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Effect of boundaries on noninteracting weakly active particles in different geometries
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We study analytically how noninteracting weakly active particles, for which passive Brownian diffusion
cannot be neglected and activity can be treated perturbatively, distribute and behave near boundaries in various
geometries. In particular, we develop a perturbative approach for the model of active particles driven by an
exponentially correlated random force (active Ornstein-Uhlenbeck particles). This approach involves a relatively
simple expansion of the distribution in powers of the Péclet number and in terms of Hermite polynomials. We
use this approach to cleanly formulate boundary conditions, which allows us to study weakly active particles
in several geometries: confinement by a single wall or between two walls in 1D, confinement in a circular or
wedge-shaped region in 2D, motion near a corrugated boundary, and, finally, absorption onto a sphere. We
consider how quantities such as the density, pressure, and flow of the active particles change as we gradually
increase the activity away from a purely passive system. These results for the limit of weak activity help us gain
insight into how active particles behave in the presence of various types of boundaries.
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I. INTRODUCTION

Active particles consume fuel locally to propel and gener-
ate persistent motions [1,2]. Examples of such self-propelled
particles range from humans [3] down to microorganisms
[4,5] and artificial swimmers [6–8]. The propulsion and, most
importantly, the persistence or correlation time of the direction
of propulsion are responsible for out-of-equilibrium phenom-
ena such as phase separation without attractive interactions
[9] and preferential motion through funnel-shaped walls [10]
or around gearlike objects [11,12].

When an active particle collides with a solid boundary, it
often surfs along the boundary until eventually turning around
and propelling away [10,13,14]. This behavior is difficult
to analyze mathematically because it often leads to singular
behavior at a boundary. One approach is to treat a system of
active particles (without passive diffusion) in the presence of a
wall as two coupled populations of particles: those stuck at the
wall and those in the bulk [15–17]. This results in additional
terms in the equations for density that capture the fluxes of
particles from the bulk to the wall and, similarly, from the
wall back into the bulk. This formulation is related to a class
of models known as two-way diffusion equations in which
one must specify how particles at the wall reenter the bulk
[18–20]. An alternative approach is to represent boundaries
as soft confining potentials, which has been useful for study-
ing the pressure and distribution of active particles [21–23].
However, compared to passive Brownian particles, for which
we have the Boltzmann distribution, it is considerably more
difficult to determine the distribution of active particles in
arbitrary potentials.

To gain insight into how activity affects the behavior of
active particles near different types of boundaries, we consider
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the limit of weakly active particles, when passive Brown-
ian diffusion cannot be neglected and activity can be treated
perturbatively. Passive Brownian diffusion due to thermal
fluctuations is always present in any physical system. As we
will see from a mathematical perspective, including passive
diffusion makes it easier for us to deal with boundaries by
allowing us to define familiar Neumann-, Dirichlet-, or Robin-
type boundary conditions. Physically, these may represent
impenetrable or absorbing boundaries. The limit of weak ac-
tivity is also particularly useful because it allows us to apply
perturbation theory to known results in the limit of passive
particles or zero activity.

The paper is structured as follows. In Sec. II, we introduce
and summarize the active particle model of a Brownian par-
ticle driven by an exponentially correlated random force. In
Sec. III, we show how the Fokker-Planck equation describing
the distribution of these active particles can be solved pertur-
batively by expanding the distribution in powers of the Péclet
number and in terms of Hermite polynomials. In Secs. IV–VI,
we use this approach to study several problems of noninter-
acting weakly active articles near impenetrable boundaries.
This includes simple confinement in 1D, confinement to a
circular or wedge-shaped region, and confinement by a corru-
gated boundary. Finally, in Sec. VII, we consider an absorbing
boundary problem of weakly active particles around a spheri-
cal absorber. For each example geometry, we start the section
with a brief description of the equations we solve and the
boundary conditions we apply to obtain the distribution of
active particles.

II. ACTIVE PARTICLES DRIVEN BY AN
EXPONENTIALLY CORRELATED RANDOM FORCE

We start by describing a Brownian particle driven by an ex-
ponentially correlated random force. The equation of motion
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for its position is given by the overdamped Langevin equation

γ ṙ = η +
√

2Dpγ 2ξr, (1)

where γ is the friction coefficient, Dp is the passive dif-
fusivity, and ξr is a zero mean Gaussian white noise with
〈ξr,α (t )ξr,β (t ′)〉 = δαβδ(t − t ′). Note that the passive diffusiv-
ity can be related to temperature through the Einstein relation
Dpγ = kBT . The variable η is the active force that propels the
particle. We assume this force has first and second moments

〈ηα (t )〉 = 0, (2a)

〈ηα (t )ηβ (t ′)〉 = δαβ

γ 2v2

d
exp

(
− 1

τ
|t − t ′|

)
, (2b)

where τ is the persistence time of the propulsion, v is the swim
speed, and d is the spacial dimension. In other words, this
propulsion force on average has no preferred direction and is
exponentially correlated in time. The exponential correlation
in time means that the active particle will have memory of its
propulsion direction for roughly a time τ before orienting in a
new direction. Note that the magnitude of the correlations are
chosen so the characteristic propulsion force is

√
〈η2〉 = γ v,

which is simply the force needed to move through a viscous
environment at a speed v.

One common way to generate an exponentially correlated
random force is through an Ornstein-Uhlenbeck process given
by

τ η̇ = −η +
√

2v2τγ 2

d
ξη, (3)

where ξη is a zero mean Gaussian white noise independent
of ξr with 〈ξη,α (t )ξη,β (t ′)〉 = δαβδ(t − t ′). Equations (1) and
(3) thus describe the dynamics of an active particle driven by
an exponentially correlated random force. The mean-squared
displacement of such a particle is given by

〈r2(t )〉 = 2dDpt + 2v2τ 2

[
t

τ
− 1 + e− t

τ

]
. (4)

There are two timescales: τ and dDp/v
2. The latter is the

crossover between passive diffusion and ballistic motion. On
timescales longer than the persistence time t � τ , the propul-
sion force becomes uncorrelated and the active particle effec-
tively diffuses with 〈r2〉 � 2dDefft , where the effective diffu-
sivity Deff = Dp + v2τ/d is the sum of the passive and active
diffusivities Dp and Da = v2τ/d . For t � dDp/v

2, the parti-
cle undergoes passive Brownian diffusion with 〈r2〉 � 2dDpt .
Finally, for dDp/v

2 � t � τ , the particle undergoes ballistic
motion with 〈r2〉 � v2t2. Note that this ballistic regime dis-
appears when τ � dDp/v

2 or, equivalently, vτ � √
dDpτ ,

that is, when transport due to propulsion is much smaller than
transport due to passive diffusion. We refer to such particles
as weakly active, which will be our main focus here.

The Langevin equations [Eqs. (1) and (3)] can be re-
cast into a Fokker-Planck equation. The distribution of a
noninteracting system of these active particles satisfies the
Fokker-Planck equation,

∂ρ

∂t
= − 1

γ
η · ∇rρ + Dp∇2

r ρ + 1

τ
∇η · (ηρ) + γ 2v2

dτ
∇2

ηρ

= −∇r · Jr − ∇η · Jη, (5)

where ρ = ρ(r, η, t ) is the distribution of the active particles
and

Jr = 1

γ
ηρ − Dp∇rρ, (6a)

Jη = − 1

τ
ηρ − γ 2v2

dτ
∇ηρ (6b)

are the currents for positions and propulsions. Note that pas-
sive diffusion introduces the spacial gradient ∇rρ in Jr , which
will be extremely useful for formulating boundary conditions.

Our goal is to find a way to solve Eq. (5) for the distribution
of active particles. Note that in the bulk far from any boundary,
the spacial density of noninteracting active particles should
be uniform and the propulsion force η for this model will be
Gaussian distributed in the steady state. The exact steady-state
distribution in the bulk satisfying Eq. (5) is

ρ(r, η) = ρbulk

(2πγ 2v2/d )d/2
exp

(
− η2

2γ 2v2/d

)
. (7)

We wish to determine how this distribution changes near a
boundary given certain conditions on the current or density at
that boundary.

III. PERTURBATION THEORY AND
EIGENFUNCTION EXPANSION

To simplify the problem, let us define the dimensionless
position and propulsion force to be

r̃ = r√
2Dpτ

= r
λ

, (8a)

η̃ = η√
2γ 2v2/d

= η

σ
, (8b)

where the length scale λ = √
2Dpτ is how far the particle

passively diffuses in a persistence time and the force scale
σ =

√
2γ 2v2/d is roughly the force needed to move through a

viscous environment at speed v. This length scale λ is impor-
tant and will show up again and again in subsequent sections.
In our context of boundaries, we can interpret it as the distance
over which active particles will be persistent and still interact
with a boundary through diffusion and propulsion. In other
words, within this distance, we will observe the influence of a
boundary on, for example, the distribution of active particles.
Beyond this distance, however, the active particles may reori-
ent many times without colliding with a boundary and thus
behave as if they are in bulk.

The resulting dimensionless Fokker-Planck equation in the
steady state is

∇2
r ρ̃ + ∇2

η ρ̃ + 2∇η · (η̃ρ̃ ) = 2εη̃ · ∇r ρ̃, (9)

where the dimensionless distribution is ρ̃(r̃, η̃) =
ρ(λr̃, σ η̃)λdσ d . Throughout the paper, tildes will indicate a
dimensionless quantity. The only parameter that remains is

ε =
√

v2τ

dDp
=

√
Pe, (10)

where Pe is the Péclet number which is the ratio of advective
transport (swimming) to diffusive transport. This parameter
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FIG. 1. Several of the geometries we consider: (a) active particles near a single hard wall, (b) active particles inside and outside a circular
boundary, (c) active particles confined to a wedge-shaped region, (d) active particles near a corrugated boundary, and, finally, (e) active particles
near a spherical absorber.

controls the level of activity of the particles; for example,
ε = 0 corresponds to a passive particle while ε � 1, a
strongly active particle. As mentioned earlier, our main focus
here will be on weakly active particles or ε � 1.

To make further progress, we perform two expansions on
the distribution: an expansion in powers of ε and an eigen-
function expansion in Hermite polynomials (Appendix A 1).
To keep things simple here, we will only show the series
solution for 1D, though it should be emphasized that the result
can easily be extended to arbitrary dimensions (Appendix B).
We start by writing the distribution in powers of ε as

ρ̃(x̃, η̃) =
∞∑

n=0

εnρ̃ (n)(x̃, η̃), (11)

which gives us for each order

∂2ρ̃ (n)

∂ x̃2
+ ∂2ρ̃ (n)

∂η̃2
+ 2

∂

∂η̃

(
η̃ρ̃ (n)) = 2η̃

∂ρ̃ (n−1)

∂ x̃
. (12)

The zeroth order solution ρ̃ (0) is related to the density of
passively diffusing particles, which is usually easy to find.
Thus, we can determine the effect of activity by iteratively
computing higher-order terms starting from the solution for
passive Brownian particles.

There should be no active particles with an arbitrarily large
propulsion force η. In other words, the distribution in η should
decay sufficiently quickly as |η| → ∞. We can therefore
simplify the second and third terms on the left-hand side of
Eq. (12) by expanding the distribution in terms of Hermite
polynomials. By writing each order of the distribution as

ρ̃ (n)(x̃, η̃) =
∞∑

m=0

C(n)
m (x̃)e−η̃2

Hm(η̃), (13)

we reduce the entire problem to solving for the coefficients
C(n)

m (x̃), which satisfy in 1D the simple ordinary differential

equation:

d2C(n)
m

dx̃2
− 2mC(n)

m = d

dx̃

[
C(n−1)

m−1 + 2(m + 1)C(n−1)
m+1

]
. (14)

We will focus on two kinds of boundaries: impenetrable and
absorbing. At an impenetrable boundary, particles cannot pass
through it and so the current normal to the boundary must be
zero. At an absorbing boundary, particles are removed from
the system and so the density at the boundary is maintained to
be zero. By writing the current J̃x = 2εη̃ρ̃ − ∂ρ̃

∂ x̃ or density ρ̃

in terms of the coefficients C(n)
m , we can use the orthogonality

of Hermite polynomials to determine the boundary conditions
for the coefficients. We now illustrate this approach with
several examples of noninteracting weakly active particles in
different geometries (Fig. 1).

IV. PROBLEMS IN CARTESIAN COORDINATES

A. Active particles on a line

Consider the simplest example of noninteracting weakly
active particles freely propelling left or right on a line until
they collide with an impenetrable wall. We are interested in
how the presence of such a wall modifies the bulk distribu-
tion of active particles [Eq. (7)]. As outlined in Sec. III, the
dimensionless distribution in 1D can be written as

ρ̃(x̃, η̃) =
∞∑

n=0

εn
∞∑

m=0

C(n)
m (x̃)e−η̃2

Hm(η̃), (15)

where the coefficients satisfy Eq. (14). We consider the cases
of active particles confined by one solid wall and between two
walls.
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1. 1D semi-infinite domain: One wall

We start with the case of an impenetrable wall at x = 0
that confines the active particles to the region x > 0. The
zero current condition at this wall Jx(0, η) = 0 gives us the
condition on the coefficients:

dC(n)
m (0)

dx̃
= C(n−1)

m−1 (0) + 2(m + 1)C(n−1)
m+1 (0). (16)

Details of the solution can be found in Appendix C 1. We are
interested in how the presence of an impenetrable wall affects
the distribution ρ(x, η) and the currents Jx(x, η), Jη(x, η) of
the active particles. In the bulk, the distribution is given by
Eq. (7) with d = 1. As we approach the wall, the distribution
will no longer be independent of x. Up to ε2, the distribution is

ρ(x, η) � ρbulk

σ
√

π
e− η2

σ2

{
1 − ε

√
2e−

√
2x
λ

η

σ
+ ε2

[
e−

√
2x
λ + (√

2e− 2x
λ − e−

√
2x
λ

)(2η2

σ 2
− 1

)]}
, (17)

where λ = √
2Dpτ and σ =

√
2γ 2v2. Integrating out the

active force η, we have for the spacial density

ρ(x)

ρbulk
� 1 + ε2e−

√
2x
λ

+ ε4

[
2
√

2e− 2x
λ + 2

√
2

(
x

4λ
− 1

)
e−

√
2x
λ

]
. (18)

The ε2 and ε4 contributions to this density are shown in Fig. 2.
The density is elevated over the length scale λ, which, as we
discussed earlier, is the distance over which the presence of
the wall will be felt by the active particles. Another way of
thinking of this is that persistence of the active particles causes
them to spend more time near the wall, thus elevating the den-
sity. The excess number of particles near the wall is given by

Nexcess =
∫ ∞

0
[ρ(x) − ρbulk]dx

� ρbulk

√
Dpτ

[
ε2 − 4

√
2 − 5

2
ε4

]
. (19)

It is interesting to note that the ε4 correction does not further
increase the density near the wall and actually depletes it,
as there is a decrease in the excess number of particles near
the wall. This suggests that at higher Péclet numbers, the
accumulated density may become steeper.

FIG. 2. ε2 (blue) and ε4 (orange) contributions to the density of
weakly active particles near a single impenetrable wall [Eq. (18)].
The ε2 contribution gives an elevated density while the ε4 contribu-
tion slightly depletes the density near the wall.

The currents in the position x and active force η are given
by

Jx(x, η) � ε
λ

τ

(
ρbulk

σ

)
1√
π

(
1 − e−

√
2x
λ

) η
σ

e− η2

σ2 , (20a)

Jη(x, η) � ε
σ

τ

(
ρbulk

σ

)
1√
2π

e−
√

2x
λ e− η2

σ2 . (20b)

These characterize how the positions and propulsions of our
active particles change on average as they move near a wall.
There is circulation in the xη plane (Fig. 3), a signature of
out-of-equilibrium systems [24]. In this case, the behavior
is quite simple: Active particles on average swim toward the
wall, spend some time turning, and then swim away. It is
interesting to note that while we observe currents at order ε,
we do not observe any deviations from the passive density
ρ(x) = ρbulk until order ε2. The currents result in an asymmet-
ric distribution in η at the wall. Up to order ε, the distribution

FIG. 3. Currents Jx (x, η), Jη(x, η) [Eqs. (20a) and (20b)] result-
ing from activity near a single impenetrable wall. The circulation
shows the simple behavior of active particles propelling toward the
wall, spending time turning around, and then propelling away.
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at the wall is

ρ(0, η) � ρbulk

σ
√

π
e− η2

σ2

(
1 − ε

√
2η

σ

)
. (21)

The correction shifts the mean to 〈η〉x=0 � −εγ v =
−γ v

√
v2τ
Dp

. Physically, this occurs because particles with

η < 0 swim toward the wall and have an increased density
when they are slowed while particles with η > 0 swim away
and have a decreased density. The result for 〈η〉 can also
be obtained from a simple balancing of currents. Recall that
the density [Eq. (18)] is elevated by ε2ρbulk over a length
scale

√
Dpτ , which gives a diffusive flux Jdiff ∼ Dp

ε2ρbulk√
Dpτ

away from the wall. Setting this equal to the swim flux
Jswim ∼ 1

γ
〈η〉ρbulk, we get an average propulsion of 〈η〉 ∼

γ Dp
ε2√
Dpτ

= γ v
√

v2τ
Dp

toward the wall. At higher Péclet num-

bers, we expect that the distribution at the wall will shift more
toward η < 0 and that the density ρ(0, η > 0) will become
significantly depleted. This occurs because the moment an
active particle turns around, it immediately propels away from
the wall and no longer contributes to ρ(0, η > 0).

2. 1D finite domain: Two walls

We now consider the case of active particles confined be-
tween two walls located at x = ±L. Unlike for a single wall,
there is no bulk where the distribution of active particles is
unaffected by the wall. When there are two walls, each wall
can have an effect on the distribution at the other. The zero
current boundary conditions Jx(±L, η) = 0 give the following
relation for the coefficients:

dC(n)
m (±L̃)

dx̃
= C(n−1)

m−1 (±L̃) + 2(m + 1)C(n−1)
m+1 (±L̃). (22)

The steps for finding the solution (Appendix C 2) are similar
to those of the single wall. The main difference is that we
now have a finite number of particles trapped between the two
walls instead of an infinite bulk with constant density. Taking
ρ(x, η) and integrating out η, we have for the density

ρ(x)

N/2L
= 1 + ε2

(
cosh

√
2x
λ

cosh
√

2L
λ

− tanh
√

2L
λ√

2L
λ

)
, (23)

where N is the number of particles between the walls. Note
that as a result of the accumulation at walls, there is a deple-
tion of particles around the center of the confinement. This is
captured by the second term in the parenthesis, which vanishes
in the limit of large separation of the walls.

For large separations, each wall should not influence the
other and we should obtain the result for a single wall in the
previous section. Indeed, taking L � λ, we find

ρ(x) � N

2L

[
1 + ε2

(
e

√
2(x−L)

λ + e−
√

2(x+L)
λ

)]
, (24)

which is simply the sum of the accumulations due to each wall
if it were by itself. We can also examine the opposite limit of
two walls that are very close to each other (L � λ), for which
we find the parabolic profile:

ρ(x) � N

2L

[
1 + ε2

(
x2

λ2
− L2

3λ2

)]
. (25)

We now look at the distribution of particles at each wall to
see how one wall may influence the other. The distribution at
the walls to order ε is

ρ(±L, η) = N

2L
· e− η2

σ2

σ
√

π

(
1 ± ε

√
2η

σ
tanh

√
2L

λ

)
, (26)

which gives for the average propulsion at each wall

〈η〉(±L) � ±εγ v tanh

√
2L

λ
. (27)

Interestingly, we can interpret this average propulsion as a
weighted average 〈η〉(±L) � ∓εγ vPc ± εγ vPf , where

Pc = 1

1 + e− 2
√

2L
λ

, Pf = e− 2
√

2L
λ

1 + e− 2
√

2L
λ

(28)

are the weights for the closest and farthest walls, respec-
tively. Note that these weights are proportional to how much
the closest and farthest walls contribute to the accumulation.
When the two walls are far apart (L � λ), we get back the
single wall result 〈η〉(±L) � ∓εγ v since the farthest wall
contributes nothing (Pf � Pc ≈ 1).

3. Pressure on solid boundaries

One question of interest is how one relates the density of
active particles to the pressure they exert on walls. For an
equilibrium system of noninteracting particles, the density is
ρ(x) = ρ0 everywhere and the pressure is simply the ideal gas
pressure P = ρ0kBT . To compute the pressures in our present
case of noninteracting active particles, we start by replacing
the impenetrable walls with soft confining potentials. This ap-
proach of using soft potentials has been useful for computing
the mechanical properties of active particles near boundaries
[21–23,25–27]. The idea is that a confining potential, just like
a wall, can prevent particles from moving a certain direction.
The pressure can then be computed by simply summing up the
forces the potential exerts on the particles. One can then take
the limit as the potential becomes steep to obtain the pressure
for an impenetrable wall. For our purposes, we consider the
ramp potentials (Appendix C 3)

U (x) =
{− f x, x < 0

0, x > 0 (29)

for one wall at x = 0 and

U (x) =
⎧⎨⎩− f x − f L, x < −L

0, −L < x < L
f x − f L, x > L

(30)

for two walls at x = ±L. The mechanical pressure for both
cases is simply given by the integral

P = −
∫

U ′(x)ρ(x)dx (31)

over one of the wall regions where U (x) �= 0. The distribu-
tions and the pressures obtained for these ramp potentials are
left for Appendix C 3. We are interested in the limit of impen-
etrable walls or f → ∞. In this limit, we find the pressures

P = ρbulkDpγ (1 + ε2) (32)
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for one wall and

P � NDpγ

2L

[
1 + ε2

(
1 − tanh

√
2L
λ√

2L
λ

)]
(33)

for two. We start by noting that the pressure for one wall
[Eq. (32)] is actually exact even though it was obtained
from perturbation theory. A proof of this can be found in
Appendix C 3. There are two interpretations of this pres-
sure. The first interpretation is P = ρbulk[Dp(1 + ε2)]γ =
ρbulkDeffγ , which can be thought of as the ideal gas pressure
of particles with an effective diffusivity Deff = Dp + v2τ . The
second interpretation is P = [ρbulk(1 + ε2)]Dpγ � ρwallDpγ ,
where ρwall = ρ(0) is the density at the boundary. This is just
the passive pressure due to the elevated density of particles
[Eq. (18)] close to the wall. For the case of confinement
between two walls, the situation is different as there is no
longer a bulk. However, notice that we still have the rela-
tion P � ρwallDpγ , where ρwall = ρ(±L). Using Einstein’s
relation Dpγ = kBT , we may write P � ρwallkBT for non-
interacting active particles. While we have only shown that
this relation for pressure holds up to order ε2, it is not in-
conceivable that it should hold in general. In Appendix C 4,
we show that for the exactly solvable model of noninteract-
ing 1D run-and-tumble particles with passive diffusion, this
relation for pressure holds without any approximations. It is
worth noting that a similar relation has been shown to hold
for noninteracting active Brownian particles [27], a different
model of active particles.

B. Confinement in 2D: Right-angled corner

In previous sections, we considered weakly active particles
in 1D. Those results can easily be extended to flat walls in
higher dimensions such as an infinite line (2D) or infinite plate
(3D). In fact, the density profiles, particularly the exponential
decays of density away from a flat wall, are exactly the same
as those obtained in 1D.

We are interested in going beyond these simple ge-
ometries and studying cases where the walls may be
curved or are not parallel and meet at certain angles.
In this particular section, we will focus on the sim-
pler case of two flat walls that meet at a right angle
and confine active particles to a region x > 0, y > 0.
We write the dimensionless distribution as

ρ(r̃, η̃) =
∞∑

n=0

εn
∑

m

C(n)
m (r̃)e−η̃2

Hmx (η̃x )Hmy (η̃y). (34)

Notice that going to higher dimensions simply requires addi-
tional Hermite polynomials. The coefficients satisfy

∂2C(n)
m

∂ x̃2
+ ∂2C(n)

m

∂ ỹ2
− 2(mx + my)C(n)

m = ∂wx

∂ x̃
+ ∂wy

∂ ỹ
, (35)

where

wx = C(n−1)
mx−1,my

+ 2(mx + 1)C(n−1)
mx+1,my

, (36a)

wy = C(n−1)
mx,my−1 + 2(my + 1)C(n−1)

mx,my+1. (36b)

The zero current boundary conditions Jx(0, y, η) =
Jy(x, 0, η) = 0 give the following conditions on the
coefficients:

∂C(n)
m (0, ỹ)

∂ x̃
= wx(0, ỹ), (37a)

∂C(n)
m (x̃, 0)

∂ ỹ
= wy(x̃, 0). (37b)

Details of the solution can be found in Appendix C 5. Inte-
grating out η from ρ(r, η), we find the density near the corner
is

ρ(r)

ρbulk
� 1 + ε2

(
e−

√
2x
λ + e−

√
2y
λ

)
+ ε4

[
2
√

2e− 2x
λ + 2

√
2

(
x

4λ
− 1

)
e−

√
2x
λ

]
+ ε4

[
2
√

2e− 2y
λ + 2

√
2

(
y

4λ
− 1

)
e−

√
2y
λ

]
+ ε4e−

√
2(x+y)

λ

= ρ1D(x) + ρ1D(y)

ρbulk
+ ε4e−

√
2(x+y)

λ , (38)

where ρ1D is the 1D density [Eq. (18)] if each wall were by
itself. The last term is new and enhances the accumulation
near the corner. This arises due to correlations between ηx, ηy

near the corner. Indeed, if we study the full distribution, we
find at order ε2 the new term

ρ(r, η) � single wall contributions

+ 2ε2 ρbulk

πσ 2
e− η2

σ2
ηxηy

σ 2
e−

√
2(x+y)

λ , (39)

which gives a nonzero correlation 〈ηxηy〉 near the corner and
is responsible for the extra accumulation at order ε4. If we
consider the average propulsion 〈η〉 of the active particles near
the corner, which is given by

〈η〉(x, y) = −εγ v√
2

(
e−

√
2x
λ , e−

√
2y
λ

)
, (40)

we also see that there is an increased tendency for active
particles to orient and propel towards the corner (Fig. 4).

V. PROBLEMS IN POLAR COORDINATES

We have thus far considered simple examples of weakly
active particles near flat walls or a right-angled corner. We
now want to study how the curvature of a surface or the
sharpness of a corner affects the distribution of these particles.
We focus our attention on two cases: a circular boundary and
a corner with an angle other than π/2.

These examples are best studied using polar coordinates.
In polar coordinates, we write the dimensionless distribution
as

ρ̃(r̃, θ, η̃) =
∞∑

n=0

εn
∑

m

C(n)
m (r̃, θ )e−η̃2

Hmx (η̃x )Hmy (η̃y). (41)
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FIG. 4. Average propulsion 〈η〉 [Eq. (40)] near a right-angled
corner that confines active particles to x > 0, y > 0. This orientation
toward the corner leads to additional accumulation given by the last
term of the density Eq. (38).

The coefficients satisfy

1

r̃

∂

∂ r̃

(
r̃
∂C(n)

m

∂ r̃

)
+ 1

r̃2

∂2C(n)
m

∂θ2
− 2(mx + my)C(n)

m

= 1

r̃

∂

∂ r̃
(r̃wr ) + 1

r̃

∂wθ

∂θ
, (42)

where the components of w in polar coordinates are

wr = [
C(n−1)

mx−1,my
+ 2(mx + 1)C(n−1)

mx+1,my

]
cos θ

+ [C(n−1)
mx,my−1 + 2(my + 1)C(n−1)

mx,my+1

]
sin θ, (43a)

wθ = −[C(n−1)
mx−1,my

+ 2(mx + 1)C(n−1)
mx+1,my

]
sin θ

+ [C(n−1)
mx,my−1 + 2(my + 1)C(n−1)

mx,my+1

]
cos θ. (43b)

A. Active particles around a circular boundary

Consider an impenetrable circular boundary of radius
R with active particles both inside and outside. We will
separately obtain the densities in both regions. The radial
current on both sides of the boundary must be zero, or
Jr (R, θ, η) = 0. We thus have the boundary condition for the
coefficients:

∂C(n)
m (R̃, θ )

∂ r̃
= wx(R̃, θ ) cos θ + wy(R̃, θ ) sin θ. (44)

Details of the solutions both inside and outside the region can
be found in Appendix D 1. The densities outside and inside

the boundary to order ε2 are

ρout(r, θ ) � ρbulk

[
1 + 2ε2 K0

(√
2r
λ

)
K0
(√

2R
λ

)+ K2
(√

2R
λ

)
]
, (45a)

ρin(r, θ ) � N

πR2

[
1 + 2ε2

× I0
(√

2r
λ

)− I0
(√

2R
λ

)+ I2
(√

2R
λ

)
I0
(√

2R
λ

)+ I2
(√

2R
λ

)
]
,

(45b)

where Iμ, Kμ are the modified Bessel functions of the first
and second kinds and N is the number of particles inside the
circular region.

Let us consider some limiting behaviors as R → ∞ or
R → 0. Defining δr = r − R as the radial distance from the
circular boundary and taking |δr| � R, we obtain for the
density near a large circular boundary (R → ∞):

ρout(R + δr, θ ) � ρbulk
(
1 + ε2e−

√
2δr
λ

)
, (46a)

ρin(R + δr, θ ) � N

πR2

(
1 + ε2e

√
2δr
λ

)
. (46b)

Note that these are just the density profiles near a flat wall
[Eqs. (18) and (24)] since the curvature of the wall becomes
negligible as R → ∞. In the opposite limit of a small circular
boundary (R → 0), we have

ρout(r � λ, θ ) � ρbulk

[
1 + 2ε2R2

λ2

(
ln

√
2λ

r
− γEM

)]
,

(47a)

ρin(r, θ ) � N

πR2

[
1 + ε2

(
r2

λ2
− R2

2λ2

)]
, (47b)

where γEM ≈ 0.577 is the Euler-Mascheroni constant. The
weak dependence of ρout on r is a result of the particles outside
interacting with a small circular boundary, which should not
affect the density much. Finally, just as in the 1D case, the
density inside the small region ρin takes on a parabolic profile.

We are interested in how the curvature of a boundary
affects the accumulation of weakly active particles. Let us
consider the densities both inside and outside the circular
boundary at r = R and compare them with the density at a
flat wall. We focus on R � λ when the curvature is small. To
start, recall that the density at a flat wall [Eq. (18)] is ρflat �
ρbulk(1 + ε2). For the outer part of the circular boundary, we
have

ρout(R, θ ) − ρflat � −ε2ρbulk
λ√
2R

. (48)

For the inner part of the circular boundary, we have to be a bit
more careful since there is not an infinite bulk. We can mimic a
bulk inside the region by maintaining the density at the center
r = 0 to be equal to the bulk density outside or ρin(0, θ ) =
ρbulk. The resulting density profile inside the circular boundary
is

ρin(r, θ ) � ρbulk

[
1 + 2ε2 I0

(√
2r
λ

)− 1

I0
(√

2R
λ

)+ I2
(√

2R
λ

)
]
. (49)
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FIG. 5. ε2 contributions to the density inside [Eq. (49)] and out-
side [Eq. (45a)] an impenetrable circular boundary where the density
inside the boundary at r = 0 is maintained to be ρbulk. Here, R = 10λ.
Active particles prefer to accumulate on concave surfaces such as
the inner side of the circular boundary rather than convex surfaces
such as the outer side. This gives rise to a discontinuous drop in
density between the inner and outer parts of a circular boundary that
is proportional to the curvature R−1.

When compared to the flat wall, we have

ρin(R, θ ) − ρflat � ε2ρbulk
λ√
2R

. (50)

The ε2 contributions to the densities inside [Eq. (49)] and
outside [Eq. (45a)] the circular boundary are shown in Fig. 5.
On both sides of the circular boundary, the correction to den-
sity is proportional to R−1, the curvature of the boundary. In
addition, the sign of the correction tells us that active particles
accumulate more on concave surfaces than on convex ones.
This preference to accumulate on concave rather than convex
surfaces is shown by a discontinuous drop in density going
from inside to outside the circular boundary.

The key observation here is that our approach, even though
applied to weakly active particles, can recover some results
beyond the weak limit such as the curvature dependence of the
density of active particles near curved boundaries [27–32].

B. Active particles inside a wedge-shaped region

In Sec. IV B, we considered active particles confined by
two walls meeting at a right angle. We here consider a more
general and difficult problem of two walls meeting at an
arbitrary angle 2α [Fig. 1(c)]. This problem is inspired by
experiments and simulations [10,33] that showed that active
particles could be trapped or directed by wedge-shaped ob-
stacles. For simplicity, we will focus on the particular case of
weakly active particles trapped within a single wedge whose
sides extend indefinitely. The zero current boundary condi-
tions Jθ (r,±α, η) = 0 along the walls of the wedge give the
following condition on the coefficients:

1

r̃

∂C(n)
m (r̃,±α)

∂θ
= wθ (r̃,±α). (51)

To make any progress on finding the coefficients in this ge-
ometry, we have to make use of the Kontorovich-Lebedev and
Mellin transforms (Appendix A 3). Details for computing the
coefficients up to ε2 can be found in Appendix D 2. We will
focus on two quantities: the average propulsion 〈η〉(r, θ ) and
the density ρ(r, θ ) within the wedge. The general expressions
for arbitrary wedge angle 2α are quite cumbersome. Note that
2α = π and 2α = π/2 correspond to a single wall and two
walls meeting at a right angle, respectively. We have already
considered these in Sec. IV and it is quite easy to check that
the general solution Eq. (D23) reduces to those cases. From
here on, we will consider angles of the form 2α = π/2l−1

with l = 3, 4 . . . , for which we can make some analytical
progress.

To start, the components of the average propulsion
〈η〉(r, θ ) = (〈ηx〉(r, θ ), 〈ηy〉(r, θ )) within the wedge are given
by

〈ηx〉(r, θ ) � −εγ v√
2

sin
π

2l

2l−2−1∑
k=0

{
e−

√
2r
λ

sin[ (2k+1)π
2l −θ] + e−

√
2r
λ

sin[ (2k+1)π
2l +θ]}

, (52a)

〈ηy〉(r, θ ) � εγ v√
2

cos
π

2l

2l−2−1∑
k=0

(−1)k
{
e−

√
2r
λ

sin[ (2k+1)π
2l −θ] − e−

√
2r
λ

sin[ (2k+1)π
2l +θ]}

. (52b)

The average propulsion 〈η〉 for l = 4 or 2α = π/8 is shown
in Fig. 6(a). Note the interesting combination of exponentials
in the expressions for 〈ηx〉 and 〈ηy〉. For the simple case of
a right-angled corner (Sec. IV B), we found that we could
essentially treat each wall as independent up to ε2, that is, each

wall contributed a single exponential decay e−
√

2x
λ or e−

√
2y
λ

away from itself. Here, for wedge angles smaller than π/2,
the walls near the tip will influence each other and we find
a multitude of exponentials with different length scales. This
has some consequences on the propulsion and accumulation
of the active particles. Let us focus on the propulsion along the

center of the wedge θ = 0 on which we have 〈ηy〉(r, 0) = 0
and

〈ηx〉(r, 0) = −εγ v√
2

sin
π

2l

2l−2−1∑
k=0

e−
√

2r
λ

sin (2k+1)π
2l . (53)

This is plotted in Fig. 6(b) for l = 4 or 2α = π/8. The longest
length scale is λ

sin π/2l , which grows with decreasing wedge
angle. Beyond this distance, the active particles along the
center will be at least a distance λ from the sides of the wedge
and will effectively not interact with the boundaries. Within
this distance, however, the boundaries will on average orient
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FIG. 6. (a) Average propulsion 〈η〉 within a wedge-shaped region with angle 2α = π/8. (b) x-component of the average propulsion 〈ηx〉
along the center of the wedge θ = 0, also for 2α = π/8. This propulsion toward the tip decays rapidly over a length scale λ

sin π/2l .

the active particles toward the tip. Thus, as the wedge angle
decreases, active particles farther and farther from the tip will
have some orientation toward it, which in turn should increase
the density near the tip.

To study the effect of wedge angle on the density near
the tip, we write the density as ρ(r, θ ) � ρbulk[1 + ε2�(r, θ )].
The correction to the density �(r, θ ) is given by

�(r, θ ) =
∫ ∞

−∞
a(s) cosh sθ

(
r

λ

)−is

ds +
2l−2−1∑

k=0

(−1)k cos

{
[2k + 1 − (−1)k]π

2l

}{
e−

√
2r
λ

sin[ (2k+1)π
2l −θ] + e−

√
2r
λ

sin[ (2k+1)π
2l +θ]}

, (54)

where

a(s) =
√

2
−is

�(is + 1)

2πs sinh sπ
2l

⎡⎣1 + 2
2l−2−1∑

k=1

(
sin2 π

2l
+ (−1)k cos2 π

2l

)(
sin

kπ

2l−1

)−is+1
⎤⎦. (55)

For angles 2α = π/2l−1 with l � 3, there is no known closed
form solution and we have to numerically evaluate the integral
in Eq. (54). Let us focus on how the density at the tip of
the wedge �tip = limr→0 �(r, θ ) depends on the angle of the
wedge 2α. This dependence is shown in Fig. 7.

There are a couple features to note. The first is the in-
crease in the density at the tip as we decrease the angle of
the wedge, as shown in Fig. 7(a). This is due to the effect
of the sides of the wedge on the average propulsion 〈η〉
discussed earlier [Eq. (53)]. As the wedge angle decreases,
active particles farther and farther from the tip are on average
directed toward it, thus increasing the density. In addition to
the increase in density for small wedge angles, we find that
when the wedge is nearly a flat wall (2α ≈ π ), the density has
a linear dependence given by �tip ≈ 1 − 0.44(2α − π ). We
will show how this is obtained using an approach developed in
Sec. VI.

The second feature is the scaling of the tip density �tip with
the wedge angle 2α. As shown in Fig. 7(b), we find an inter-
esting weak dependence of the form �tip ∼ ln(2α)−0.50. This
weak dependence is due to passive Brownian diffusion and
can actually be obtained through a relatively simple scaling
argument. This argument goes as follows. As we discussed
earlier, there is a length scale λl ∼ λ

sin π/2l over which the
active particles on average propel toward the tip. This in-
creases the density at the tip by ρbulkε

2�tip. Thus, the diffusive
flux over this length scale away from the tip goes as Jdiff ∼
Dp

ρbulkε
2�tip

λl
. To estimate the advective flux, we compute a

characteristic propulsion toward the tip by averaging 〈ηx〉(r, 0)

[Eq. (53)] over the region 0 < r � λl . Thus the advective flux
toward the tip goes as Jswim ∼ 1

γ
| 1
λl

∫ λl

0 〈ηx〉(r, 0)dr|ρbulk. To
a good approximation, we can take the upper limit of the
integral to ∞ since 〈ηx〉(r, 0) decays rapidly over 0 < r � λl

[Fig. 6(b)]. Finally, the diffusive and advective fluxes in the
steady state should balance (Jdiff ∼ Jswim) and so we obtain

�tip ∼ 1

γ Dpε2

∣∣∣∣∫ ∞

0
〈ηx〉(r, 0)dr

∣∣∣∣
= sin

π

2l

2l−2−1∑
k=0

1

sin (2k+1)π
2l

≈ 1

2

∫ π
2

π

2l

du

sin u
≈ −1

2
ln

π

2l+1
, (56)

where we assumed that 2l � 1 for small wedge angles and
approximated the sum as an integral. Thus, up to a constant
shift, we see that �tip ∼ ln ( π

2l−1 )−1/2 = ln(2α)−1/2, in close
agreement with our numerical estimates in Fig. 7(b).

VI. ACTIVE PARTICLES NEAR A CORRUGATE WALL

We now turn to one last example involving impenetrable
walls. We study how active particles behave near a corru-
gated wall [Fig. 1(d)] and show how we can formulate the
boundary condition for such a wall. This example is inspired
by experiments on asymmetric gears in bacterial baths show-
ing that active particles can generate tangential forces on an
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FIG. 7. (a) Dependence of the correction to wedge tip den-
sity �tip = lim

r→0
�(r, θ ) on the wedge angle 2α = π/2l−1 for l =

1, 2, . . . , 15. The black dotted line shows the linear dependence close
to 2α = π , which was obtained using the approach developed in
Sec. VI. (b) Weak scaling of �tip with 2α for small wedge angles.

asymmetric boundary [11,12], in addition to simulations
showing that asymmetric boundaries can transport active
particles [34–36]. Thus, we expect that a combination of
asymmetry and activity should lead to directional motion of
either the boundary or the particles. However, one of the coun-
terintuitive results we will find here is that there is actually
no net transport of noninteracting active particles along an
asymmetric corrugated wall if the amplitude of the corruga-
tion is too small. More precisely, the net tangential current of
noninteracting active particles near an asymmetric corrugate
wall does not decrease to zero linearly as the wall becomes
flatter and flatter.

To set up the problem, suppose we have a boundary with a
shape y = h(x) with period 2L and characteristic amplitude δ

such that |h(x)| � δ. We can decompose the shape into Fourier
modes as

h(x) = δ

∞∑
k=−∞

hke
iπkx

L , (57)

where hk=0 = 0, that is, the shape of the boundary oscillates
around y = 0. Assuming that the amplitude of the shape is
small compared to the length scale of accumulation or δ � λ,
we can write the distribution as

ρ̃(r̃, η̃) =
∞∑

n=0

εn
∑

m

C(n)
m (r̃)e−η̃2

Hmx (η̃x )Hmy (η̃y), (58)

where we now expand the coefficients as

C(n)
m (r̃) � a(n)

m (ỹ) + δ̃

∞∑
k=−∞

b(n)
m;k (ỹ)e

iπkx̃
L̃ . (59)

The functions a(n)
m (ỹ) are simply the solutions for a flat wall

with no corrugation, which we have already computed in
Sec. IV. The resulting equation for the unknown coefficients
b(n)

m;k (ỹ) is

d2b(n)
m;k

dỹ2
−
[

2(mx + my) + π2k2

L̃2

]
b(n)

m;k = iπk

L̃
wx + dwy

dỹ
,

(60)
where

wx = b(n−1)
mx−1,my;k + 2(mx + 1)b(n−1)

mx+1,my;k, (61a)

wy = b(n−1)
mx,my−1;k + 2(my + 1)b(n−1)

mx,my+1;k . (61b)

For the boundary condition, we require the normal compo-
nent of the current to be zero at the boundary or J(x, h(x)) ·
n̂ = 0, where n̂ is the normal to the boundary. Assuming
that δ � λ, we can linearize this boundary condition to get
(see Appendix E)

− [
a(n−1)

mx−1,my
(0) + 2(mx + 1)a(n−1)

mx+1,my
(0)
] iπk

L̃
hk

+
[

da(n−1)
mx,my−1(0)

dỹ
+ 2(my + 1)

×
da(n−1)

mx,my+1(0)

dỹ
− d2a(n)

m (0)

dỹ2

]
hk

+ b(n−1)
mx,my−1;k (0) + 2(my + 1)b(n−1)

mx,my+1;k (0) − db(n)
m;k (0)

dỹ

= 0. (62)

Determining the coefficients b(n)
m;k (ỹ) is quite straightforward

and the expressions can be found in Appendix E.
Let us start with the simplest case of h(x) = δ cos πx

L or
hk=±1 = 1

2 . In particular, consider the density ρ(x, h(x)) along
the boundary when the amplitude of the boundary is small
δ � λ and the wavelength is large L � λ. For this slow vary-
ing boundary, the density along the boundary to linear order
in the amplitude is

ρ(x, h(x)) � ρbulk

[
1 + ε2 − ε2δ

π2λ√
2L2

cos
πx

L

]
. (63)

Notice that the last term, which captures the effect of corru-
gation, is proportional to d2h

dx2 . Thus, the change in density is
related to the local curvature of the boundary with more active
particles accumulating on the concave sections than on the
convex sections. The correction due to the corrugation can be

written as ε2ρbulk
λ√
2R

, where R = [1 + ( dh
dx )

2
]

3
2 | d2h

dx2 |−1 � L2

π2δ

is the radius of curvature at the maxima and minima of the
corrugated boundary. Note that this is in exact agreement with
the result for the densities outside and inside a large circular
boundary with radius R � λ [Eqs. (48) and (50)].
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FIG. 8. Top: Sawtooth-shaped boundary defined by Eq. (64). Bottom: Currents J(x, y) = (Jx (x, y), Jy(x, y)) due to sawtooth-shaped
boundaries with asymmetry ζ = 0 (left) and ζ = 0.5 (right) computed using the first 20 modes of h(x).

Let us now consider a more complex example. Suppose we
have a sawtooth-shaped boundary (Fig. 8, top) given by

h(x) =
{−δ + 2δ

(1+ζ )L (x + L), −L < x < ζL

δ − 2δ
(1−ζ )L (x − ζL), ζL < x < L.

(64)

The asymmetry is controlled by ζ , where ζ = 0 corresponds
to a symmetric sawtooth. Unlike the simple case of a cosine-
shaped boundary, the sawtooth is not twice differentiable
near the sharp tips, and so curvature is not well defined. In
Sec. V B, we studied how the density at the tip of a wedge
depended on the angle of the wedge. Using a sawtooth-shaped
boundary, we can obtain the dependence of the density on
angles near 2α = π . Taking the slow-varying symmetric saw-
tooth with δ � λ and L � λ, the active particles near the tip at
x = 0 effectively see a wedge with angle 2α � π + 4δ

L , where
δ > 0 and δ < 0 correspond to convex and concave, respec-
tively. Writing the density as ρ(x, y) = ρbulk[1 + ε2�(x, y)],
just as we did for the wedge, we find that the correction to
density at the tip is (see Appendix E)

�tip = �(0, δ) ≈ 1 + 4δ

L
S � 1 − 0.44(2α − π ). (65)

Before we conclude this section, we briefly discuss the cur-
rents of noninteracting weakly active particles in the presence
of a corrugated wall. The explicit forms of the currents can
be found in Appendix E. For a boundary with an asymmetric
shape, one expects there to be a net flux of active particles
along the boundary. For example, in suspensions of bacteria,
it has been seen that swimming bacteria can be directed by
funnels and can rotate gears with asymmetric teeth [10–12].
However, for our case of an asymmetric sawtooth bound-
ary and noninteracting weakly active particles, we find the

surprising result that there is no net drift along the wall to
linear order in the amplitude δ of the corrugation. Mathemat-
ically, this is easily explained by noticing that the coefficient
equation [Eq. (60)] and boundary condition [Eq. (62)] are all
independent for each mode k. Since each mode is a symmetric
sine or cosine wave, none of them contribute to a net drift. In
addition, there is also no net tangential force on the boundary
by the same reasoning.

To get a net tangential drift or force along the boundary,
we need to couple modes with different k, which can be
done by introducing nonlinearities. There are two possible
ways to do this. The first way is going beyond the linearized
boundary condition [Eq. (62)] and considering higher orders
in the amplitude δ. In fact, noting that the transformation
δ → −δ should simply flip the direction of drift, the drift of
noninteracting weakly active particles due to an asymmetric
corrugated boundary should scale as δ3 for small amplitudes
of corrugation. This nonlinear scaling with amplitude of cor-
rugation has been seen in simulations of noninteracting active
particles [34]. The calculation for going beyond the linearized
boundary condition is rather involved and will be reserved
for a future work. The second possible way is including
interactions such as alignment between the active particles.
Interactions may make it easier for an asymmetric boundary
to induce net fluxes. In fact, it has been seen in simulations
of aligning active particles in corrugated channels that the
net currents along the channels can actually be linear in the
amplitude of corrugation [36], contrasting our result for non-
interacting active particles.

Note that while there is no net tangential drift to linear
order δ, there is still a local circulation of active particles
(Fig. 8, bottom). These local fluxes of active particles towards
the concave parts and away from the convex parts of the
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boundary are responsible for the increases and decreases of
the densities in those parts, respectively.

VII. A PROBLEM IN SPHERICAL COORDINATES:
ABSORPTION OF ACTIVE PARTICLES

AROUND A SPHERE

For the final case, we will consider an absorbing boundary
as opposed to a impenetrable boundary, which has been our
focus thus far. In particular, let us consider a uniform bath of
weakly active particles in which we place an absorbing sphere
[Fig. 1(e)]. We are interested in determining the steady-state
rate at which these active particles are absorbed and how that
rate differs from that of passive Brownian particles. For the
absorption of passive Brownian particles, this is known as the
Smoluchowski problem [37].

In spherical coordinates, we write the dimensionless distri-
bution as

ρ̃(r̃, θ, φ, η̃) =
∞∑

n=0

εn
∑

m

C(n)
m (r̃, θ, φ)

× e−η̃2
Hmx (η̃x )Hmy (η̃y)Hmz (η̃z ). (66)

The coefficients satisfy

1

r̃2

∂

∂ r̃

(
r̃2 ∂C(n)

m

∂ r̃

)
− 2(mx + my + mz )C(n)

m

+ 1

r̃2 sin θ

∂

∂θ

(
sin θ

∂C(n)
m

∂θ

)
+ 1

r̃2 sin2 θ

∂2C(n)
m

∂φ2

= 1

r̃2

∂

∂ r̃
(r̃2wr ) + 1

r̃ sin θ

∂

∂θ
(sin θwθ ) + 1

r̃ sin θ

∂wφ

∂φ
,

(67)

where the components of w in spherical coordinates are

wr = wx sin θ cos φ + wy sin θ sin φ + wz cos θ, (68a)

wθ = wx cos θ cos φ + wy cos θ sin φ − wz sin θ, (68b)

wφ = −wx sin φ + wy cos φ, (68c)

and

wx = C(n−1)
mx−1,my,mz

+ 2(mx + 1)C(n−1)
mx+1,my,mz

, (69a)

wy = C(n−1)
mx,my−1,mz

+ 2(my + 1)C(n−1)
mx,my+1,mz

, (69b)

wz = C(n−1)
mx,my,mz−1 + 2(mz + 1)C(n−1)

mx,my,mz+1. (69c)

If the sphere has a radius R, then the absorbing boundary
condition at r = R gives us the condition on the coefficients
C(n)

m (R̃, θ, φ) = 0. Details of the solution can be found in
Appendix F. Taking ρ(r, θ, φ, η) and integrating out η, we
obtain to order ε2 the density

ρ(r, θ, φ)

ρbulk
� 1 − R

r
+ ε2 λ

λ + √
2R

[
1 − e−

√
2(r−R)

λ

]R

r
, (70)

where ρbulk is the uniform density far from the sphere. The
first part is the familiar r−1 solution for passive Brownian
particles while the second part is the correction due to activity,
which elevates the density near the absorbing sphere. The

radial current is

Jr (r, θ, φ) � −ρbulkDpR

r2

(
1 + ε2

√
2R

λ + √
2R

)
, (71)

from which we calculate the capture rate κ =
| ∫ Jr (R, θ, φ)R2 sin θ dθ dφ | as

κ � κ0

(
1 + ε2

√
2R

λ + √
2R

)
, (72)

where κ0 = 4πρbulkDpR is the well-known capture rate for
passive Brownian particles [37], which depends on the radius
and not the surface area of the sphere.

The correction due to activity is a new result. There are
two limits: a large target R � λ and a small target R � λ.
For a large target, the time it takes the weakly active parti-
cles to passively diffuse over a distance comparable to the
radius of the absorber is much longer than the persistence
time (τ � R2/Dp). On this time scale, the active particles
appear effectively diffusive and we find the capture rate
κ � 4πρbulkR(Dp + v2τ/3), which can be interpreted as just
that of a diffusing particle with effective diffusivity Deff =
Dp + v2τ/3. For a small target, however, the time it takes
to diffuse over the radius of the absorber is much shorter
than the persistence time (τ � R2/Dp). On this timescale, the
propulsions of the active particles appear persistent. We find
κ � 4πρbulkR(Dp + v2τ

√
2R/3λ). Note that the correction to

the rate due to activity scales as R2, which is related to the
surface area or cross-sectional area of the absorber. This is
reminiscent of the capture rate κ ∼ ρbulkvR2 for a spherical
absorber in an ideal gas of ballistic particles [38], whose
mean-free paths are longer than the radius of the sphere. One
key difference of course is that while the propulsions of our
weakly active particles appear persistent, their motions are
still dominated by passive Brownian diffusion. To summarize,
in both cases of a small and large target, we find that activ-
ity increases the density and enhances capture rate of active
particles near an absorbing boundary.

VIII. DISCUSSION AND CONCLUSION

We studied how noninteracting weakly active particles,
for which activity can be treated perturbatively, behave near
various types of boundaries in different geometries; for exam-
ple, active particles moving on a line or in a wedge-shaped
region, interacting with a corrugated wall or absorbing around
a sphere. The key to making progress on this problem is to in-
clude passive Brownian diffusion, which allows us not only to
cleanly formulate boundary conditions for the different types
of boundaries but also to solve the problem systematically. In
other words, by treating activity perturbatively, we can take
the solutions for passive Brownian particles, which are often
known, and use them to iteratively compute the corrections
due to the activity. We formulated a relatively simple series
solution for the distribution of active particles that consists
of an expansion in powers of the Péclet number, which char-
acterizes the strength of activity, and an expansion in terms of
Hermite polynomials. This series solution reduces the Fokker-
Planck equation for the distribution of active particles to a
simpler partial differential equation and in some cases, to an
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even simpler ordinary differential equation. We summarize
below some of our main results for the different geometries.

By considering the simple cases of noninteracting weakly
active particles confined by one or two impenetrable walls in
1D (Sec. IV A), we found that the active particles on average
propel towards nearby walls. This leads to accumulation and
an increase in pressure exerted on the walls. In particular, we
found that the pressure follows the ideal gas law but instead of
being proportional to the density in the bulk, it is proportional
to the increased density at the walls.

We also determined how the curvature of a boundary af-
fects the accumulation of weakly active particles (Sec. V). For
the case of a circular boundary, we found that the accumula-
tion is proportional to the curvature of the boundary. This last
result has been shown to hold in the limit of strong activity
[27–32]. Thus, our approach for studying the limit of weakly
active particles can potentially gain us insight into the oppo-
site limit. For the case of a wedge-shaped region, we found
that as the wedge angle decreases, active particles farther and
farther from the tip gain on average some propulsion toward it.
Interestingly, while this propulsion does increase the density
near the tip, we found that the accumulation has a rather
weak dependence on the wedge angle. This is due to passive
Brownian diffusion which tends to smooth out variations in
density.

Finally, we have also obtained results for weakly active
particles near a corrugated boundary and around an absorbing
sphere. Near a corrugated boundary (Sec. VI), particularly one
shaped like an asymmetric sawtooth, we found that there is
surprisingly no net transport of noninteracting weakly active
particles along the boundary to linear order in the amplitude δ

of the corrugation. This is due to the linearity of the boundary
condition and the Fourier modes that make up the shape of
the wall. We argued that to observe net currents we have to
introduce nonlinearities such as going beyond the linearized
boundary condition or including interactions between the ac-
tive particles. For our case of noninteracting weakly active
particles, we expect to see net currents at order δ3. A nonlinear
dependence on δ has been seen in simulations of noninter-
acting active particles [34]. For interacting active particles,
it is more difficult to determine the dependence. However, it
has been observed in simulations that for active particles with
aligning interactions, the net current is linear in δ [36], sug-
gesting that interactions may enhance the transport of active
particles. For an absorbing sphere placed in a bath of active
particles (Sec. VII), we computed the rate at which the weakly
active particles are absorbed. This is the active version of the
Smoluchowski problem [37] for passive Brownian particles.
We found that activity elevates the density near the sphere and
enhances the absorption rate. Thus, activity may be useful in
enhancing the self-assembly of colloidal structures [39].

Before we end this paper, there are some interesting future
directions to consider. The first direction is finding the exact
solution for the distribution of noninteracting active particles
near the simplest case of a flat wall. By exact, we mean a
closed-form expression for the distribution or, at a minimum,
for all the coefficients in our series solution. With the cur-
rent approach, one can systematically compute higher and
higher orders. However, the expressions, though straightfor-
ward, become increasingly cumbersome to write down. The

goal would be to find a pattern in the coefficients that one can
exploit. Finding a clean way to do this could aid us in finding
more exact solutions in other interesting geometries.

The second direction is going beyond the linearized bound-
ary condition for a corrugated boundary. As we found, there
is no net transport of noninteracting active particles or net
tangential force along an asymmetrically-shaped boundary to
linear order in the amplitude of the corrugation. To observe net
tangential currents or forces, one will need to consider higher
orders in the amplitude. It would be interesting to perform
this calculation and to analytically compute how fast active
particles are transported by an asymmetric wall or how fast an
asymmetric wall is pushed like a gear by active particles.

Finally, it would be interesting to extend the approach
developed here to more realistic models of active particles.
This includes studying other models of active particles such as
active Brownian particles, which typically model many types
of self-propelled colloids [6,7], and run-and-tumble particles,
which typically model bacteria [4]. More generally, it may
be interesting to study models where the correlations are not
exponential or the persistence times have a broad distribution,
as has been seen in some bacterial systems [40]. An important
question is whether there are critical differences between the
many models of active particles, for example, when interact-
ing with boundaries. In addition to studying different models
of active particles, it would also be interesting to include inter-
actions between particles in our approach. It has been seen that
a simple repulsive interaction can have significant effects on
the density and pressure of active particles [9,41]. Similarly, as
was discussed, interactions may affect the transport of active
particles in corrugated channels [34,36].
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APPENDIX A: MATHEMATICAL PRELIMINARIES

1. Hermite polynomials

The dynamics of the active force η [Eq. (3)] can be mapped
to an overdamped particle in a quadratic potential. Naturally,
Hermite polynomials should come in handy. Consider the
ordinary differential equation (ODE):

d2F

d η̃2
+ 2

d

d η̃
(η̃F ) + κ2F = 0. (A1)

Note that the first two terms are the active parts of the Fokker-
Planck equation for the distribution active particles [Eq. (5)].
Taking F (η̃) = e−η̃2

H (η̃), we have

d2H

d η̃2
− 2η̃

dH

d η̃
+ κ2H = 0. (A2)
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The solutions satisfying the condition that F (η̃) decays suf-
ficiently quickly as |η̃| → 0 are Hermite polynomials Hm(η̃)
with eigenvalues κ2 = 2m. The first few are

H0(η̃) = 1 (A3a)

H1(η̃) = 2η̃, (A3b)

H2(η̃) = 4η̃2 − 2, (A3c)

H3(η̃) = 8η̃3 − 12η̃, (A3d)

H4(η̃) = 16η̃4 − 48η̃2 + 12. (A3e)

These satisfy the orthogonality relation:∫ ∞

−∞
d η̃ e−η̃2

Hn(η̃)Hm(η̃) = √
π 2nn! δn,m. (A4)

A few useful recursion relations are

2η̃Hm(η̃) = Hm+1(η̃) + 2mHm−1(η̃) (A5)

and

dHm

d η̃
= 2mHm−1. (A6)

For higher dimensions, we will instead have the partial differ-
ential equation (PDE)

∇2
η̃F + 2∇η̃ · (η̃F ) + κ2F = 0, (A7)

the eigenfunctions of which are simply

F (η̃) = e−η̃2
d∏

i=1

Hmi (η̃i ), (A8)

with eigenvalues κ2 = 2(m1 + · · · + md ). This easy general-
ization to higher dimensions is one benefit of our approach.

2. Modified Bessel functions

For problems in polar coordinates, the coefficient equation
will often be of the form

1

r̃

∂

∂ r̃

(
r̃
∂F

∂ r̃

)
+ 1

r̃2

∂2F

∂θ2
− κ2F = 0, (A9)

where κ2 = 2(mx + my). Writing F (r̃, θ ) = G(r̃)eiμθ , we
have the ODE

1

r̃

d

dr̃

(
r̃

dG

dr̃

)
−
(

μ2

r̃2
+ κ2

)
G = 0, (A10)

The solutions to this ODE are the modified Bessel functions
of the first and second kinds Iμ(κ r̃), Kμ(κ r̃). A few useful
recursion relations are

2μ

κ r̃
Iμ(κ r̃) = Iμ−1(κ r̃) − Iμ+1(κ r̃), (A11a)

2

κ

dIμ(κ r̃)

dr̃
= Iμ−1(κ r̃) + Iμ+1(κ r̃), (A11b)

−2μ

κ r̃
Kμ(κ r̃) = Kμ−1(κ r̃) − Kμ+1(κ r̃), (A11c)

− 2

κ

dKμ(κ r̃)

dr̃
= Kμ−1(κ r̃) + Kμ+1(κ r̃). (A11d)

There are some useful asymptotic forms. For κ r̃ � 1, we have

Iμ(κ r̃) � 1√
2πκ r̃

eκ r̃

(
1 − 4μ2 − 1

8κ r̃

)
, (A12a)

Kμ(κ r̃) �
√

π

2κ r̃
e−κ r̃

(
1 + 4μ2 − 1

8κ r̃

)
. (A12b)

For κ r̃ � 1, we have

Iμ(κ r̃) � 1

�(μ + 1)

(
κ r̃

2

)μ

, (A13a)

Kμ(κ r̃) �
{− ln

(
κ r̃
2

)− γ , μ = 0
�(μ)

2

(
2
κ r̃

)μ
, μ > 0.

(A13b)

For problems in spherical coordinates, modified spherical
Bessel functions will instead be used. The PDE we will be
dealing with is of the form

1

r̃2

∂

∂ r̃

(
r̃2 ∂F

∂ r̃

)
− κ2F

+ 1

r̃2 sin θ

∂

∂θ

(
sin θ

∂F

∂θ

)
+ 1

r̃2 sin2 θ

∂2F

∂φ2

= 0, (A14)

where κ2 = 2(mx + my + mz ). Defining F (r, θ, φ) =
G(r)Y m

l (θ, φ), where Y m
l are spherical harmonics, we obtain

the ODE

1

r̃2

∂

∂ r̃

(
r̃2 ∂G

∂ r̃

)
−
[

l (l + 1)

r̃2
+ κ2

]
G = 0. (A15)

The solutions to this ODE are the modified spherical Bessel
functions of the first and second kinds il (κ r̃), kl (κ r̃). For our
purposes, we only use the latter, the first few of which are

k0(κ r̃) = e−κ r̃

κ r̃
, (A16a)

k1(κ r̃) = e−κ r̃ (κ r̃ + 1)

κ2r̃2
, (A16b)

k2(κ r̃) = e−κ r̃ (κ2r̃2 + 3κ r̃ + 3)

κ3r̃3
. (A16c)

Two useful recursion relations are

−2l + 1

κ r̃
kl (κ r̃) = kl−1(κ r̃) − kl+1(κ r̃), (A17a)

−2l + 1

κ

dkl (κ r̃)

dr̃
= lkl−1(κ r̃) + (l + 1)kl+1(κ r̃). (A17b)

3. Kontorovich-Lebedev and Mellin transforms

In wedgelike geometries 0 < r < ∞ and θ1 < θ < θ2, we
no longer have periodicity in θ . In addition, the density must
remain finite as r → 0 or r → ∞. This requires the use of
modified Bessel functions with purely imaginary order Kiν .
This gives rise to the Kontorovich-Lebedev (KL) transforms,
which are often used for various problems in wedge-
shaped geometries [42–46]. The pair of transforms is given
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by

F (ν, θ ) =
∫ ∞

0
f (r, θ )Kiν (κ r̃)

dr̃

r̃
, (A18a)

f (r̃, θ ) = 2

π2

∫ ∞

−∞
F (ν, θ )Kiν (κ r̃)ν sinh(πν)dν. (A18b)

A table of such transforms can be found in Ref. [47]. It is
useful to note that Kiν satisfies the same recursion relations as
Kμ [Eqs. (A11)]. To use the transforms, we start by noting that
Kiν (κ r̃) satisfies

1

r̃

d

dr̃

(
r̃

dKiν

dr̃

)
−
(

κ2 − ν2

r̃2

)
Kiν = 0. (A19)

Thus, given a PDE of the form

1

r̃

∂

∂ r̃

(
r̃
∂C

∂ r̃

)
+ 1

r̃2

∂2C

∂θ2
− κ2C = 0, (A20)

the KL transform reduces this PDE to the simple ODE

d2Ĉ

dθ2
= ν2Ĉ, (A21)

which has the general solution

Ĉ(ν, θ ) = a(ν)eνθ + b(ν)e−νθ . (A22)

The functions a(ν), b(ν) can be determined by applying the
KL transform to the boundary condition on C(r, θ ). A useful
identity [44] for doing so is∫ ∞

0
Kiν (κ r̃)dr̃ = π

2κ cosh νπ/2
, (A23)

which can be derived from the integral definition

Kiν (κ r̃) =
∫ ∞

0
e−κ r̃ cosh t cos(νt )dt . (A24)

Another transform is the Mellin transform, which is ap-
plicable to the case of κ = 0 in Eq. (A19). The pair of
transformations is

F (z, θ ) =
∫ ∞

0
f (r̃, θ )r̃z−1dr̃, (A25a)

f (r̃, θ ) =
∫ c+i∞

c−i∞
F (z, θ )r̃−z dz

2π i
, (A25b)

where c is chosen such that there are no poles for Re(z) > c.
Since for our situation density must be finite, we can set c = 0
for physical reasons; otherwise we will have divergences as
r̃ → 0. A table of Mellin transforms can be found in Ref. [48].

APPENDIX B: SERIES SOLUTION
IN ARBITRARY DIMENSIONS

We show here the series solution in d dimensions. Just as
before, we expand the density in powers of ε as

ρ̃(r̃, η̃) =
∞∑

n=0

εnρ̃ (n)(r̃, η̃). (B1)

Substituting this into the dimensionless Fokker-Planck equa-
tion [Eq. (9)], we arrive at

∇2
r ρ̃ (n) + ∇2

η ρ̃
(n) + 2∇η · (η̃ρ̃ (n)) = 2η̃ · ∇r ρ̃

(n−1). (B2)

The expansion in Hermite polynomials is the same as in 1D,
except now we have a Hermite polynomial for each compo-
nent of η̃. Thus, writing each order of the density as

ρ̃ (n)(r̃, η̃) =
∑

m

C(n)
m (r̃)e−η̃2

d∏
i=1

Hmi (η̃i), (B3)

we reduce the problem to solving for the coefficients C(n)
m (r̃) =

C(n)
m1,...,md

(r̃), which satisfy a Helmholtz-type equation

∇2
r C(n)

m − 2

(
d∑

i=1

mi

)
C(n)

m = ∇ · w, (B4)

where the components of w are

wα = C(n−1)
m;mα−1 + 2(mα + 1)C(n−1)

m;mα+1. (B5)

Here, C(n−1)
m;mα−1 denotes the coefficient C(n−1)

m1,...,mα−1,...,md
. The

currents J̃r = 2εη̃ρ̃ − ∇r ρ̃ and J̃η = −2η̃ρ̃ − ∇ηρ̃ are

J̃r =
∞∑

n=0

εn
∑

m

[
w − ∇rC

(n)
m

]
e−η̃2

d∏
i=1

Hmi (η̃i), (B6a)

J̃η,α =
∞∑

n=0

εn
∑

m

[−2(mα + 1)C(n)
m;mα+1

]
× e−η̃2

d∏
i=1

Hmi (η̃i). (B6b)

It is worth noting that for most of the problems we solve
here, we only need to consider a few coefficients. We briefly
summarize the general procedure in 1D. Passive particles are
characterized by C(0)

0 . Using this, we can determine the next
nonzero coefficient C(1)

1 . Continuing, we will have C(2)
0 ,C(2)

2

followed by C(3)
1 ,C(3)

3 , and so on. In other words, the nonzero
coefficients C(n)

m for most of our problems will often alternate
between even and odd m as we go to higher and higher
orders n.

It is also worth noting that if we are interested in, for
example, the density ρ̃(r̃), then integrating out the active force
η̃ and using the orthogonality of Hermite polynomials will
leave us with only the m = (0, 0, . . . , 0) terms or

ρ̃(r̃) = πd/2
∞∑

n=0

εnC(n)
0,0,...,0(r̃). (B7)

APPENDIX C: CARTESIAN COORDINATES

To summarize for 1D, we expand the density as

ρ(x̃, η̃) =
∞∑

n=0

εn
∞∑

m=0

C(n)
m (x̃)e−η̃2

Hm(η̃), (C1)

where the coefficients C(n)
m (x̃) satisfy the ODE

d2C(n)
m

dx̃2
− 2mC(n)

m = d

dx̃

[
C(n−1)

m−1 + 2(m + 1)C(n−1)
m+1

]
. (C2)
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The current J̃ (x̃, η̃) along x is

J̃x =
∞∑

n=0

εn
∞∑

m=0

[
C(n−1)

m−1 + 2(m + 1)C(n−1)
m+1 − dC(n)

m

dx̃

]
× e−η̃2

Hm(η̃). (C3)

1. 1D semi-infinite domain: One wall

By setting J̃ (x̃, η̃) = 0 and using the orthogonality of Her-
mite polynomials, we find that the zero current boundary
condition for a single wall at x̃ = 0 gives the following condi-
tion on the coefficients:

dC(n)
m (0)

dx̃
= C(n−1)

m−1 (0) + 2(m + 1)C(n−1)
m+1 (0). (C4)

To start, we note that the n = 0 order corresponds to a pas-
sively diffusing particle whose spacial density will be constant
everywhere and the dimensionless active force η̃ will be Gaus-
sian distributed in the steady state. Thus, we have

C(0)
m (x̃) = N δm,0, (C5)

where N = ρbulk
√

2Dpτ/π is the normalization. Using the
zeroth-order solution, we can compute the next order n = 1
to get

C(1)
m (x̃) = −N

√
2

2
e−√

2x̃δm,1. (C6)

For n = 2, we have

C(2)
m (x̃) = N e−√

2x̃δm,0 + N
2

[
√

2e−2x̃ − e−√
2x̃]δm,2. (C7)

For the next two orders, we will only show the solutions nec-
essary for obtaining the ε4 correction to density in Eq. (18).
For n = 3, we have

C(3)
1 (x̃) = N

[(√
2

4
+ 1 − x̃

2

)
e−√

2x̃ − 2
√

2e−2x̃

]
. (C8)

At this order, the other nonzero solution is for m = 3. For
n = 4, we have

C(4)
0 (x̃) = 2N

√
2

[(
x̃

4
− 1

)
e−√

2x̃ + e−2x̃

]
. (C9)

At this order, the other nonzero solutions are for m = 2, 4.

2. 1D finite domain: Two walls

The approach here is the similar to Appendix C 1. The only
difference is we now have zero current boundary conditions at
the two walls at x̃ = ±L̃ or

dC(n)
m (±L̃)

dx̃
= C(n−1)

m−1 (±L̃) + 2(m + 1)C(n−1)
m+1 (±L̃), (C10)

and a finite number of particles N between the walls. For n =
0, we have

C(0)
m (x̃) = N δm,0, (C11)

where N = N
2L

√
2Dpτ

π
. For n = 1, we get

C(1)
m (x̃) = N

√
2 sinh

√
2x̃

2 cosh
√

2L̃
δm,1. (C12)

For n = 2 and beyond, we have to enforce that the number of
particles between the two walls does not change as we go to
higher orders. This condition is∫ L̃

−L̃
C(n)

0 (x̃)dx̃ = 0 (C13)

for n > 0. Thus, we have for m = 0:

C(2)
0 (x̃) = N

(
cosh

√
2x̃

cosh
√

2L̃
− tanh

√
2L̃√

2L̃

)
. (C14)

The other nonzero solution is for m = 2.

3. Ramp potentials and pressure

To compute the pressure on solid walls, we start by rep-
resenting the boundaries as soft confining potentials (Fig. 9)
and then take the limit as those potentials become steep. We
will focus on the case of two walls at x = ±L since the case
of one wall can be obtained from the limit L → ∞. Consider
the confining potential:

U (x) =
⎧⎨⎩− f (x + L), x < −L

0, −L < x < L
f (x − L), x > L.

(C15)

We split the density into three pieces ρ̃A, ρ̃B, and ρ̃C for the
regions x̃ < −L̃, −L̃ < x̃ < L̃, and L̃ < x̃, respectively. We
write the densities in the form

ρ̃A(x̃, η̃) =
∞∑

n=0

εn
∞∑

m=0

A(n)
m (x̃)e−η̃2

Hm(η̃), (C16a)

ρ̃B(x̃, η̃) =
∞∑

n=0

εn
∞∑

m=0

B(n)
m (x̃)e−η̃2

Hm(η̃), (C16b)

ρ̃C (x̃, η̃) =
∞∑

n=0

εn
∞∑

m=0

C(n)
m (x̃)e−η̃2

Hm(η̃). (C16c)

The coefficient equations corresponding to each region are
d2A(n)

m

dx̃2
− f̃

dA(n)
m

dx̃
− 2mA(n)

m = dwA

dx̃
, (C17a)

d2B(n)
m

dx̃2
− 2mB(n)

m = dwB

dx̃
, (C17b)

d2C(n)
m

dx̃2
+ f̃

dC(n)
m

dx̃
− 2mC(n)

m = dwC

dx̃
, (C17c)

where f̃ = 2 f τ

γ
√

2Dpτ
and

wA = A(n−1)
m−1 + (m + 1) A(n−1)

m+1 , (C18a)

wB = B(n−1)
m−1 + (m + 1) B(n−1)

m+1 , (C18b)

wC = C(n−1)
m−1 + (m + 1)C(n−1)

m+1 . (C18c)

The boundary conditions (continuity in density and current) at
x̃ = ±L̃ are

A(n)
m (−L̃) = B(n)

m (−L̃), (C19a)

f̃ A(n)
m (−L̃) − dA(n)

m (−L̃)

dx̃
= −dB(n)

m (−L̃)

dx̃
, (C19b)

B(n)
m (L̃) = C(n)

m (L̃), (C19c)

−dB(n)
m (L̃)

dx̃
= − f̃ C(n)

m (L̃) − dC(n)
m (L̃)

dx̃
. (C19d)
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FIG. 9. Representation of solid boundaries as ramp potentials.

Just as before, n = 0 corresponds to a passive particle diffus-
ing within the confining potential and the coefficients are

A(0)
m (x̃) = N e f̃ (x̃+L̃)δm,0, (C20a)

B(0)
m (x̃) = N δm,0, (C20b)

C(0)
m (x̃) = N e− f̃ (x̃−L̃)δm,0, (C20c)

which is related to the Boltzmann distribution. For n = 1, we
get

A(1)
m (x̃) =

[
a(1)

1 eκ1,+(x̃+L̃) − N f̃

2
e f̃ (x̃+L̃)

]
δm,1, (C21a)

B(1)
m (x̃) = b(1)

1 sinh
√

2x̃δm,1, (C21b)

C(1)
m (x̃) =

[
c(1)

1 e−κ1,+(x̃−L̃) + N f̃

2
e− f̃ (x̃−L̃)

]
δm,1, (C21c)

where

a(1)
1 = −c(1)

1 = N f̃
√

2

2(
√

2 − κ1,− tanh
√

2L̃)
, (C22a)

b(1)
1 = − N f̃ κ1,−

2(
√

2 cosh
√

2L̃ − κ1,− sinh
√

2L̃)
, (C22b)

and

κ1,± = 1

2
( f̃ ±

√
f̃ 2 + 8m). (C23)

For n = 2, we will focus on the m = 0 contribution since
we are only interested in the pressure, which only requires
knowing the density. We have the general solutions

A(2)
0 (x̃) = a(2)

0 e f̃ (x̃+L̃) − N f̃ (x̃ + L̃)e f̃ (x̃+L̃)

+ κ1,+a(1)
1 eκ1,+(x̃+L̃), (C24a)

B(2)
0 (x̃) = b(2)

0 + b(1)
1

√
2 cosh

√
2x̃, (C24b)

C(2)
0 (x̃) = c(2)

0 e− f̃ (x̃−L̃) + N f̃ (x̃ − L̃)e− f̃ (x̃−L̃)

− κ1,+c(1)
1 e−κ1,+(x̃−L̃), (C24c)

where we wish to determine a(2)
0 , b(2)

0 , c(2)
0 . In addition to

continuity in density and current, we require that all higher
orders n > 0 do not change the number of particles between
the walls. This condition is∫ −L̃

−∞
A(2)

0 (x̃)dx̃ +
∫ L̃

−L̃
B(2)

0 (x̃)dx̃ +
∫ ∞

L̃
C(2)

0 (x̃)dx̃ = 0.

(C25)

Thus, we find

a(2)
0 = c(2)

0

=− N
2(1 + f̃ L̃)

[
2 + f̃ 2+

√
2 f̃ 3L̃√

2 − κ1,− tanh
√

2L̃

]
, (C26a)

b(2)
0 =− N

1 + f̃ L̃

[
1 − f̃ 2κ1,− tanh

√
2L̃

2(
√

2 − κ1,− tanh
√

2L̃)

]
. (C26b)

Knowing the density, we can then compute the pressure, say
for the wall at x = L, to obtain

P =
∫ ∞

L
f ρ(x)dx � N f

2
(
1 + f L

kBT

)
⎡⎣1 + ε2

1 + f L
kBT

⎛⎝ f L

kBT

−
2 f 2τ

kBT γ
tanh

√
2L
λ√

f 2τ

kBT γ
+
√

f 2τ

kBT γ
+ 4 + 2 tanh

√
2L
λ

⎞⎠⎤⎦, (C27)

where we used the Einstein relation Dpγ = kBT . Note that for
a finite-sized system, the pressure depends on the confining
potential (in this case, on f ). This dependence disappears if
we take L → ∞, that is, when we have a bulk where active
particles are unaffected by the boundary. In the limit of a solid
boundary ( f → ∞), this pressure becomes

P �
f →∞

N

2L
kBT

[
1 + ε2

(
1 − tanh

√
2L̃√

2L̃

)]
. (C28)

4. Exactly solvable model of 1D run-and-tumble
with passive diffusion

In the main text, we found that the pressure of active
particles on a solid boundary is approximately given by P �
ρwallkBT . We show here, using an exactly solvable model
of run-and-tumble particles, that this relation for pressure is
exact. The steady-state Fokker-Planck equations for 1D run-
and-tumble particles with passive diffusion are

0 = d

dx

[(
−v + U ′

γ

)
ρ+

]
+ Dp

d2ρ+
dx2

− αρ+ + αρ−,

(C29a)

0 = d

dx

[(
v + U ′

γ

)
ρ−

]
+ Dp

d2ρ−
dx2

+ αρ+ − αρ−,

(C29b)

where ρ+, ρ− are the densities of left- and right-moving par-
ticles, v is the swim speed, α is the tumble rate, and U is
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a confining potential that is zero in a region −L < x < L
between the walls. To determine the pressure, we manipulate
Eqs. (C29a) and (C29b) a bit. We start by adding the two
equations to get

0 = d

dx

[
−v̄(x)ρ + U ′

γ
ρ

]
+ Dp

d2ρ

dx2
, (C30)

where v̄ρ = v(ρ+ − ρ−) and ρ = ρ+ + ρ−. In 1D, the current
in x must be zero, and so we have the relation

v̄ρ = U ′

γ
ρ + Dp

dρ

dx
. (C31)

Multiplying Eqs. (C29a) and (C29b) by −v and subtracting,
we have

0 = d

dx

(
v2ρ − U ′

γ
v̄ρ

)
− Dp

d2

dx2
(v̄ρ) + 2αv̄ρ. (C32)

Substituting in the relation (Eq. (C31)) for v̄ρ, we have

0 = d

dx

[
v2ρ −

(
U ′

γ

)2

ρ − U ′

γ
Dp

dρ

dx

]
− Dp

d2

dx2

(
U ′

γ
ρ + Dp

dρ

dx

)
+ 2α

(
U ′

γ
ρ + Dp

dρ

dx

)
.

(C33)

Finally, integrating from deep inside a wall to a point −L <

x0 < L between the walls, we find the mechanical pressure on
the left wall:

P = −
∫ x0

−∞
U ′ρdx

=
(

Dp + v2

2α

)
γ ρ(x0) − D2

pγ

2α

d2ρ(x0)

dx2
. (C34)

This is valid in the limit of hard walls since it is independent of
U (x), and so what remains is determining ρ(x) between two
hard walls at x = ±L with U = 0. The zero current boundary
conditions are

vρ+(±L) − Dp
dρ+(±L)

dx
= 0, (C35a)

−vρ−(±L) − Dp
dρ−(±L)

dx
= 0. (C35b)

Defining q± = ∂ρ±
∂x , Eqs. (C29a) and (C29b) can be rewritten

as

d

dx

⎛⎜⎝ρ+
ρ−
ρ+
ρ−

⎞⎟⎠ =

⎡⎢⎢⎢⎣
0 0 1 0
0 0 0 1
α

Dp
− α

Dp

v
Dp

0
− α

Dp

α
Dp

0 − v
Dp

⎤⎥⎥⎥⎦
⎛⎜⎝ρ+

ρ−
ρ+
ρ−

⎞⎟⎠ (C36)

The eigenvalues of the matrix are 0, 0,± 1
Dp

√
v2 + 2αDp. The

general solutions obeying the symmetry ρ+(x) = ρ−(−x) are

therefore

ρ+(x) = c0 + c1e
x
λ + c2e− x

λ , (C37a)

ρ−(x) = c0 + c2e
x
λ + c1e− x

λ , (C37b)

where λ = Dp√
v2+2αDp

. Applying the zero current boundary

conditions at x = ±L and fixing the number of particles as
N , we find

ρ±(x) = N

2L + v2λ
αDp

tanh L
λ

×
[

1

2
+ v2 cosh x

λ

4αDp cosh L
λ

± v sinh x
λ

4αλ cosh L
λ

]
. (C38)

The density is thus

ρ(x) = ρ+(x) + ρ−(x)

= N

2L + v2λ
αDp

tanh L
λ

(
1 + v2 cosh x

λ

2αDp cosh L
λ

)
, (C39)

which gives us the pressure

P = NDpγ

2L + v2λ
αDp

tanh L
λ

(
1 + v2

2αDp

)
= ρ(±L)Dpγ = ρwallDpγ . (C40)

Using Einstein’s relation Dpγ = kBT , we have P = ρwallkBT .

5. 2D right-angled corner

In this case, we write the density as

ρ(r̃, η̃) =
∞∑

n=0

εn
∑

m

C(n)
m (r̃)e−η̃2

Hmx (η̃x )Hmy (η̃y). (C41)

The coefficients satisfy

∂2C(n)
m

∂ x̃2
+ ∂2C(n)

m

∂ ỹ2
− 2(mx + my)C(n)

m = ∂wx

∂ x̃
+ ∂wy

∂ ỹ
, (C42)

where

wx = C(n−1)
mx−1,my

+ 2(mx + 1)C(n−1)
mx+1,my

, (C43a)

wy = C(n−1)
mx,my−1 + 2(my + 1)C(n−1)

mx,my+1. (C43b)

The zero current boundary conditions for each wall are

∂C(n)
m (0, ỹ)

∂ x̃
= wx(0, ỹ), (C44a)

∂C(n)
m (x̃, 0)

∂ ỹ
= wy(x̃, 0). (C44b)

Note that part of the solution will be the sum of distributions
of each wall if it were by itself since the coefficient equation
and boundary conditions are linear. This observation will help
us get started. There are, however, additional terms due to
the walls meeting near the origin, which we highlighted in
Sec. IV B. For n = 0, we have the usual constant density

C(0)
mx,my

(x̃, ỹ) = N δmx,0δmy,0, (C45)
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where for 2D the normalization is N = ρbulk
2Dpτ

π
. For n = 1,

C(1)
mx,my

(x̃, ỹ) = − N
√

2

2
e−√

2x̃δmx,1δmy,0

− N
√

2

2
e−√

2ỹδmx,0δmy,1. (C46)

For n = 2,

C(2)
mx,my

(x̃, ỹ) = N (e−√
2x̃ + e−√

2ỹ)δmx,0δmy,0

+ N
2

(
√

2e−2x̃ − e−√
2x̃ )δmx,2δmy,0

+ N
2

(
√

2e−2ỹ − e−√
2ỹ)δmx,0δmy,2

+ N
2

e−√
2x̃e−√

2ỹδmx,1δmy,1. (C47)

Note that the (mx, my) = (1, 1) term does not result from the
sum of solutions for the individual walls. For the next two
orders, we only show the terms necessary for obtaining the
density Eq. (38). For n = 3, we have

C(3)
1,0(x̃, ỹ) = N

[(√
2

4
+ 2 − x̃

2

)
e−√

2x̃ − 2
√

2e−2x̃

]
− N

√
2

2
e−√

2x̃e−√
2ỹ, (C48)

C(3)
0,1(x̃, ỹ) = N

[(√
2

4
+ 2 − ỹ

2

)
e−√

2ỹ − 2
√

2e−2ỹ

]
− N

√
2

2
e−√

2x̃e−√
2ỹ. (C49)

Finally, for n = 4,

C(4)
0,0(x̃, ỹ) = 2N

√
2

[
e−2x̃ +

(
x̃

4
− 1

)
e−√

2x̃

]
+ 2N

√
2

[
e−2ỹ +

(
ỹ

4
− 1

)
e−√

2ỹ

]
+ N e−√

2x̃e−√
2ỹ. (C50)

APPENDIX D: POLAR COORDINATES

For problems that require polar coordinates, we write the
distribution of active particles as

ρ̃(r̃, θ, η̃) =
∞∑

n=0

εn
∑

m

C(n)
m (r̃, θ )e−η̃2

Hmx (η̃x )Hmy (η̃y). (D1)

The coefficient equation we want to solve in those cases is of
the form

1

r̃

∂

∂ r̃

(
r̃
∂C(n)

m

∂ r̃

)
+ 1

r̃2

∂2C(n)
m

∂θ2
− 2(mx + my)C(n)

m

= 1

r̃

∂

∂ r̃
(r̃wr ) + 1

r̃

∂wθ

∂θ
, (D2)

where

wr = [
C(n−1)

mx−1,my
+ 2(mx + 1)C(n−1)

mx+1,my

]
cos θ

+ [C(n−1)
mx,my−1 + 2(my + 1)C(n−1)

mx,my+1

]
sin θ, (D3a)

wθ = −[C(n−1)
mx−1,my

+ 2(mx + 1)C(n−1)
mx+1,my

]
sin θ

+ [C(n−1)
mx,my−1 + 2(my + 1)C(n−1)

mx,my+1

]
cos θ. (D3b)

The radial and tangential currents are given by

J̃r (r̃, θ, η̃) =
∞∑

n=0

εn
∑

m

[
wr − ∂C(n)

m

∂ r̃

]
× e−η̃2

Hmx (η̃x )Hmy (η̃y), (D4a)

J̃θ (r̃, θ, η̃) =
∞∑

n=0

εn
∑

m

[
wθ − 1

r̃

∂C(n)
m

∂θ

]
× e−η̃2

Hmx (η̃x )Hmy (η̃y). (D4b)

1. Solution for a circular boundary

The zero current boundary condition for a solid circular
boundary with radius R is

∂C(n)
mx,my

(R̃, θ )

dr̃
= wr (R̃, θ ). (D5)

For n = 0, we have

C(0)
mx,my

(r̃, θ ) = N δmx,0δmy,0, (D6)

both inside and outside the circular boundary. Inside the cir-
cular boundary, the normalization is N = N

πR2 · 2Dpτ

π
, where

N is the number of particles. Outside, the normalization is
N = ρbulk

2Dpτ

π
. For n = 1, we have for r̃ < R̃,

C(1)
mx,my

(r̃, θ ) = N
√

2I1(
√

2r̃)

I0(
√

2R̃) + I2(
√

2R̃)

× (
cos θδmx,1δmy,0 + sin θδmx,0δmy,1

)
, (D7)

and for r̃ > R̃,

C(1)
mx,my

(r̃, θ ) = − N
√

2K1(
√

2r̃)

K0(
√

2R̃ + K2(
√

2R̃))

× (
cos θδmx,1δmy,0 + sin θδmx,0δmy,1

)
, (D8)

where Iμ, Kμ are modified Bessel functions of the first and
second kinds, respectively. For n = 2, we focus on (mx, my) =
(0, 0) since we are only interested in the density. For r̃ < R̃,
we must make sure that the number of particles remains fixed.
This condition is∫ R

0

∫ 2π

0
C(2)

0,0(r̃, θ )r̃d r̃dθ = 0. (D9)

Thus, we have

C(2)
0,0(r̃, θ ) = 2N [I2(

√
2R̃) − I0(

√
2R̃) + I0(

√
2r̃)]

I0(
√

2R̃) + I2(
√

2R̃)
. (D10)

For r̃ > R̃,

C(2)
0,0(r̃, θ ) = 2NK0(

√
2r̃)

K0(
√

2R̃) + K2(
√

2R̃)
. (D11)
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2. Solution for a wedge-shaped region

The zero current boundary condition for each wall of the
wedge is J̃θ (r̃,±α, η̃) = 0. In terms of the coefficients, we
have the condition

1

r̃

∂C(n)
mx,my

(r̃,±α)

∂θ
= wθ (r̃,±α). (D12)

For n = 0, we should have a uniform density of passive parti-
cles or

C(0)
mx,my

(r̃, θ ) = N δmx,0δmy,0. (D13)

For higher orders, we have to make use of the KL transform.
The KL transform of our coefficients is defined as (for mx +
my > 0)

Ĉ(n)
m (ν, θ ) =

∫ ∞

0
C(n)

m (r̃, θ )Kiν (
√

2(mx + my) r̃)
dr̃

r̃
. (D14)

For n = 1, the coefficient equation is

1

r̃

∂

∂ r̃

(
r̃
∂C(1)

m

∂ r̃

)
+ 1

r̃2

∂2C(1)
m

∂θ2
− 2(mx + my)C(1)

m = 0. (D15)

Applying the KL transform, this coefficient equation becomes

∂2Ĉ(1)
m

∂θ2
= ν2Ĉ(1)

m . (D16)

The zero current boundary condition at this order is

1

r̃

∂C(1)
m (r̃,±α)

∂θ
= N

(
cos αδmx,0δmy,1 ∓ sin αδmx,1δmy,0

)
.

(D17)
Applying the KL transform and using Eq. (A23), the boundary
condition becomes

∂Ĉ(1)
m (ν,±α)

∂θ

= Nπ

2
√

2 cosh νπ/2

(
cos αδmx,0δmy,1 ∓ sin αδmx,1δmy,0

)
.

(D18)

The solution is

Ĉ(1)
m (ν, θ ) = Nπ

√
2 cos α sinh νθ

4ν cosh νπ
2 cosh να

δmx,0δmy,1 − Nπ
√

2 sin α cosh νθ

4ν cosh νπ
2 sinh να

δmx,1δmy,0. (D19)

Taking the inverse KL transform, we have

C(1)
m (r̃, θ ) = N

√
2 cos αδmx,0δmy,1

π

∫ ∞

0

sinh νπ
2 sinh νθ

cosh να
Kiν (

√
2r̃)dν

− N
√

2 sin αδmx,1δmy,0

π

∫ ∞

0

sinh νπ
2 cosh νθ

sinh να
Kiν (

√
2r̃)dν. (D20)

For n = 2, we will focus on the (mx, my) = (0, 0) solution. Using the n = 1 solution and the recursion relations Eqs. (A11), we
have for the coefficient equation

1

r̃

∂

∂ r̃

(
r̃
∂C(2)

0,0

∂ r̃

)
+ 1

r̃2

∂2C(2)
0,0

∂θ2
= 2N

π

∫ ∞

0
sinh

νπ

2

(
sin α

sinh να
+ i

cos α

cosh να

)
cos[(iν − 1)θ ]Kiν−1(

√
2r̃)dν

+ 2N
π

∫ ∞

0
sinh

νπ

2

(
sin α

sinh να
− i

cos α

cosh να

)
cos[(iν + 1)θ ]Kiν+1(

√
2r̃)dν, (D21)

and for the boundary condition

1

r̃

∂C(2)
0,0(r̃,±α)

∂θ
= ±2

√
2N
π

∫ ∞

0
sinh

νπ

2

(
sin2 α cosh να

sinh να
+ cos2 α sinh να

cosh να

)
Kiν (

√
2r̃)dν. (D22)

The solution is

C(2)
0,0(r̃, θ ) =

∫ ∞

−∞
a(s) cosh sθ r̃−isds + N

π

∫ ∞

0
sinh

νπ

2

(
sin α

sinh να
+ i

cos α

cosh να

)
cos[(iν − 1)θ ]Kiν−1(

√
2r̃)dν

+ N
π

∫ ∞

0
sinh

νπ

2

(
sin α

sinh να
− i

cos α

cosh να

)
cos[(iν + 1)θ ]Kiν+1(

√
2r̃)dν, (D23)

where a(s) satisfies∫ ∞

−∞
a(s)s sinh sα r̃−is−1ds = N

√
2

π

∫ ∞

0
sinh

νπ

2

(
sin2 α cosh να

sinh να
+ cos2 α sinh να

cosh να

)
d2

dr̃2
Kiν (

√
2r̃)dν. (D24)
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We can in principle determine a(s) using the Mellin transform. This can be done with a change of variables by defining
z = is + 1 and A(z) = 2πa( z−1

i ) z−1
i sinh ( z−1

i α). The left-hand side integral then becomes∫ 1+i∞

1−i∞
A(z)r̃−z dz

2π i
, (D25)

which can be inverted using the Mellin transform to obtain A(z) and hence a(s).
In the main text (Sec. V B), we are interested in the average propulsion 〈η〉(r, θ ) within the wedge and the correction to density

�(r, θ ) near the tip of the wedge. These can be determined from C(1)
1,0, C(1)

0,1, and C(2)
0,0 after restoring dimensions. We can obtain

slightly more simplified forms of these quantities if we consider angles of the form 2α = π/2l−1. To do that, we make use of
the following identities for l � 2:

sinh νπ/2

sinh νπ/2l
cosh νθ =

2l−2−1∑
k=0

{
cosh ν

[
(2l−1 − 1 − 2k)π

2l
+ θ

]
+ cosh ν

[
(2l−1 − 1 − 2k)π

2l
− θ

]}
, (D26a)

sinh νπ/2

sinh νπ/2l
sinh νθ =

2l−2−1∑
k=0

{
sinh ν

[
(2l−1 − 1 − 2k)π

2l
+ θ

]
− sinh ν

[
(2l−1 − 1 − 2k)π

2l
− θ

]}
, (D26b)

sinh νπ/2

cosh νπ/2l
sinh νθ =

2l−2−1∑
k=0

(−1)k

{
cosh ν

[
(2l−1 − 1 − 2k)π

2l
+ θ

]
− cosh ν

[
(2l−1 − 1 − 2k)π

2l
− θ

]}
, (D26c)

sinh νπ/2

cosh νπ/2l
cosh νθ =

2l−2−1∑
k=0

(−1)k

{
sinh ν

[
(2l−1 − 1 − 2k)π

2l
+ θ

]
+ sinh ν

[
(2l−1 − 1 − 2k)π

2l
− θ

]}
, (D26d)

in addition to [47]∫ ∞

0
cosh aν Kiν (

√
2r̃)dν = π

2
e−√

2r̃ cos a, (D27a)∫ ∞

0
ν sinh aν Kiν (

√
2r̃)dν = π

2

√
2r̃ sin a e−√

2r̃ cos a. (D27b)

APPENDIX E: SOLUTION FOR A CORRUGATED WALL

We start with a boundary deformed around y = 0. Suppose
its shape is given by h(x), which has period 2L and character-
istic amplitude δ. This shape can be decomposed into Fourier
modes as

h(x) = δ

∞∑
k=−∞

hke
iπk
L x, (E1)

where we assume that h0 = 0 and

hk = 1

2Lδ

∫ L

−L
h(x)e− iπk

L xdx. (E2)

We can solve this particular case in Cartesian coordinates. Just
as before, we write the distribution as

ρ̃(r̃, η̃) =
∞∑

n=0

εn
∑

m

C(n)
m (r̃)e−η̃2

Hmx (η̃x )Hmy (η̃y), (E3)

except now we expand the coefficients C(n)
m as

C(n)
m (r̃) � a(n)

m (ỹ) + δ̃

∞∑
k=−∞

b(n)
m;k (ỹ)e

iπk
L̃

x̃, (E4)

where a(n)
m is the solution for a flat boundary, the first two

orders of which are

a(0)
0,0(ỹ) = N , (E5a)

a(1)
0,1(ỹ) = −N

√
2

2
e−√

2ỹ, (E5b)

a(2)
0,0(ỹ) = N e−√

2ỹ. (E5c)

The coefficients b(n)
m;k (ỹ) satisfy the ODE

d2b(n)
m;k

dỹ2
−
[

2(mx + my) + π2k2

L̃2

]
b(n)

m;k = iπk

L̃
wx + dwy

dỹ
,

(E6)

where

wx = b(n−1)
mx−1,my;k + 2(mx + 1)b(n−1)

mx+1,my;k, (E7a)

wy = b(n−1)
mx,my−1;k + 2(my + 1)b(n−1)

mx,my+1;k . (E7b)

Finally, for the boundary condition, we require that the normal
component of the current at the boundary to be zero. Assum-
ing that the function describing the shape of the boundary is
single-valued, the normal to the boundary is

n̂ = (−h̃′(x̃), 1)√
1 + h̃′(x̃)2

. (E8)

Therefore, the zero current boundary condition along the wall,
J̃(x̃, h̃(x̃), η̃) · n̂ = 0, is

−J̃x(x̃, h̃(x̃), η̃)
dh̃

dx̃
+ J̃y(x̃, h̃(x̃), η̃) = 0. (E9)
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To make progress, we assume that the amplitude of the corrugation is small compared to the accumulation of active particles or
δ̃ = δ/λ � 1 so we can linearize the boundary condition Eq. (E9). The currents J̃x(x̃, h̃, η̃) and J̃y(x̃, h̃, η̃) are given by

J̃x(x̃, h̃, η̃) =
∞∑

n=0

εn
∑

m

[
C(n−1)

mx−1,my
(x̃, h̃) + 2(mx + 1)C(n−1)

mx+1,my
(x̃, h̃) − dC(n)

m (x̃, h̃)

dx̃

]
e−η̃2

Hmx (η̃x )Hmy (η̃y), (E10a)

J̃y(x̃, h̃, η̃) =
∞∑

n=0

εn
∑

m

[
C(n−1)

mx,my−1(x̃, h̃) + 2(my + 1)C(n−1)
mx,my+1(x̃, h̃) − dC(n)

m (x̃, h̃)

dỹ

]
e−η̃2

Hmx (η̃x )Hmy (η̃y). (E10b)

Substituting these currents into the boundary condition Eq. (E9) and using the orthogonality of Hermite polynomials, we obtain
for each order n

−
[
C(n−1)

mx−1,my
(x̃, h̃) + 2(mx + 1)C(n−1)

mx+1,my
(x̃, h̃) − dC(n)

m (x̃, h̃)

dx̃

]
dh̃

dx̃
+
[
C(n−1)

mx,my−1(x̃, h̃) + 2(my + 1)C(n−1)
mx,my+1(x̃, h̃) − dC(n)

m (x̃, h̃)

dỹ

]
= 0 (E11)

Finally, inserting the expansion of C(n)
m (x̃, h̃) in terms of

a(n)
m (h̃) and b(n)

m;k (h̃) [Eq. (E4)] and Taylor expanding every-
thing about δ̃ = 0, we can collect all terms of order δ̃ and use
the orthogonality of the Fourier modes to obtain the boundary
condition for the coefficients b(n)

m;k (ỹ) shown in the main text
[Eq. (62)]. Note that the zeroth order boundary condition,
which corresponds to that of a flat wall, is already satisfied.

Solving for b(n)
m;k (ỹ) is straightforward. We find

b(0)
0,0;k (ỹ) = 0, (E12a)

b(1)
1,0;k (ỹ) = iNπkhk

L̃
√

2 + π2k2

L̃2

e−
√

2+ π2k2

L̃2 ỹ
, (E12b)

b(1)
0,1;k (ỹ) = − Nhk

√
2√

2 + π2k2

L̃2

e−
√

2+ π2k2

L̃2 ỹ
, (E12c)

b(2)
0,0;k (ỹ) = Nπ |k|hk

L̃

⎛⎝1 −
√

2√
2 + π2k2

L̃2

⎞⎠e− π |k|
L̃

ỹ

+Nhk

⎛⎝√
2 − π2k2

L̃2
√

2 + π2k2

L̃2

⎞⎠e−
√

2+ π2k2

L̃2 ỹ
.

(E12d)

For the asymmetric sawtooth in the main text, the Fourier
amplitudes are h0 = 0 and

hk = 2[e−iπkζ − (−1)k]

π2k2(1 − ζ 2)
. (E13)

The spacial currents described in the main text (Sec. VI and
Fig. 8) can be written as

J̃x(x̃, ỹ)=πε2δ̃

∞∑
k=−∞

[
2b(1)

1,0;k (ỹ)− iπk

L̃
b(2)

0,0;k (ỹ)

]
e

iπk
L̃

x̃, (E14a)

J̃y(x̃, ỹ)=πε2δ̃

∞∑
k=−∞

[
2b(1)

0,1;k (ỹ)− db(2)
0,0;k (ỹ)

dỹ

]
e

iπk
L̃

x̃. (E14b)

Since h0 = 0 and there is no k = 0 contribution to the cur-
rents, it is easy to see that averaging over a period 2L̃ gives
zero net flux along the wall.

As discussed in the main text, we can obtain the density
at the tip of a wedge with angle close to 2α = π . Consider
a symmetric sawtooth-shaped boundary (ζ = 0) with a small
amplitude (δ � λ) and a long wavelength (L � λ). Writing
the density as ρ(x, y) = ρbulk[1 + ε2�(x, y)], we can compute
the density at the tip �(0, δ) up to order δ. We find

�tip � 1 + 4δ

πL

∞∑
k=1

[1 − (−1)k]

k

×
⎛⎝1 −

√
2√

2 + π2k2λ2

L2

− πkλ

L
√

2 + π2k2λ2

L2

⎞⎠. (E15)

For L � λ, the summation weakly depends on L and can be
well approximated by an integral. We thus have

�tip ≈ 1 + 4δ

πL

∫ ∞

0

dt

t

[
1 −

√
2√

2 + t2
− t√

2 + t2

]
≈ 1 − 0.44(2α − π ), (E16)

where we used 2α � π + 4δ
L .

APPENDIX F: SOLUTION FOR A SPHERICAL ABSORBER

For problems requiring spherical coordinates, we write the
density as

ρ̃(r̃, θ, φ, η̃) =
∞∑

n=0

εn
∑

m

C(n)
m (r̃, θ, φ)

× e−η̃2
Hmx (η̃x )Hmy (η̃y)Hmz (η̃z ). (F1)
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The coefficients C(n)
m satisfy

1

r̃2

∂

∂ r̃

(
r̃2 ∂C(n)

m

∂ r̃

)
− 2(mx + my + mz )C(n)

m

+ 1

r̃2 sin θ

∂

∂θ

(
sin θ

∂C(n)
m

∂θ

)
+ 1

r̃2 sin2 θ

∂2C(n)
m

∂φ2

= 1

r̃2

∂

∂ r̃
(r̃2wr ) + 1

r̃ sin θ

∂

∂θ
(sin θwθ ) + 1

r̃ sin θ

∂wφ

∂φ
,

(F2)

where the components of w in spherical coordinates are

wr = wx sin θ cos φ + wy sin θ sin φ + wz cos θ, (F3a)

wθ = wx cos θ cos φ + wy cos θ sin φ − wz sin θ, (F3b)

wφ = −wx sin φ + wy cos φ, (F3c)

and

wx = C(n−1)
mx−1,my,mz

+ 2(mx + 1)C(n−1)
mx+1,my,mz

, (F4a)

wy = C(n−1)
mx,my−1,mz

+ 2(my + 1)C(n−1)
mx,my+1,mz

, (F4b)

wz = C(n−1)
mx,my,mz−1 + 2(mz + 1)C(n−1)

mx,my,mz+1. (F4c)

For the absorbing boundary condition, we have
C(n)

m (R̃, θ, φ) = 0. For n = 0, we have the usual density
profile for passive particles around an absorbing sphere given
by

C(0)
m (r̃, θ, φ) = N

(
1 − R̃

r̃

)
δmx,0δmy,0δmz,0, (F5)

where N = ρbulk(2Dpτ/π )3/2. For n=1, we have

C(n)
1,0,0(r̃, θ, φ) = N

2R̃

[
k1(

√
2r̃)

k1(
√

2R̃)
− R̃2

r̃2

]
sin θ cos φ, (F6a)

C(1)
0,1,0(r̃, θ, φ) = N

2R̃

[
k1(

√
2r̃)

k1(
√

2R̃)
− R̃2

r̃2

]
sin θ cos φ, (F6b)

C(1)
0,0,1(r̃, θ, φ) = N

2R̃

[
k1(

√
2r̃)

k1(
√

2R̃)
− R̃2

r̃2

]
cos θ, (F6c)

where kμ is the modified spherical Bessel function of the
second kind. For n=2, we will only write the (mx, my, mz ) =
(0, 0, 0) term since we are only interested in the density and
current. We have

C(2)
0,0,0(r̃, θ, φ) = N

√
2k0(

√
2R̃)

2R̃k1(
√

2R̃)

[
R̃

r̃
− k0(

√
2r̃)

k0(
√

2R̃)

]
. (F7)

Integrating out η̃, we have for the density

ρ̃(r̃, θ, φ) � π3/2C(0)
0,0,0(r̃, θ, φ) + ε2π3/2C(2)

0,0,0(r̃, θ, φ)

= Nπ3/2

(
1 − R̃

r̃

)
+ ε2 Nπ3/2

1 + √
2R̃

[
1 − e−√

2(r̃−R̃)
] R̃

r̃
. (F8)

The radial current is given by

J̃r (r̃, θ, φ) � −∂C(0)
0,0,0

∂ r̃
π3/2 + ε2π3/2

(
wr − ∂C(2)

0,0,0

∂ r̃

)
, (F9)

where

wr = 2C(1)
1,0,0 sin θ cos φ + 2C(1)

0,1,0 sin θ sin φ + 2C(1)
0,0,1 cos θ.

(F10)

Substituting everything in, we arrive at

J̃r (r̃, θ, φ) = −Nπ3/2R̃

r̃2

(
1 + ε2

√
2R̃

1 + √
2R̃

)
. (F11)
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Correction: The inline equation appearing after Eq. (69c)
contained an error and has been fixed.
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