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Contribution of internal degree of freedom of soft molecules to Soret effect
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We study the Soret effect in binary dimer-monomer mixtures using nonequilibrium molecular dynamics
simulations and investigate the pure contribution of the internal degree of freedom of flexible molecules to the
Soret effect. We observe that the thermal diffusion factor tends to decrease and change its sign as the molecules
become softer. We propose two possible mechanisms for our observations: change of the molecule structures
with the temperature, causing bulkier molecules to migrate to the hotter region, and asymmetry of the restitution
between rigid and flexible molecules, due to which flexible molecules show larger restitution when placed at the
hotter region.
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I. INTRODUCTION

When a fluid mixture is subjected to a temperature gra-
dient, concentration gradients build up. This phenomenon is
the Soret effect or thermal diffusion [1–4], which is widely
observed in mixtures of small molecules [5,6], polymers
[7–12], colloids [10,13], and biomolecules [14,15]. Since the
19 th century, many experimental, theoretical, and numerical
studies have been reported [16–26]. However, its physical
mechanisms are still not understood completely.

The Soret effect is caused by some factors; its origin is
often considered the equilibrium thermodynamics [16,22].
If the chemical potential of each species depends on the
temperature, the concentration gradient is induced under
the temperature gradient to homogenize this potential. The
isotope effect, in which the mass difference causes the concen-
tration gradient, is difficult to explain based on the equilibrium
thermodynamics [17,18,23–26]. The heavier molecules tend
to migrate to the cold side, while the lighter ones move to
the hot side. It is also known that differences in diameter, mo-
ment of inertia, interaction between the solute and the solvent,
and/or those among the solutes contribute significantly in the
Soret effect [2].

When considering the Soret effect, the molecules are
usually treated as rigid objects, while the internal degrees
of freedom of the molecules are ignored. If flexible, the
molecules are thermalized and adapt their structures to the
local environment (the temperature, the pressure, and the con-
centration). These changes may influence the Soret effect.
Polymers are examples of molecules that have large internal
degrees of freedom [7–12]. If a polymer is much longer than
its persistent length, it behaves as a flexible chain; it behaves
as a rigid rod if it is shorter than the persistent length. It was
reported that the Soret coefficient of the polymer solutions
changes with the chain length when it is short. However,
when it is sufficiently long, the Soret coefficient is saturated
to a value that is independent of the chain length. For the
polymers, the mass and the moment of inertia change with the

chain length. Although some theoretical studies on the Soret
effect of the polymer systems have been reported, the pure
contribution of the flexibility of the molecules to the Soret
effect is still unclear. The aim of this work is to investigate the
roles of the internal degrees of freedom in the Soret effect by
employing the simplest molecular model.

II. MOLECULAR DYNAMICS SIMULATION

We perform molecular dynamics simulations of mixtures
of two molecular species in three-dimensional (3D) rectangu-
lar boxes (V = LxLyLz). One species is the simplest molecule,
which consists of a single spherical particle; the other is a
dimer, which consists of two identical spherical particles. The
particles in the monomers and dimers interact mutually with
the Weeks-Chandler-Andersen (WCA) potential [27], which
is given by

UWCA(r) =
{

4ε[(σ/r)2n − (σ/r)n + 1/4] (r � 21/nσ )
0 (r > 21/nσ )

,

(1)

where ε(=1) and σ (=1) represent the strength and range of
the WCA potential, respectively. n is a parameter for char-
acterizing the hardness of the WCA potential. If we do not
mention explicitly, we set n = 6. The two particles in each
dimer are bounded by a harmonic potential,

Usp(r) = k(r − r0)2, (2)

where k is the spring constant, while r0 is the natural length
of the bond, and we set r0 = 21/nσ . The WCA potential be-
tween the particles in each dimer is not included. The mass
of the particles is given by m; thus the mass of the dimer is
2m. The numbers of the monomer and dimer molecules are
given by Nm and Nd. The particle packing fraction is defined
by φ = πσ 3Nt/(6V ), where Nt is the total particle number,
Nt = Nm + 2Nd. The mixing ratio of the dimer is given by
χ = 2Nd/Nt .
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FIG. 1. (a) Profiles of the local kinetic energies of the monomers
(K tra

m ) and the dimers (K tra
d , Kvib

d , and K rot
d ) along the temperature

gradient. The average packing fraction and the spring constant are
φ = 0.073 and k = 400 ε/σ 2, respectively. The temperatures at the
thermostatted regions are Th = 5ε and Tc = ε. In the inset, the scaled
kinetic energies are replotted. (b) Profiles of the local densities of the
dimer ρd and the monomer ρm. The parameters are the same as those
in (a).

A temperature gradient is imposed along the x axis by
using a boundary driven nonequilibrium molecular dynam-
ics simulation. The thermostatting regions are set up at the
edges (x = 0 and x = Lx) and at the center (x = Lx/2) of the
rectangular cell, while their width is 0.03Lx. The temperatures
in these thermostatting regions are imposed to T = Th at the
edges and T = Tc at the center (Th > Tc) by means of the
Langevin thermostat. In the other bulk regions, the particle
position and velocity are updated without any thermostat.
The equations of motion are solved with the velocity Verlet
algorithm using LAMMPS [28], in which the time increment
is δt = 0.0005

√
ε/(mσ 2). We fix the cell width as Lx = 80σ ,

while Ly and Lz are changed to adjust the packing fraction
φ. The total particle number is Nt = 64 000, and the packing
fraction is changed from φ = 0.037 to 0.234. If we do not
mention explicitly, we set the mixing ratio to χ = 1/2. With
the SHAKE algorithm [29], we also consider dimers, in which
the particle separations are fixed to r = r0. To observe the pure
effect of the dimers, we also study the Soret effect in mixtures
of two monomers A and B, among which the masses or the
radii differ.

III. 3D SIMULATION RESULTS

Figure 1(a) shows the profiles of the kinetic energies along
the x axis. The temperatures in the thermostatted regions are
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FIG. 2. (a) Profiles of the concentration of the dimers c =
ρd/(ρd + ρm ) in a dilute mixture of φ = 0.073. The temperature
difference 	T = Th − Tc is changed. (b) Profiles of the concentration
of the dimers in a dense mixture of φ = 0.234.

set to Th = 5ε and Tc = ε. We divide the cell into 100 slabs
along the x axis, and then we calculate the local densities
of the monomer particle ρm(x) and the dimer particle ρd(x),
and the kinetic energies averaged per particle in each thin
slab. Here

∫
dxρd(x) = 2Nd and

∫
dxρm(x) = Nm are held.

We plot the translational kinetic energies of the monomer K tra
m

and the three modes (translational K tra
d , rotational K rot

d , and
vibrational Kvib

d ) of the kinetic energies of the dimer. In the
equilibrium state, K tra

m , K tra
d , K rot

d , and Kvib
d should agree with

3T/2, 3T/2, T , and T/2, respectively. It can be seen that all
the averaged kinetic energies collapse on a master curve after
appropriate scalings [see the inset of Fig. 1(a)]. The kinetic
energies in the thermostatted regions are consistent with the
target temperatures Th and Tc and vary linearly with x in the
bulk regions. Thus, the temperature is controlled well in our
system.

Figure 1(b) plots the local density profiles of the dimer
ρd(x) and the monomer ρm(x). The spring constant is k =
400ε/σ 2, while the packing fraction is φ = 0.073. Both den-
sities are higher in the colder than in the hotter regions. It is
also indicated that the density of the dimers is slightly higher
than that of the monomers in the cold region. The Soret effect
is induced in this mixture of dimers and monomers.

Figure 2(a) illustrates the profiles of the concentration field
of the dimer in a dilute mixture, which is defined as c(x) =
ρd(x)/[ρm(x) + ρd(x)]. If the concentration is homogeneous,
its value agrees with the mixing ratio, i.e., c(x) = χ . The total
packing fraction and the spring constant are set to φ = 0.073
and k = 400 ε/σ 2, respectively. In Fig. 2(a) we change the
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FIG. 3. (a) Plots of the thermal diffusion factor αT against the
packing fraction φ. The spring constant is changed. αT for the mix-
ture of the rigid dimer and monomer is also presented. (b) Plots of
αT with respect to the spring constant k. The packing fraction is
changed.

temperature difference 	T = Th − Tc by fixing the average
temperature to 〈T 〉(= (Th + Tc)/2) = 3ε. In the absence of
the temperature difference (	T = 0), the concentration is
almost constant in space (not shown here). As 	T increases,
the concentration near the cold region increases, while that
near the hot region decreases. This means that the dimers tend
to migrate to the colder side. The degree of dimer migration is
almost proportional to the temperature difference. Figure 2(b)
presents the profiles of the concentration in a dense mixture
(φ = 0.234). In contrast to the dilute mixture, the dimers
migrate to the hotter region in the dense mixture. The degree
of dimer migration is almost proportional to the temperature
difference.

Instead of the Soret coefficient ST , we analyze the Soret ef-
fect with the thermal diffusion factor αT = T ST . We evaluate
it from the local thermal diffusion factor,

α(x) = − T

c(1 − c)

∂c/∂x

∂T/∂x
, (3)

and average α(x) over the system to get αT = ∫
dxα(x)/Lx.

A positive value of αT implies the dimer migrates to the
cold side. Figure 3(a) shows the dependences of αT against
the packing fraction φ. The spring constant in the dimers is
changed from k = 10 ε/σ 2 to 500 ε/σ 2. αT for the rigid dimer
is also given in the same figure. In Fig. 3(b) we replot αT as
functions of the spring constant k for several densities.
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FIG. 4. The thermal diffusion factors in the mixtures of two
monomers A and B are plotted against φ. Black circle: mixtures of
monomers with different masses; red square: mixtures of monomers
with different radii.

In dilute systems, the thermal diffusion factors are positive
for any k, which indicates that the dimers migrate to the
colder side, as illustrated in Fig. 2(a). As the packing fraction
φ increases, the thermal diffusion factors decrease. Here the
decreasing rate of αT against φ is larger in the mixture of
smaller k than in that of larger k. For smaller k, the thermal
diffusion factor changes its sign from positive to negative with
φ. In contrast, the thermal diffusion factor for the rigid dimer
remains positive in the simulated range of φ. The molecule
becomes more rigid, and the thermal diffusion factor is likely
to converge for the rigid molecules when the spring constant is
increased. In Fig. 3(b) the thermal diffusion factor changes its
sign with the spring constant k in the intermediated mixtures
(φ = 0.146). Our results clearly demonstrate that the internal
degrees of freedom in the molecules can influence the Soret
effect, which is usually considered to be an intermolecular
phenomenon.

IV. DISCUSSION

First, we consider the mechanism of the Soret effect in
terms of the isotope effect. In Fig. 4 we plot the thermal
diffusion factor in mixtures of two monomers A and B (black
circles). In these mixtures, the interactions among the particles
are given by Eq. (1), while the mass of the A monomer is
twice larger than that of the B monomer, i.e., σAA = σBB =
σAB = σ , with mA = 2m and mB = m. In Fig. 4 the positive
values of the thermal diffusion factor agree with the iso-
tope effect; heavier particles A migrate to the colder region.
In contrast to the decreasing thermal diffusion factor in the
dimer-monomer mixtures [Fig. 3(a)], the thermal diffusion
factor is increased with the packing fraction in the monomer-
monomer mixtures. Thus, it is concluded that the Soret effect
in the dimer-monomer mixtures is essentially different from
the isotope effect. It is also known that molecules of larger
inertia moments migrate to the colder region [17,23,24]. If the
Soret effect observed in this study is due to the inertia effect,
the thermal diffusion factor would be increased by using a
longer natural length of the bond interaction in the dimers
[Eq. (2)]. However, we confirmed that the thermal diffusion
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factor is increased when the natural length in the bond inter-
action is shortened (not shown here). In particular, if we set
r0 = 0 in Eq. (2) and use larger k, the thermal diffusion factor
is close to that due to the isotope effect. Thus, we believe that
the Soret effect in our mixtures is not due to the inertia effect.

Next we consider the contribution of the thermodynamic
chemical potential to the Soret effect in our simulations. The
linear nonequilibrium thermodynamic theory gives the parti-
cle flux �Ji (i = d or m) as [1]

�Ji = −ρiL1i∇ μ̃i

T
+ ρiL2i∇ 1

T
, (4)

where L1i and L2i are phenomenological kinetic coefficients,
and μ̃i is an effective chemical potential. In the steady
state, it should vanish, i.e., �Ji = 0. If L2i = 0, the Soret ef-
fect is determined by the thermodynamic properties of the
chemical potential against χ and T . In Figs. 5(a), 5(b) and
5(c), we represent the effective chemical potential of the
dimer μ̃d against the mixing ratio χ , the temperature T ,
and the packing fraction φ, respectively. In Fig. 5(a) we
changed the mixing ratio χ with fixing the total number
Nt . The effective chemical potential is given as μ̃d = μd −
(vd/vm )μm, where μi and vi are the chemical potential and
partial molecular volume of the i component, respectively. In
Fig. 5 we assume vd/vm = 2, for simplicity. The chemical
potentials μd and μm are are obtained through the Widom in-
sertion method [30] in the simulations without the temperature
difference. As indicated in Fig. 5(a), the chemical potential
difference is almost independent of the mixing ratio χ , while
μ̃d/T is an increasing function of T in Fig. 5(b). The chemi-
cal potential modulation induced by the temperature gradient
cannot be compensated by the chemical potential change with
the mixing ratio. This means that the Soret effect in our system
is not caused by the thermodynamic chemical potentials, and
it is purely a nonequilibrium behavior. The chemical potential
difference also depends on the packing fraction in Fig. 5(c).
∂ (μ̃d/T )/∂T is compensated roughly by ∂ (μ̃d/T )/∂φ [see
Fig. 1(b)].

As discussed above, we cannot understand our simulation
results with conventional knowledge of the Soret effect, i.e.,
the contributions of the mass, inertia moment, and chemi-
cal potential. Here we propose possible mechanisms of the
Soret effect in our dimer-monomer mixtures. In Fig. 6(a) we
present the probability distribution P(r) of the bond length
r of the dimers in the mixtures of φ = 0.036 and 0.234.
The spring constant is k = 10 ε/σ 2, and the temperature is
changed. When we obtain P(r), the temperature gradients are
not imposed. As the temperature is increased, not only the
distribution width is broadened, but also the peak position is
shifted to large r. We plot their average lengths 〈r〉 against
the temperature in Fig. 6(b). Those for k = 500 ε/σ 2 are
also plotted. The dimer molecule is more stretched at the
high temperature. In other words, the dimer becomes bulkier.
The degree of the stretching is large when k is small, so that
the corresponding effective volume of the dimer is increased
more largely for small k. In the dilute mixtures (φ = 0.036),
the probability distribution agrees well with the Boltzmann
distribution (4πr2 × exp[−Usp(r)/T ]). In the dense mixtures,
on the other hand, the probability distribution is inconsistent
with the Boltzmann distribution. The average bond length in
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FIG. 5. The differences of the chemical potentials between the
dimers and monomers μ̃d are plotted against the temperature 〈T 〉,
the mixing ratio χ , and the packing fraction φ in (a), (b), and (c),
respectively. In (a) and (c), the temperature is T = 3ε.

the dense mixture is shorter than that in the dilute mixture as
shown in Fig. 6(b). The molecules are surrounded by other
molecules, all of which are exerting nonbonded forces of the
molecules. The degree of the bond stretching is suppressed
more in the dense system.

In Fig. 4 we also plotted the thermal diffusion factor in
other monomer-monomer mixtures as a function of the pack-
ing fraction φ (red squares). In these mixtures, the masses
of both monomers are the same, while the size of the A
particle is set to be larger than that of the B particle. We
replace σ in the WCA potential [Eq. (1)] to σAA = σ, σAB =
0.8σ , and σBB = 0.6σ for the A-A, A-B, and B-B pairs
of the monomers, respectively. The potential strength ε is
not changed. As the packing fraction increases, the thermal
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FIG. 6. (a) Probability distributions P(r) of the bond length r in
the dimer-monomer mixtures of φ = 0.036 and 0.234. The spring
constant is k = 10ε/σ 2. The temperature T is changed. (b) Plots of
the averaged bond length 〈r〉 with respect to the temperature 	T in
the dimer-monomer mixtures.

diffusion factor decreases and becomes negative eventually.
The bulky A monomers migrate to the colder region in
the dilute mixtures, while they move to the hotter region
in the dense mixtures. These observations are consistent
with a previous study [23]. Although the physical mecha-
nism of this Soret effect still remains unclear, we consider
that the Soret effect in the dimer-monomer mixtures is re-
lated to that in these monomer-monomer mixtures. When
k is small, the dimer molecules become bulkier. Then the
bulky dimers tend to move to the hotter region as that in
the monomer-monomer mixtures, although these dimers are
two times as heavy as the monomers. If k is large, the
dimer size does not change much, making this behavior
unremarkable.

V. 1D SIMULATION

In this section, we propose another possible mechanism of
the Soret effect, with one-dimensional (1D) simulations [21].
The motions of the two particles in a dimer and a monomer
particle are constrained in the x axis. We prepared an initial
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FIG. 7. (a) The coefficients of restitution between a dimer and a
monomer are shown against the spring constant k, which are obtained
in 1D simulations for two cases, X: (Td, Tm ) = (5ε, ε), Y: (Td, Tm ) =
(ε, 5ε). (b) The differences of the coefficients of restitution 	e =
eX − eY are shown with the spring constant. The exponent n in the
WCA potential is changed.

dimer and monomer, which obey the Maxwell-Boltzmann
distributions at T = Td and T = Tm, respectively. The 1D
dimer has three types of energies (K tra

d , Kvib
d , and spring poten-

tial Usp), the statistical averages of which are set to Td/2. The
translational kinetic energy of the monomer is set to 〈K tra

m 〉 =
Tm/2. The monomer particle and one dimer particle, which we
call the first particle (and the other the second one), interact
via the WCA potential [Eq. (1)] with n = 6. If the dimer and
the monomer collide and bounce, we calculate the coefficient
of restitution e from the velocities of the dimer and monomers.
The collision between the dimer and the monomer is inelastic,
since the sum of the translational kinetic energies, K tra

d + K tra
m ,

is not conserved after the collision. In particular, when the
energy due to the internal degrees of freedom (Kvib

d + Usp) is
transferred to the translational kinetic energies (K tra

d + K tra
m ),

the coefficient of restitution is likely to exceed unity [31]. The
coefficient of restitution is scattered statistically, so that we
obtain its average with 107 samples.

In Fig. 7(a) we present the coefficients of restitution with
respect to the spring constant k in two cases, X: (Td, Tm ) =
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(5ε, ε), and Y: (Td, Tm ) = (ε, 5ε). In both cases, the
coefficient of restitution is larger than unity when k is small,
and it approaches unity when k is large. It can be observed that
the dimer and monomer bounce asymmetrically, i.e., eX > eY

over the entire range of k. In case X, the coefficient of restitu-
tion is decreased monotonically to unity as the spring constant
is increased. In case Y, on the other hand, the coefficient of
restitution changes nonmonotonically with k. When k is small,
eY is decreased with k and becomes smaller than unity. Then,
it turns to increase and approaches unity for large k. In case X,
the dimer is likely to have larger internal energy than the sum
of the translational kinetic energies (Kvib

d + Usp > K tra
d + K tra

m )
before the collision. Upon the collision, the internal energy
changes to the translational energy, increasing the coefficient
of restitution. In case Y, on the other hand, the internal energy
is comparably small (Kvib

d + Usp < K tra
d + K tra

m ), allowing the
translational energy transferred to the internal energy. As a
result, the coefficient of restitution in case Y is likely to be
smaller than that in case X, eX > eY. When the dimer is “hot-
ter” than the monomer, the molecules bounce more, resulting
in the negative thermal diffusion factor, with which the dimers
migrate to the hotter region.

In Fig. 7(b) we plot the difference between the coefficients
of restitution in two different cases, 	e = eX − eY. Here we
show 	e for several different values of n(= 3, 6, 12, and 24)
in the WCA potential [Eq. (1)]. In any n, 	e is positive, and
it decays with k. With small n, the particles are soft, so that
the collision time increases, and the monomer and the first
particle in the dimer interact via the WCA potential slowly. If
the intraparticle interaction is strong enough (with large k), the
energy and the momentum are well transferred to the second
particle in the dimer during the collision. Meanwhile, the
collision becomes more elastic when n is small and k is large,
making the coefficients of restitution eX and eY converge to
unity and 	e goes to zero. When n is large, on the other hand,
the collision time is shortened. If the intramolecule interac-
tion is weak (with small k), the second particle is negligible
upon the collision. Since we set the particle masses to be
same, the kinetic energies and momenta are exchanged be-
tween the monomer and the first particle during the collision.
However, after the collision, the translational and vibrational
kinetic energies are redistributed within the dimer. If Td =
0 in case Y, in particular, the coefficient of restitution is
eY = 1/2 in this limit of large n. As a result, the difference
between eX and eY tends to zero more gradually when n is
large.

Although we consider that this asymmetry of the restitu-
tions can cause the Soret effect also in the actual systems, the
relationship between the Soret effect in the 1D simulations
and that in the above 3D simulations should be considered
carefully. The collisions among the molecules in the 3D sys-
tem are mostly oblique and not head-on. Thus, it is considered
that the asymmetric restitution plays more minor roles in the
3D mixtures, even if it is the case. Because of the asymmetric
restitution and the energy transfer, the thermalization of the
internal and kinetic degrees of freedom might be violated.
As shown in Fig. 1(a), however, we have not observed any
relevant difference between the kinetic and vibrational tem-
peratures. We consider that the linear temperature gradient is
formed well after the particle heterogeneity due to the Soret

effect is induced, although we have no evidence supporting
this claim.

Here we mention a previous study of Garriga et al.
[21], in which the authors have considered the Soret ef-
fect in the 1D binary mixtures of light and heavy particles.
They found that the asymmetric collisions lead to the
strong Soret effect. Although their molecular description is
quite different from ours, their findings would support our
conjecture.

VI. SUMMARY

In this article, we numerically studied the Soret effect in the
dimer-monomer mixtures and found that the internal degrees
of the freedom of the molecules can contribute significantly
the Soret effect, which is usually treated as an intermolecular
phenomenon. In a dense system, in particular, the rigid dimers
migrate to the colder side, while the flexible ones move to the
hotter side.

To explain the Soret effect in our system, we proposed
two possible mechanisms. One is in regard to the changes
of the molecular shape; flexible molecules adapt their vol-
ume depending on the local temperature, while bulkier dimer
molecules tend to migrate to the hotter side, overcoming the
isotope effect. The other is in regard to the asymmetry of the
restitutions. If a molecule having larger internal degrees of
freedom is “hotter,” the coefficient of restitution with the other
“colder” molecule with smaller internal degrees of freedom
becomes larger than that for the opposite case. To determine
which of them (and/or some other mechanisms) is more
dominant, we have to investigate them further through other
types of test molecules. The intermolecular interactions would
be modified by the intrastructures of the molecules in the
nonequilibrium conditions.

In this work, we focused on dimer molecules consisting
of two particles. However, it should be noted that diatomic
molecules, such as O2, are not considered with this dimer
model. The vibrational modes in a real diatomic molecule
are quantized and the higher modes are strongly quenched at
room temperature. In this work, we aimed to consider softer
molecules; polymers are appropriate candidates for such soft
molecules. However, the changes of the degree of the poly-
merization accompany those of the mass, the moment of
inertia, and the interactions, all of which influence the Soret
effect. Thus, it is difficult to observe the pure effect of the
flexibility on the Soret effect. It was numerically demonstrated
that the difference of the chain stiffness triggers the change of
the Soret effect [9]. When the degree of the polymerization
is the same, the Soret coefficient of more flexible polymers,
with short persistent length, tends to be smaller than those of
rigid polymers with long persistent length. We believe that
our findings can help us to further understand such mysterious
behaviors of the Soret effect.
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