20 from left to right. The time τ is simulation time scaled by the spinodal time that we
obtain from a bulk simulation, initialized with α = 100. As is clearly visible, substrate wetting leads to the formation of horizontal patterns
and of a B-rich layer (the “wetting layer”), immediately in contact with the substrate and present for all values of α. The B-rich regions with
positive order parameter ψ > 0 are shown in blue, while the yellow regions with ψ < 0 show the A-rich phase. The binodal (equilibrium)
value of the order parameter in the coexisting phases is denoted by ψb, and has a value of 2/3. See the main text for details.

coarsening. No obvious coarsening takes place in the usual
sense if we set α = 0, albeit the wetting layer does increase
in width with time via diffusion of the wetting component
B across the depletion layer. This is a slow process, for the
wetting component has to traverse the depletion layer that acts
as a thermodynamic barrier.

To quantify the morphological evolution of the demixing
fluid near a substrate, we need to measure two quantities rather
than one on account of the broken symmetry imposed by the
presence of the substrate. We identify as relevant length scales
the wetting layer thickness, L⊥, and the in-plane length scale,
L‖(z), which depends on the distance z from the substrate. We
recall (i) that we identify L⊥ as the first zero crossing of the
order parameter profile ψ (z) and can be seen as the wetting
layer thickness, and (ii) that we obtain L‖(z) from the first
moment of the in-plane structure factor [45]. Figure 3 shows
the time evolution of the normal length scale L⊥ for fluctua-
tion amplitudes α in the range from 0 to 100. For a prequench
state mimicking one close to the critical point, with a large
value of α, we seem to recover the exponents 1/3 and 1 in the
early and the late stages of demixing, respectively. These are
the values we expect for diffusive and viscous hydrodynamic
coarsening [7]. For a prequench state away from the critical
point corresponding to α = 1, however, we find a scaling
exponent that seems closer to 1/4 than 1/3 in the early stages
of demixing, crossing over to a value of 1 much later in time.
An exponent of 1/4 matches that obtained from the wetting
layer thickness for α = 0, consistent with an interface-limited
growth of a wetting film predicted theoretically [36]. This
indicates that for early times, the demixing in mixtures away
from the critical point is dominated by surface effects. This,
in fact, is also what we expect from the snapshots of Fig. 2,
namely, that weak fluctuations do not initially destroy the
stratified layer structure, only make it less well defined.

The transition to a power law with exponent larger than
1/4 we find to correspond with the break up of the secondary
wetting layer, that is, the layer next to the depletion layer

FIG. 3. Time dependence of the characteristic length scale L⊥
normal to the substrate. The symbols represent different amplitudes
of the initial concentration variations, ranging between α = 0 and
100. A larger amplitude indicates a prequench state of the mixture
closer to the critical point. Shown for comparison are also scaling
exponents of 1/3, 1/4, and 1. The time τ is scaled to the spinodal
time corresponding to the bulk mixture initialized with α = 100,
obtained from a separate simulation [44]. See also the main text.
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FIG. 4. Morphology of the fluid mixture at dimensionless time τ = 20 (a) in the full computational domain with preferential wetting
substrate at the bottom, and (b) in a slice of that domain up to a distance z = 36 from substrate that coincides with the plane z = b(τ ) in Fig. 1.
The slice shows the width of the tubes in the depletion layer. (c) The isosurfaces visualise the internal morphology in the volume between
z = 0 and z = b(τ ). (d) In-plane morphology at z = 0, colored by the maximum, ψ+, minimum, ψ−, values of the order parameter in that
plane at time τ .

further away from the substrate and also rich in the preferred
fluid. See also the morphology in the middle row and middle
column of Fig. 2. Once this layer breaks, we find a faster
dynamics to occur. At even later times, the depletion layer
also breaks up, as can be seen in the middle row and right
most column of Fig. 2. When this happens, direct contact of
the wetting layer with the bulk mixture is established. This
leads to an even faster growth of the wetting layer thickness
with what appears to be an exponent much larger than unity,
accelerated presumably by hydrodynamic transport driven by
curvature of the interface or gradients in interfacial tension.
Eventually, similar to the prequench state close to the critical
point, an exponent of unity is reached in the very late stages
of demixing.

It seems that the structure of the depletion layer dictates
at what rate the wetting layer thickness grows. Depending on
whether there is an intact depletion layer, or a depletion zone
in which tubes of the secondary wetting layer penetrate the
depletion layer, decides by what mechanism the wetting layer
thickness increases. If the depletion layer is intact, which is
the case for α = 0 for all times and for α = 1 during the
early stages, then growth of the wetting layer is slow because
the wetting component has to diffuse through the depletion
layer. The depletion layer is for that component a thermody-
namically unfavourable layer dominated by the nonwetting
component, and hence represents a free energy barrier for
diffusion through it. When the depletion layer finally breaks
and a depletion zone is created, the transport of material from
the secondary wetting layer to the wetting layer is no longer
faced by a free energy barrier, and only limited by the number
and width of the tubes passing through it.

Furthermore, in the late stages of demixing, for α = 100
we notice in Fig. 3 that the growth exponent decreases below
unity, only to increase to the expected value of unity again. As
we shall see, this is a result of the flow of the preferred fluid
through the tubes in the depletion layer that causes significant
in-plane concentration variations next to the substrate. More-
over, this deceleration is not to α = 100, see the decrease in
the growth exponent for α = 25 close to τ = 20.

In order to delve more deeply into the impact of the
morphology of the depletion layer, we sketch in Fig. 1 the

order parameter field ψ (x, y, z) at a time τ and a particular
height z, the maximum and minimum values of which are
indicated by ψ+ and ψ−. To estimate the characteristic length
scale normal to the substrate, we average the order parameter
laterally over each plane parallel to the substrate resulting in
an order-parameter profile ψ̄ , which is a function of time τ

and distance z from the substrate. As already discussed, the
concentration wave that develops after some time exhibits an
alternating layering induced by the surface interaction. The
preferred fluid accumulates next to the substrate, increasing
its amplitude a(τ ) = ψ (0, τ ) with time until it attains an
equilibrium value that depends on the quench depth and the
strength of the surface interaction. The normal length scale or
wetting layer thickness, L⊥, however, keeps on growing with
time as the concentration wave propagates into the bulk.

The depletion layer next to the wetting layer moves away
from the substrate in tandem with the wetting layer widening.
If tubes at some point penetrate the depletion layer, then the
width of these tubes turn out to be the smallest in the plane
halfway between the first and second zero crossings of the
order parameter, positioned at z = b(τ ) in Fig. 1. This can
actually be clearly seen in Fig. 4. Note that as the concentra-
tion wave front propagates into the bulk, the position of the
center of the depletion zone b(τ ) increases. In this plane, the
concentration of the nonpreferred fluid is the largest. It stands
to reason that the precise morphology of the fluid around
this plane must be significant in the evolution kinetics of the
wetting layer thickness.

Focusing attention on the three-dimensional structure of
the wetting layer and that of the depletion zone, Fig. 4 shows
the morphology between the planes z = 0 and z = b(τ ),
visualized as isosurfaces of different densities. The figure
shows that fluid transported from the secondary wetting layer
through the tubes in the depletion layer spreads out toward
the substrate, giving the iso-surface of this material transport
the impression of inverted mushrooms. The density profiles
showed in the top and the bottom of this three-dimensional
visualisation correspond to the profiles in the planes z = b(τ )
and z = 0, respectively. We measured the in-plane length scale
L‖ in the middle of the depletion zone at z = b(τ ), and find
that the growth of this length scale, which represents the
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FIG. 5. Temporal evolution of in-plane density fields for α = 100 at the dimensionless times τ = 4, 8, 12, 16, and 20 going from left to
right. Shown are cross sectional morphologies of the mixture at the plane halfway between first and second zero crossing of the in-plane
averaged order parameter (top row), so at a position z = b(τ ) from the substrate, and that next to the substrate at z = 0 (bottom row). See also
Fig. 1. The density fields are scaled to the maximum and minimum values of density ψ+ and ψ− in each plane for each time to highlight the
concentration variation in the fluid layer next to the substrate and the smallest width of the tubes passing through the depletion layer. See the
main text for definitions.

smallest width of the tubes, closely matches that of a bulk
system. Thus, although the normal and in-plane length scales
dictate the dynamics close to the substrate, we find that the
relevant in-plane length scale, in fact, follows bulk behavior.

More information on the structure of the wetting layer and
depletion zone is given in Figs. 5 and 6, showing the in-plane
density distribution at positions z = b(τ ), in the middle of
the first depletion layer, and z = 0, next to the substrate, for
different times τ . We scaled the density fields to the maximum
and minimum value of density, ψ+ and ψ− for each time, to

highlight the concentration variations in the fluid layer next
to the substrate and the shape of the smallest cross-sections
of the tubes in the depletion zone. The absolute values of the
maximum and minimum value of density, ψ+ and ψ− for each
time shown in Figs. 5 and 6 are also shown in Fig. 7.

We see in Fig. 5 that for a prequench state close to the crit-
ical point, there are holes in the depletion layer from the early
times on. These holes have the smallest width of the tubes
passing through the depletion layer, as already announced.
The fluid flowing through these tubes must be driven by

FIG. 6. Temporal evolution of in-plane density field for α = 1 at the times τ = 4, 8, 12, 16, and 20, going from left to right. Shown
are cross sectional morphologies of the mixture at the plane halfway between first and second zero crossing of the in-plane averaged order
parameter (top row), so at a position z = b(τ ) from the substrate, and next to the substrate at z = 0 (bottom row). See also Fig. 1. The density
fields are scaled to the maximum and minimum values of density ψ+ and ψ− in each plane for each time (reported in Fig. 7), to highlight the
concentration variation in the fluid layer next to the substrate and the smallest width of the tubes passing through the depletion layer. The time,
τ , is the simulation time scaled by the spinodal time scale for bulk mixtures initiated with α = 100. See the main text for definitions.
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FIG. 7. In-plane order parameter ψ (z) as a function of scaled
time τ for initial concentration fluctuation amplitudes α = 1 (red
circles) and α = 100 (black squares), at the substrate for z = 0 (solid
lines) and midway in the depletion layer for z = b(τ ) (dashed lines).
The bars indicate the values of the maximum and minimum values
ψ+ and ψ− from Figs. 5 and 6. See also the main text. Note that
in component B-rich regions we have ψ > 0, while in component
A-rich regions ψ < 0.

hydrodynamic effects arguably caused by curvature of the in-
terface and possibly also by gradients in the interfacial tension
[44]. This leads to flow of material directly from the secondary
wetting layer to the wetting layer next to the substrate at z = 0,
causing large in-plane concentration variations.

In contrast, for an initial state away from the critical point,
shown in Fig. 6, the holes start to slowly form in the deple-
tion layer and then only at late times. Unlike the in-plane
morphology of z = b(τ ) and 0 for a prequench state close
to the critical point, we notice that there are only minor con-
centration variations in the early stages of phase separation.
Notice in the right-most three panels the formation of a hole
in the depletion layer at τ = 8, and the corresponding influx of
the material into the wetting layer at z = 0. The width of these
holes, again, turns out to match the growth of the prevalent
length scale in an equivalent bulk fluid.

The more profound impact concentration fluctuations have
for the wetting layer at z = 0 can actually be seen in late
stages of demixing, when in spite of being in direct contact
with the bulk there actually is a deceleration in the growth of
the wetting layer thickness for α = 100. This is caused by the
circumstance that the fluid that rushes into the wetting layer
has much lower concentration of the wetting component than
the average contact value of the order parameter, a(τ ). Hence,
because of this the growth of the wetting layer thickness must
slow down. This in fact is clearly visible in Fig. 3. The size of
the cross-section tubes in the depletion zone around the plane
z = b(τ ) grows consistently when α = 100.

In contrast, if the prequench state is away from the critical
point, and α = 1, tubes start to form later on and hence we
find that the corresponding concentration fluctuations at z = 0
only become significant at much later times. In that case,
the composition develops an oscillatory profile and an intact
depletion layer in the early stages of demixing. Much later,

bulk phase separation interferes with the oscillatory profile
and only the wetting layer survives. Moreover, we see from
Fig. 7 that the fluid layer next to the substrate at z = 0 remains
rich in the preferred fluid B from early times on for both small
and large initial concentration variations. This is indicated
by the extremities of the bar that denote the maximum and
minimum values of the in-plane concentration variations ψ+
and ψ−, both of which have a value larger than zero for the
fluid layer at z = 0 at all times τ plotted in Fig. 7. However,
as we saw in Fig. 6, the fluid in the depletion layer at z = b(τ )
is rich in fluid A only during early times, and approaches the
ψ = 0-line in the late stages, signifying a transition from an
intact depletion layer to a depletion zone riddled by tubes rich
in B that connect to the wetting layer.

IV. CONCLUSIONS

In this paper, we investigate by means of lattice Boltzmann
simulations the profound impact of the thermodynamic state
of a symmetric binary mixture has prior to a quench in the
spinodal region on the morphology and growth dynamics
in surface-directed spinodal decomposition. Our aim in par-
ticular is to elucidate the role of spontaneous concentration
fluctuations in the prequench state of the mixture. A large
amplitude of concentration fluctuations implies a prequench
state close to the critical point, and a small amplitude one
that is not all too close to it. For simplicity we ignore in our
simulations spatial correlations between these concentration
variations immediately before the sudden change in thermo-
dynamic conditions.

We find that concentration fluctuations interfere with the
spinodal concentration wave that develops early in the process
of phase separation near a substrate that is preferentially wet
by one of the components, and hence that the prequench state
does indeed impact upon the phase ordering kinetics near
a surface. This is particularly true for coarsening processes
along the normal to the substrate, but less so in the plane of
the substrate where coarsening seems to be similar to that far
away in for the substrate in the bulk of the fluid. We argue that
the in-plane length scale in a sense mirrors the bulk length
scale.

Focusing on the wetting layer thickness that we identify
as relevant length scale normal to the substrate, we recover
the diffusive scaling exponent of one-third for large initial
concentration fluctuations crossing over to unity in the very
late stages of coarsening. However, for relatively weak but
nonzero initial concentration fluctuations, we find a growth
exponent of the wetting layer thickness closer to one-fourth
than to one-third, crossing over to unity again much later in
time. This, we attribute to the stratification of alternate layers
of preferred and nonpreferred fluids next to the substrate that
is destroyed when the fluctuations are sufficiently large.

We find that the morphology of the depletion layer, rich in
the nonpreferred fluid, is crucial to the dynamics in surface-
directed spinodal decomposition. As long as the depletion
layer remains intact, diffusion is slow. After breaking, tubes of
the wetting phase pass through it and speed up the widening of
the wetting layer. For large initial concentration fluctuations,
stratification is by and large destroyed from the early stages
of the demixing on, and tubes penetrating the depletion layer
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connect the wetting layer with the bulk. These tubes facilitate
faster growth of the wetting layer.

In the later stages of demixing, we actually find a decelera-
tion in the growth of the wetting layer and a growth exponent
smaller than unity. This we attribute to the flow of fluid from
bulk to the wetting layer through the tubes, resulting in sig-
nificant in-plane concentration variation in the wetting layer
and in dropletlike structures with a lower concentration of the
wetting component near the substrate.

Despite the fact that the problem of surface-directed phase
transitions has attracted significant attention, many unresolved
problems remain. For instance, how fluctuations impact phase
ordering near a surface if the mixture has an off-critical com-
position should be of interest, as is what the effect is of the
spatial correlation in the prequench state and the subsequent
solidification resulting in the final morphology, e.g., in prac-
tical applications of organic photovoltaics. It would also be
interesting to study the dependence of the growth exponent
on film thickness for neutral top boundary and when the top
boundary is also preferentially wet by a fluid component.
In fact, our simulations presume Newtonian fluid dynamics,
even though in practice the fluids often contain polymers that
behave visco-elastically. In any event, we believe that the
prequench state of the mixture may well be used to tailor the
morphologies of functional thin film materials.
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APPENDIX A: LATTICE BOLTZMANN METHOD

We generate three-dimensional blended morphologies
formed during spontaneous demixing in bulk and on a wetting
substrate using the lattice Boltzmann (LB) model [37,38].
The lattice Boltzmann equation is derived from spatially and
temporally discretizing the Boltzmann equation. The lattice
Boltzmann method models fluid flow at mesoscopic level in
terms of single particle distribution function fi(x, t ) at posi-
tions x and time step t . The distribution function evolves as
particles stream (LB terminology for “move”) and collide with
each other as described by the discretized LB equation

fi(x + ei	t, t + 	t ) − fi(x, t ) = −	t

τ

[
fi(x, t ) − f eq

i (x, t )
]
,

(A1)
where ei is the ith microscopic velocity on the lattice and
fi(x, t ) is the corresponding single-particle distribution func-
tion. The term τ is a relaxation time toward a equilibrium
distribution function f eq

i (x, t ), and links to the viscosity of the
fluid through the relation ν = c2

s (τ − 	t/2). f eq
i (x, t ) is the

equilibrium Maxwell-Boltzmann distribution, truncated at the
second order in velocity

f eq
i (x, t ) = ρωi

[
1 + ueq · ei

c2
s

+ 1

2

(
ueq · ei

c2
s

)2

− ueq · ueq

2c2
s

]
.

(A2)

Here, cs = 1√
3

	x
	t is the lattice speed of sound and ωi

is a direction-dependent weight factor. The fluid density
and velocity fluctuations are obtained by taking zeroth
and first moments of the distribution function over the
discrete lattice velocity space. Mathematically, ρ(x, t ) =
ρr

∑
i fi(x, t ), where ρr is a reference density, and u(x, t ) =∑

i fi(x, t )ei/ρ(x, t ). The pressure and the density fluctua-
tions are related by a linearized ideal gas equation of state
p(x, t ) = c2

s ρ(x, t ).
For a binary mixture with fluid components A and B,

two single-particle distribution functions f A
i (x, t ) and f B

i (x, t )
are used. The corresponding fluid densities are defined as
ρA(x, t ) = ρr

∑
i f A

i (x, t ), ρB(x, t ) = ρr
∑

i f B
i (x, t ), and the

velocities are defined as uA(x, t ) = ∑
i f A

i (x, t )ei/ρ
A(x, t )

and uB(x, t ) = ∑
i f B

i (x, t )ei/ρ
B(x, t ), respectively. The ve-

locity in the equilibrium distribution function is ueq =
(ρAuA + ρBuB)/(ρA + ρB).

Throughout this work, we utilize two components A and B
such that τA = τB. We use a D3Q19 lattice, which is a three-
dimensional lattice with 19 discrete velocities. For brevity
and numerical efficiency, we choose the lattice constant 	x,
the time step 	t , the unit mass ρr to be unity. Furthermore,
we introduce the interaction between the fluid components
through a pseudopotential interaction force proposed by Shan
and Chen [39],

FA(x, t ) = −GAB(x)ρA(x, t )
∑

i

ωiρ
B(x + ei, t )ei. (A3)

This force is a nearest-neighbor interaction term between
fluid components A and B and is scaled through the choice of
the parameter GAB. This force is applied to the fluid by adding
a shift of 	uA(x, t ) = τAFA(x,t )

ρA(x,t ) to ueq(x, t ) during a collision.

Similar force and velocity term FB(x, t ) and 	uB(x, t ) is ob-
tained for the fluid component B. This model results in phase
separation of the two fluids, and the formation of a diffuse
interface between them.

As we model phase separation in the vicinity of a wall
(or substrate), the contact angles and their implications must
be correctly represented. This determines the fluid-wall inter-
action and the relative preference of either components for
contact with the substrate. In the lattice Boltzmann method,
wall boundaries can be combined with the pseudopotential
interaction. For a binary mixture with components A and B,
the interaction force, following the pseudopotential method
presented by Shan and Chen, can be incorporated in the de-
scription by an interaction force with the wall boundary nodes
(s) as [40,41]

FsA = −GsA(x)ρA(x)
∑

i

s(x + ei )ei, (A4)

where s(x + ei ) is 1 if (x + ei ) is a wall boundary node,
and 0 if it is not. Here, GsA(x) is an interaction strength
parameter for every component A and B. The surface inter-
action strength, ϕ, represents the relative wetting parameter
GsB − GsA. The surface tensions γ sA, γ sB, and γ AB are linearly
proportional to the corresponding interaction parameter, and
the equilibrium contact angle can thus be determined from
these interaction parameters.
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FIG. 8. Time evolution of the prevalent length scale (top) and
maximum of the structure factor (bottom) of a symmetric fluid
mixture AB undergoing phase separation by spinodal decomposi-
tion in bulk from an initially well-mixed state. Indicated are results
for initial concentration fluctuation amplitudes α = 1 (triangles), 10
(circles), and 100 (squares), with the arrow indicating increasing
values of α. Domain growth in bulk remains isotropic for all values
of α. The magnitude of the initial density fluctuations controls the
temporal evolution of the fluid mixture and departure from spinodal
decomposition. The dashed vertical lines indicate the transition time
from spinodal decomposition to coarsening. Time is measured in the
usual LBM units.

We keep the strength of surface interaction at the bottom
wall, ϕ = 0.3, for which component B wets the substrate.
Although this corresponds to partial wetting for a sessile drop
of the B phase on a substrate, however, the finite size of the
domain in our simulations and condensation of material next
to the substrate leads to complete wetting of the substrate for
the strengths of surface interaction modeled.

APPENDIX B: IMPACT OF THE AMPLITUDE OF THE
INITIAL SPATIAL DENSITY FLUCTUATION IN BULK

We find that in bulk, large initial concentration fluctua-
tions accelerate the demixing process, leading to isotropic
coarsening from early times on. The bulk dynamics is thus
characterized by a single length scale that we estimate from
the position of the peak of the three-dimensional structure
factor. As reported in the experimental studies for various pre-

FIG. 9. Time evolution of the morphology resulting from the
phase separation of a symmetric AB fluid mixture with small, α = 1
(left column), and large, α = 100 (right column), initial concen-
tration fluctuations. Snapshots are taken at simulation time steps
t = 10 000, 20 000, 30 000, 40 000, and 50 000 from top to bottom.
The two phases in the phase separating mixture are represented by
red and blue isosurfaces, whereas the interface between the two is
shown in green. Notice that the domain grows isotropically indepen-
dent of the prequench fluctuation state of the mixture. The spinodal
time following which coarsening initiates, we find to depend on the
prequench state. See also Fig. 8.

quench states of the bulk mixture [15], the growth exponents
associated with the coarsening that we find turn out to not
depend on the corresponding amplitude of the concentrations
fluctuations in the initial state. Figure 8 shows that the growth
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exponents associated with coarsening in bulk remain indepen-
dent of the amplitude of the concentration fluctuations at zero
time, as expected. Note that the peak of the structure factor,
denoted by “max S(k, t )” in Fig. 8, first decreases before
increasing again because each lattice site in the simulation
box is initialized with values ±ψ0, randomly distributed over
the simulation box. This generates sharp interfaces at time
t = 0, which are strongly penalized in the simulations at very
very early times. This however, does not influence the phase
order kinetics modeled, and the peak of the structure factor
increases again after the initial decrease.

As we see in from the bulk lengthscale in Fig. 8, indepen-
dent of the amplitude of the initial concentration fluctuations,
the demixing initiates via the spinodal regime, wherein the
peak in the structure factor initially remains stationary at a
characteristic wave number, after which it shifts toward lower
values. This then demarcates the commencement of coarsen-
ing, leading to domain growth with an exponent of unity. The
same is true for the morphology, showing that the amplitude
of the initial concentration fluctuations that we use to describe
the equilibrium fluctuations in the prequench state does not
alter the structure of the demixing fluid; see Fig. 9.
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