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Brownian motion of a charged colloid in restricted confinement
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We study the Brownian motion of a charged colloid, confined between two charged walls, for small separation
between the colloid and the walls. The system is embedded in an ionic solution. The combined effect of
electrostatic repulsion and reduced diffusion due to hydrodynamic forces results in a specific motion in the
direction perpendicular to the confining walls. The apparent diffusion coefficient at short times as well as the
diffusion characteristic time are shown to follow a sigmoid curve as a function of a dimensionless parameter.
This parameter depends on the electrostatic properties and can be controlled by tuning the solution ionic strength.
At low ionic strength, the colloid moves faster and is localized, while at high ionic strength it moves slower and
explores a wider region between the walls, resulting in a larger diffusion characteristic time.
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I. INTRODUCTION

Understanding the Brownian motion of colloids under con-
finement has been a great challenge in recent decades [1].
Such motion is present in the segregation and transport of
particles through biocellular membranes [2], in microflu-
idic devices [3], and in particle trapping and tracking
technologies [4,5].

A simple example of confinement is observed when a
colloid is placed in a confined space bounded by rigid sur-
faces. In this case, the colloid motion differs from its free
medium one (no boundaries) due to hydrodynamic forces be-
tween the colloid and the confining surfaces. At low Reynolds
numbers, this effect reduces to a change in the drag coeffi-
cient, which in turn leads to a position-dependent diffusion
coefficient (PDDC) of the colloid. For simple geometries
such as a spherical colloid near a single planar wall or in
between two flat walls, the PDDC was calculated by Brenner
and co-workers [6,7] and Ganatos et al. [8,9]. These results
were verified experimentally for micro- or nanometer-sized
particles, by different techniques of light scattering [10–13],
video microscopy [14], optical tweezers [15] and total internal
reflection velocimetry [16].

In polar solvents, the colloid and the confining surfaces
often carry an electric charge, and the interaction between
them confines the colloid even further to the vicinity of
some potential minimum [17]. This results in an intricate
motion which is affected both by the PDDC and the confining
potential.

Consequently, the colloid motion was examined experi-
mentally in the lateral direction [18,19]. However, its motion
in the direction perpendicular to the confining surfaces, where
the coupling between the PDDC and the interaction potential
is pronounced, was only examined when the diffusion coeffi-
cient does not change throughout the colloid motion [20,21].
Although this simplification is valid at times, a rigorous de-

scription of the motion in which the PDDC and interaction
potential are fully coupled to one another is still missing.
Moreover, in previous studies, the electrostatic interaction
was approximated by the simplified form, U ∼ exp (−d/λD),
where λD is the Debye screening length and d is the separation
distance between the surface of the colloid and the wall.
While this is valid in the large separation limit d � λD, the
interesting regime where d is of the order of λD has yet to be
explored.

In this paper, we study the motion of a spherical charged
colloid, of radius a, confined between two charged walls,
and focus on the motion in the direction perpendicular to
the walls. We consider the large sphere limit, i.e., a � λD, d ,
for which the calculation greatly simplifies and analytical
results are obtained. We make an additional simplification
by approximating the interaction potential to be a harmonic
one around the equilibrium position. We obtain a dynamical
equation that depends on a single dimensionless parameter,
α, that quantifies the interplay between the walls and the
interaction potential.

In the small or large α limits, the calculated probabil-
ity distribution function agrees with previous results, while
for α ∼ 1, the motion deviates substantially from these two
known cases. The difference is quantified by the mean-square
displacement (MSD) behavior as a function of time, where
an analytic expression for the short-time behavior is derived,
while the long-time behavior is studied numerically. We also
show the dependence of α on the electrostatic properties of the
system. In particular, we demonstrate how it can be tuned by
changing the salt concentration, causing the colloid motion
to cross over between the PCCD dominated motion, which
is slow and explores a wide region, and the electrostatically
dominated one, which is faster and more localized.

The outline of the paper is as follows. In Sec. II, we
calculate the interaction potential. In Sec. III, we calculate
the PDDC and derive the dynamical equation of the colloid
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FIG. 1. Schematic drawing of the system. A colloid of surface
charge density σc and radius a is positioned in between two walls
with distance L between them, each having a surface charge density
σw. Both the colloid and walls are embedded in an ionic solution
with dielectric constant ε, viscosity η, temperature T , and screening
length λD.

motion. In Sec. IV, we analyze the MSD of the motion for
different values of the parameter α, and show the dependence
of α on the electrostatic properties of the system. In Sec. V,
we conclude with several general observations and comments
on the validity of our results.

II. ELECTROSTATIC POTENTIAL

We consider a spherical colloid of radius a and charge Q,
embedded in a dilute ionic solution. The charge of the colloid
is assumed to be distributed homogeneously on its surface,
with surface charge density σc = Q/(4πa2), where σc can
be either positive or negative. The ionic solution is charac-
terized by a dimensionless dielectric constant ε, viscosity η,
temperature T , and bulk concentration of monovalent salt
n. The colloid is confined between two charged walls, as
shown in Fig. 1. The distance between the walls is L, and the
position of the center of the colloid relative to the midplane
between the two walls is x. The distance between the colloid
and the left (right) wall is denoted by d� (dr), such that d� =
L/2 − a + x and dr = L/2 − a − x. We define d0 = L/2 − a
as the distance between the colloid and the walls when the
colloid is placed on the midplane (x = 0). We also assume
that the walls have a fixed charge density, σw, which can be
either positive or negative.

The electrostatic interaction between a spherical colloid
and a flat wall, embedded in an ionic solution, is described by
the Poisson-Boltzmann theory [22,23]. Assuming that the col-
loid and wall are not highly charged [see the exact condition
in Appendix A after Eq. (A2)], the theory can be linearized
and reduces to the Debye-Hückel (DH) theory. In the DH
theory, the electrostatic potential, ψ , at each point in space
r = (x, y, z) is given by the linearized equation(∇2 − κ2

D

)
ψ (r) = 0, (1)

where κD is the inverse screening length, κD =
λ−1

D = [2e2n/(ε0εkBT )]1/2, λD is the Debye screening length,
e is the elementary charge, ε0 is the vacuum permittivity, and

kB is the Boltzmann constant. The equation is solved together
with the boundary conditions of fixed charge on the colloid
surface and on the walls.

The DH equation does not have an analytic solution for the
geometry considered here. However, by assuming that a is the
largest length scale in the system, a � d�, dr, λD (the large
sphere limit), Eq. (1) can be solved by using the Derjaguin
approximation. Note that the large sphere limit combines two
different and independent physical limits: a � d�, dr (narrow
confinement) and a � λD (thin double layer).

In Appendix A, we calculate the electrostatic potential ψ in
the large sphere limit. In addition, the Appendix contains the
detailed derivation of the interaction potential, U (x), between
the colloid and the charged walls, in the same limit. For
convenience, we repeat here only the final expression relating
U (x) and the osmotic pressure, �,

U (x) = − 2πa

(∫ d0+x

dh
∫ ∞

h
dl �(l )

+
∫ d0−x

dh
∫ ∞

h
dl �(l )

)
, (2)

where the osmotic pressure, � [23], is related to ψ by

� = εε0

2

(−ψ ′2 + κ2
Dψ2

)
, (3)

and ψ ′ is the first derivative along the x direction (note that
U (x) is defined up to a constant).

Equations (2) and (3) (see details in Appendix A) yield the
following interaction potential:

U (x) = πa

εε0κ
2
D

[
2σcσw ln

(
cosh(κDd0) + cosh(κDx)

cosh(κDd0) − cosh(κDx)

)

+ (
σ 2

c + σ 2
w

)
ln

(
cosh(2κDd0)

cosh(2κDd0) − cosh(2κDx)

)]
.

(4)

Due to the symmetry, U ′(x) = 0 at x = 0. However, from
Eq. (4) it follows that this equilibrium is stable (minimum of
U ) only if

σw

σc
< −eκDd0 or

σw

σc
> −e−κDd0 . (5)

This is exactly the condition that the walls repel the colloid
placed at the midplane position x = 0, instead of attracting
it [24]. In what follows, we focus on the case where the
colloid and walls have the same charge sign, and the stability
condition, Eq. (5), is thus always satisfied.

Expanding U (x) to second order around the midplane,
x = 0, we obtain the harmonic potential approximation

U ≈ 1
2 Kx2, (6)

where K = U ′′|x=0 is the effective spring constant. From
Eq. (4), this approximation leads to

K =
(

2πa

ε0ε

)
2σcσw cosh(κDd0) + σ 2

c + σ 2
w

sinh2(κDd0)
. (7)

The harmonic interaction potential in Eq. (6) will be used
as the potential energy in the following analysis. The approxi-
mation underestimates the strength of the interaction potential
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FIG. 2. Contour plot of the normalized effective spring constant,
K̃ ≡ K/(πaσ 2

c /ε0ε) where K = U ′′(x)|x=0 [see Eqs. (6) and (7)] as a
function of κDd0 and σw/σc. The color code is associated with ln K̃ .
Large K̃ is obtained in the high σw/σc and small κDd0 limits. It decays
to zero as κDd0 is increased.

close to the walls, but this only has a minor effect on the
dynamics, as will be discussed in depth in Sec. V .

In Fig. 2, K̃ ≡ K/(πaσ 2
c /ε0ε) is plotted for different κDd0

and σw/σc > 0 values. For fixed κDd0 and σc, K diverges as
σw → ∞, and monotonically decreases as σw decreases. For
given σc and σw, K decreases rapidly when κDd0 is increased.

In Appendix B we derive the corresponding K for fixed
surface potential on the walls, rather than fixed surface charge.

III. CONFINED BROWNIAN DYNAMICS

A. Position-dependent diffusion coefficient (PDDC)

In a free medium (no boundaries), the colloid performs a
simple Brownian motion, described by a diffusion coefficient
D. By the Einstein relation, we have D = μkBT , where μ

is the mobility, defined by the ratio of the colloid terminal
drift velocity to an applied force, μ = v/F . If the colloid is
neutral, and at low Reynolds number, the mobility follows the
Stokes’ law, μ = 1/(6πηa), and the diffusion coefficient of
this motion is denoted as D∞ = kBT/(6πηa).

The mobility of a charged colloid in an ionic solution
is reduced due to the drag of the surrounding ionic cloud.
However, for low surface electrostatic potential or low surface
charge, the reduction is only of a few percent [25,26], and
is therefore neglected here. Note that the motion of ions, by
virtue of their small size, is much faster than the colloid,
and is assumed to be in equilibrium throughout the colloid
motion. Their only effect on the colloid dynamics (apart from
the reduction of its mobility, which we neglect) is through the
equilibrium interaction potential, Eq. (6).

The presence of walls in the vicinity of the colloid, how-
ever, can modify the colloid mobility substantially due to
hydrodynamic effects. As shown by Brenner [6], the Stokes’
law of a motion in the perpendicular direction to a single solid
wall, at distance d , is modified in the following way:

F⊥ = 6πηaλ(ζ )v⊥, (8)

with λ being

λ(ζ ) = 4

3
sinh ζ

∞∑
n=1

n(n + 1)

(2n − 1)(2n + 3)

×
[

2 sinh [(2n + 1)ζ ] + (2n + 1) sinh(2ζ )

4 sinh2 [(n + 1/2)ζ ] − (2n + 1)2 sinh2 ζ
− 1

]
.

(9)

Here ζ = cosh−1 (1 + d/a), and F⊥ and v⊥ are the force and
velocity in the perpendicular direction, respectively. In the
d � a limit, we have λ = 1 and the regular Stokes’ law is
recovered. In the d � a limit, which is our main interest,
Eq. (9) becomes, to leading order, λ ≈ a/d .

When the colloid is placed in between two walls, the mod-
ified Stokes’ law has a much more complicated expression,
relying on extensive numerical computations [8]. However,
several approximations have been proposed [11,27,28]. The
simplest one is the linear superposition approximation that
was shown to agree fairly well with experiments [29],

F⊥ ≈ 6πηa(λ� + λr − 1)v⊥, (10)

where λ� and λr are calculated from Eq. (9), with d = d�

and d = dr , respectively. Note that the negative third term in
Eq. (10) guarantees that we recover F⊥ = 6πaηv⊥ when the
walls are very far apart.

In the narrow confinement limit, d�, dr � a, the perpendic-
ular diffusion coefficient D⊥ can be approximated as

D⊥(x) ≈ D∞
d�dr

a(d� + dr )
= D0

(
1 − x2

d2
0

)
, (11)

where

D0 = D∞d0

2a
(12)

and the relations d� = d0 + x and dr = d0 − x were used. In
Fig. 3, we compare between the approximated diffusion co-
efficient given by Eq. (11), and the “exact” numerical results
of the diffusion coefficient of a colloid between two walls, for
motion in the perpendicular direction. The numerical data is
adapted from Fig. 6 of Ref. [8]. Here we show D⊥/D∞, which
is the inverse of λ, D⊥/D∞ = 1/λ, whereas in Ref. [8], λ was
calculated [see its definition in Eq. (8)].

As seen in Fig. 3, for L/(2a) = 1.5, the approximated
expression overestimates the “exact” one by ∼20% at the
midplane (x = 0), and becomes more accurate as we look
away from the midplane. For L/(2a) = 1.25, the deviation
in the midplane is of ∼10%, and decreasing away from the
midplane. For L/(2a) = 1.1, there is only one data point avail-
able at the midplane, and it deviates from the approximation
by only ∼2%. This strongly supports that in the d0 � a limit
(L ≈ 2a), the approximated Eq. (11) can by used.

The parallel motion is also described by a position-
dependent diffusion coefficient D‖(x) although we do not
calculate it here [9].

B. Fokker-Planck equation

The dynamics of a colloid with diffusion coefficients
D⊥(x) and D‖(x) in the perpendicular and parallel directions,
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FIG. 3. The diffusion coefficient D⊥ of a colloid between two flat
surfaces, normalized by its diffusion coefficient in a free medium,
D∞ = kBT/(6πηa), as a function of x/d0. Full black lines are
numerical results obtained in Ref. [8], and red dashed lines show
the approximated expression in Eq. (11), which relies on the linear
superposition approximation in the d�, dr � a limit. For L/(2a) =
1.1, a single data point was available in the numerical calculation:
D⊥/D∞ = 0.049 at x = 0. The approximated expression in Eq. (11)
yields D⊥/D∞(x = 0) = 0.05 at x = 0. The difference between the
two values is smaller than the plot resolution.

respectively, and under potential field U (x), is governed by
the generalized Fokker-Planck equation [30],

∂P(r, t )

∂t
= ∂

∂x

[
D⊥(x)

(
1

kBT

∂U

∂x
+ ∂

∂x

)
P(r, t )

]

+ D‖(x)

(
∂2

∂y2
+ ∂2

∂z2

)
P(r, t ), (13)

where P(r, t ) is the time-dependent probability distribution
function (PDF) of the colloid position. The full three-
dimensional motion of the colloid is quite complex, because
the motion in the y-z plane is coupled to the motion along the
x axis through the diffusion coefficient D‖(x). However, our
focus is on the perpendicular motion in the x direction, which
by symmetry, does not depend on the position in the y-z plane.
Then one can integrate the equation both over y and z from
−∞ to ∞, and obtain

∂ p(x, t )

∂t
= ∂

∂x

[
D⊥(x)

(
1

kBT

∂U

∂x
+ ∂

∂x

)
p(x, t )

]
, (14)

where p(x, t ) is the reduced probability distribution function
p(x, t ) = ∫

dy dz P(r, t ).
Substituting the harmonic interaction potential obtained in

Eq. (6) and the PDDC of Eq. (11), we obtain

∂ p

∂t
= D0

∂

∂x

[(
1 − x2

d2
0

)(
Kx

kBT
p + ∂ p

∂x

)]
. (15)

All the electrostatic effects are captured by the term pro-
portional to K . We note that, in general, rigid walls
impose zero current boundary conditions, i.e., j = 0 on the

walls, where the current is defined by the continuity equa-
tion ∂ p/∂t = −∂ j/∂x. From Eq. (14), the current becomes
j = −D⊥(x)[(Kx/kBT )p + ∂ p/∂x]. Notice that the condi-
tions j = 0 at the walls are automatically satisfied by the fact
that D⊥ vanishes there.

IV. MEAN-SQUARE DISPLACEMENT

Equation (15), together with the definitions of K and D0

in Eqs. (7) and (12), respectively, is the principal equation
of this paper. By solving it, one can derive the MSD, which
can be measured in experiments. The MSD of an ensemble of
colloids in equilibrium is

〈(x(t ) − x0)2〉 =
∫ d0

−d0

dx0

∫ d0

−d0

dx (x(t ) − x0)2 p(x, x0; t ),

(16)

where p(x, x0; t ) is the probability of a colloid to be
at x0 at time t = 0 and at x at time t . As the ini-
tial position, x0, is drawn from an equilibrium distri-
bution, we can write p(x, x0; t ) in terms of the con-
ditional probability, p(x, x0; t ) = p(x, t |x0, 0)peq(x0), where
peq(x0) ∝ exp(−Kx2

0/2kBT ). It then follows that the MSD is

〈(x(t ) − x0)2〉 =
∫ d0

−d0
dx0 e−Kx2

0/2kBT 〈(x(t ) − x0)2〉x0∫ d0

−d0
dx0 e−Kx2

0/2kBT
. (17)

where 〈O〉x0 is the average over an ensemble of col-
loids with the same initial position, x0, at t = 0, i.e.,
〈O〉x0 = ∫

dx p(x, t |x0, 0)O, with p(x, t |x0, 0) being a solu-
tion of Eq. (15) with the initial condition p(x, 0) = δ(x − x0).
The MSD resulting from Eq. (15) will be analyzed in depth in
what follows.

A. Vanishing interaction potential limit

While Eq. (15) does not have an analytic solution, it can be
solved for certain limits. In the vanishing interaction potential
limit, K is omitted altogether and we are left with

∂ p

∂t
= D0

[
−2x

d2
0

∂ p

∂x
+

(
1 − x2

d2
0

)
∂2 p

∂x2

]
. (18)

The above equation, for a colloid at x = x0 at time t = 0, has
the solution [30]

p(x, t |x0, 0) = 1

2d0

∞∑
n=0

(2n + 1)e−D0n(n+1)t/d2
0

× Pn

( x0

d0

)
Pn

( x

d0

)
, (19)

where Pn(x) is the Legendre polynomial of order n. The PDF
of Eq. (19) is characterized by the following first and second
moments,

〈x(t )〉x0 = x0e−2D0t/d2
0 ,

〈x2(t )〉x0 = x2
0e−6D0t/d2

0 + d2
0

3

(
1 − e−6D0t/d2

0
)
, (20)

In the limit of t → ∞, the PDF reduces to a uniform distribu-
tion between the two walls that are positioned at x = ±d0.
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In the vanishing interaction-potential limit, K = 0, Eq. (17)
simply becomes

〈(x(t ) − x0)2〉 = 1

2d0

∫ d0

−d0

dx0
[〈x2(t )〉x0 − 2x0〈x(t )〉x0 + x2

0

]
,

(21)

leading to the MSD

〈(x(t ) − x0)2〉 = 2d2
0

3

(
1 − e−2D0t/d2

0
)
. (22)

The above MSD approaches 2d2
0 /3 in the limit of t → ∞.

B. Strong interaction-potential limit

In the opposite strong interaction-potential limit, the con-
finement due to electrostatic effects is strong, and the colloid
remains close to the midplane. Consequently, its diffusion
coefficient does not change, and equals to D0. Then the term
that depends on d0 in Eq. (15) can be omitted, and we obtain

∂ p

∂t
= D0

[
K

kBT

(
p + x

∂ p

∂x

)
+ ∂2 p

∂x2

]
. (23)

Note that this is equivalent to the case of permeable walls,
where the walls interact electrostatically but not hydrodynam-
ically. Additionally, note that a strong interaction potential U
does not contradict the assumption employed in Sec. II of a
small electrostatic potential ψ . This is evident, for example,
by the dependence of U on the colloid size [see Eq. (4)], which
is absent in ψ [see Eq. (A2)].

The above equation can be solved for a colloid at x = x0 at
time t = 0, yielding [31]

p(x, t |x0, 0) =
(

K

2πkBT (1 − e−2D0Kt/kBT )

)1/2

× exp

[
− K (x − x0e−D0Kt/kBT )2

2kBT (1 − e−2D0Kt/kBT )

]
. (24)

For the averages, we can extend the integral range in
〈O〉x0 = ∫

dx p(x, t |x0, 0)O from ±d0 to ±∞. Then the first
and second moments are

〈x(t )〉x0 = x0e−D0Kt/kBT ,

〈x2(t )〉x0 = x2
0e−2D0Kt/kBT + kBT

K
(1 − e−2D0Kt/kBT ). (25)

For the MSD, Eq. (17) now reads

〈(x(t ) − x0)2〉 =
( K

2πkBT

)1/2 ∫ ∞

−∞
dx0 e−Kx2

0/2kBT

× [〈x2(t )〉x0 − 2x0〈x(t )〉x0 + x2
0

]
, (26)

yielding

〈(x(t ) − x0)2〉 = 2kBT

K
(1 − e−D0Kt/kBT ), (27)

which asymptotically approaches 2kBT/K for t → ∞. Equa-
tions (19) and (24) and their corresponding MSD functions,
Eqs. (22) and (27), represent the two limiting dynamical
behaviors.

FIG. 4. The apparent diffusion coefficient Dapp [see Eq. (30)],
scaled by D0, as a function of α = Kd2

0 /kBT .

C. Short-time diffusion coefficient

For a known initial position, p(x, 0) is infinitely sharp
(Dirac delta function). As a result, the term proportional to
the second derivative of p in Eq. (15) dominates the dynamics
for short times,

∂ p

∂t
= Deff (x0)

∂2 p

∂x2
, (28)

with Deff (x0) ≡ D0(1 − x2
0/d2

0 ). The colloid experiences, for
a short while, a free diffusion with diffusion coefficient
Deff (x), with the following conditional probability distribution
function:

p(x, t |x0, 0) =
(

1

4πDeff (x0)t

)1/2

exp

[
− (x − x0)2

4Deff (x0)t

]
. (29)

This results in a linear time dependence of MSD,
〈(x − x0)2〉 = 2Dappt , where Dapp is the apparent diffusion
coefficient

Dapp =
∫ d0

−d0
dx0 e−Kx2

0/2kBT Deff (x0)∫ d0

−d0
dx0 e−Kx2

0/2kBT

= D0

[
1 − 1

α
+

√
2/(πα)e−α/2

erf(
√

α/2)

]
, (30)

where α is a dimensionless parameter defined by

α = Kd2
0

kBT
(31)

and erf(x) = (2/
√

π )
∫ x

0 e−z2
dz is the error function. Notice

that
√

α is the ratio between two characteristic length scales,
d0 and

√
kBT/K . While d0 is the length over which the

diffusion coefficient changes,
√

kBT/K is the characteristic
interaction potential length scale, which is small for strong
potentials and large for weak ones.

In Fig. 4, Dapp/D0 is plotted as a function of α. Upon
increasing α, Dapp monotonically grows from Dapp/D0 = 2/3
obtained for α = 0 to Dapp/D0 = 1 valid for the α → ∞ limit.
We conclude that the colloid moves faster as the electrostatic
effects are stronger (large α). The change in Dapp occurs when
α is of order unity.
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FIG. 5. The mean-square displacement (MSD) of the colloid, 〈(x − x0 )2〉 scaled by d2
0 , as a function of t scaled by d2

0 /D0 for (a) α = 0.1,
(b) α = 10, and (c) and (d) α = 2. Red dots are the numerical solution of Eq. (15). Solid blue line is the vanishing interaction-potential limit
[see Eq. (22)]. Dashed black line is the strong interaction-potential limit [see Eq. (27)]. In (d), the short-time limit of α = 2 is shown, together
with the prediction, 〈(x − x0 )2〉 = 2Dappt with Dapp defined in Eq. (30) (thick green line).

D. Numerical analysis

The full dynamical equation, Eq. (15), can be made dimen-
sionless by using the dimensionless position x̃ = x/d0 and
time t̃ = (D0/d2

0 )t as

∂ p

∂ t̃
= ∂

∂ x̃
(1 − x̃2)

(
αx̃ p + ∂ p

∂ x̃

)
, (32)

where α is given by Eq. (31). The vanishing interaction-
potential limit, Eq. (18), and strong interaction-potential limit,
Eq. (23), correspond to α = 0 and to the limit α → ∞, re-
spectively [in order to obtain Eq. (23) from Eq. (32), one needs
to redefine the normalized position and time].

We calculate the MSD of the particle for different α values
by solving Eq. (32) numerically. In the following we use the
same normalized variables as in Eq. (32), but drop the tilde
signs for brevity. We divide our space into N lattice points
{x1, . . . , xN }, where x1 = −1 and xN = 1, and define pi(t ) ≡
p(xi, t ). For a given x0, we start with a distribution that approx-
imates a Dirac delta function, pi(0) = (2πδ)−1/2 exp[(xi −
x0)2/2δ], with δ � 1. We then iterate each time step using

the Euler method,

pi(t + �t )

= pi(t )+ �t

�x

[(
1−x2

i+1

)(
αxi+1 pi+1(t )+ pi+1(t ) − pi(t )

�x

)

− (
1 − x2

i

)(
αxi pi(t ) + pi(t ) − pi−1(t )

�x

)]
. (33)

The zero current boundary condition is guaranteed due to
the cancellation of the diffusion coefficient, proportional to
(1 − x2

i ), at x1 and xN . We used a lattice spacing of �x = 0.02,
and a time step �t between 6.25 × 10−5 and 2 × 10−4, de-
pending on α. For each initial condition, x0 ∈ {−1, 1}, we
calculated 〈(x(t ) − x0)2〉x0 and obtained the MSD through
Eq. (17).

The numerically obtained full MSD is shown in Fig. 5 for
different α values, and is compared with the limits in Eqs. (22)
and (27). Figure 5(a) shows that for α = 0.1, the MSD coin-
cides, almost perfectly, with the vanishing interaction poten-
tial case (solid blue line), while in Fig. 5(b) for α = 10, it coin-
cides with the strong interaction-potential case (dashed black
line). However, for an intermediate value, α = 2 in Fig. 5(c),
the numerically obtained MSD deviates substantially from the
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FIG. 6. The diffusion characteristic time τD, defined as the time
at which the MSD reaches half of its value in the t → ∞ limit, nor-
malized by d2

0 /D0, as a function of α. Solid blue line is the vanishing
interaction-potential limit, τD = d2

0 ln 2/(2D0), and dashed black line
is the strong interaction-potential walls limit, τD = d2

0 ln 2/(D0α).
Red dots are the values calculated numerically from Eq. (15) and
interpolate between the two limits.

two limits. In the short-time limit, it lies between the two lim-
iting cases, while in the long-time limit it has a significantly
lower value than both limits. In the short-time region shown
in Fig. 5(d), the numerical calculation coincides with Eq. (30)
(thick green line), and the MSD grows linearly with a slope
that increases with α. At saturation, the MSD for α = 0.1
equals ∼0.6d2

0 , for α = 2 equals ∼0.4d2
0 , and for α = 10, it

approaches ∼0.2d2
0 , indicating that the colloid motion is more

localized when the electrostatic force is strong.
A distinct difference between the MSD for different α

values is the characteristic time at which MSD saturates.
This is the time it takes the colloid to explore its available
space. Denoting τD as the time at which the MSD reaches
half of its maximal value (the diffusion characteristic time),
we obtain that in the α = 0 case, τD = d2

0 ln 2/(2D0) [see
Eq. (22)], while in the α → ∞ limit, τD = kBT ln 2/(D0K ) =
d2

0 ln 2/(D0α) [see Eq. (27)]. In Fig. 6, τD scaled by d2
0 /D0

is shown as a function of α. Similar to Dapp, the diffusion
characteristic time τD interpolates between the two limits
mentioned above, where the crossover occurs around α ∼ 1.
The decrease of τD as a function of α, seen in Fig. 6, is
attributed to two effects. First, as α increases, the colloid
is more localized due to electrostatic forces and explores a
smaller region, and second, its average diffusion coefficient,
being further away from the walls, becomes larger.

E. Dependence of α on electrostatic properties

So far we have seen that the dynamics are determined by
the value of α. Substituting the value of K derived in Eq. (7),
we obtain

α =
(

2πad2
0

ε0εkBT

)
2σcσw cosh(κDd0) + σ 2

c + σ 2
w

sinh2(κDd0)
. (34)

In an experimental setup, α can be controlled by changing
the ionic strength (salt concentration, n), and consequently the
Debye length, λD ∼ 1/

√
n. The dependence of α on λD = κ−1

D
is plotted in Fig. 7, for reasonable colloid and solvent param-

FIG. 7. The natural logarithm of the dimensionless parameter
α = Kd2

0 /kBT , where K is given by Eq. (7), as a function of the
screening length, λD, on a logarithmic scale. The system parameters
are L = 5 μm, σc = 0.003e/nm2, T = 300 K, and ε = 80. Blue lines
are for d0 = 500 nm (a = 2.0 μm), and red lines are for d0 = 100 nm
(a = 2.4 μm). Solid lines are for uncharged walls, σw = 0, dashed
lines are for walls with surface charge density, σw = σc, and dot-
dashed line are for σw = 10σc.

eters. As expected, α is large for large screening length and
decreases towards zero as λD decreases.

As we have shown, α = 1 signifies the crossover from a
PCCD dominated motion to an electrostatically dominated
one. For the range of parameters in Fig. 7, this crossover
occurs roughly when λD ∼ d0/10. The screening length that
corresponds to the crossover increases with d0, and for a fixed
σc (σw), it decreases as σw (σc) increases.

V. SUMMARY AND DISCUSSION

We studied the dynamics of a charged colloid under
restricted confinement of two charged surfaces. The combi-
nation of electrostatic and hydrodynamic forces exerted by
the walls result in a unique behavior. This behavior can be
quantified in terms of a dimensionless parameter α in Eq. (31)
that determines the interplay between the electrostatic interac-
tion and the position-dependent drag force. The parameter α

is also given by Eq. (34), showing how the colloid motion,
including its short-time behavior, Eq. (30), and long-time
behavior (Figs. 5 and 6), depends on the geometry and elec-
trostatic properties. In particular, α can be tuned by changing
the screening length (Fig. 7) that is usually an easily con-
trolled parameter in experiments. At small screening length
(small α), the colloid moves slower than at larger screening
length (large α). In addition, as λD is increased the colloid
explores a smaller region in space throughout its motion. The
two effects lead to a decrease in the diffusion characteristic
time, τD, as λD is increased.

We note that the harmonic approximation of the interac-
tion potential allows us to obtain analytical results. If we
use the full interaction potential, Eq. (4), in the dynamical
equation, we could not have expressed it in terms of a single
parameter, α, as in Eq. (32). This harmonic approximation
underestimates the strength of the interaction potential near
the walls. However, as long as d0 is of the order of the screen-
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ing length, or smaller, the approximation is valid except for the
regime very close to the wall where the interaction potential U
diverges. This small region near the walls does not affect the
MSD that integrates the motion throughout the entire space.
Moreover, the divergence of U close to the wall is unphysical
because at such close proximity the DH theory, Eq. (1), is no
longer valid. For d0 � λD, the following limiting expression
should be used instead:

U (x) ≈ 2Qσw

ε0εκ
2
Da

e−κDd0 cosh(κDx). (35)

However, as in this limit the interaction potential is very small
and can be ignored, there is no substantial difference in the
MSD between the exact and approximated potentials.

We also note that, in our analysis, the effect of the ionic
cloud on the diffusion coefficient of the charged colloid was
neglected. In the free medium, the effect of the ionic cloud
was calculated and turned out to be very small (of only a few
percent) [25,26]. Since in a restricting confinement this effect
was not fully investigated [18,32], it is not considered here for
simplicity.

Although the above-mentioned calculations are approx-
imated, we expect our results to qualitatively describe the
Brownian motion of a charged colloid between confining
charged walls. This should be tested in future experiments that
will focus on very restricted confinement, as considered here.
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APPENDIX A: DERIVATION OF EQ. (4)

In the large sphere limit, the force acting on the colloid
from the right wall is independent of that acting from the left
wall, and vice versa. For each side, the force on the colloid is
approximated by the Derjaguin approximation [22]

F (d ) ≈ 2πa
∫ ∞

d
dl �(l ), (A1)

where � is the force per unit area exerted on the colloid, if the
colloid is considered as flat rather than spherical, and d is the
distance between the colloid and the wall (d = d� for the left
wall and d = dr for the right wall).

The electrostatic potential in the Derjaguin approximation
can be calculated in a straightforward way. As it was per-
formed multiple times for other geometries and boundary

conditions [22], we describe it only briefly here. Since the
two sides of the colloid are decoupled, we start by solv-
ing the DH equation in Eq. (1) for a single wall, while
assuming that the colloid is flat (a → ∞). Denoting the dis-
tance from the left wall, without loss of generality, by ξ ,
the boundary conditions are dψ/dξ |ξ=0 = −σw/(ε0ε) and
dψ/dξ |ξ=d = σc/(ε0ε). Then the solution is

ψ (ξ ; d ) = σw cosh [κD(d − ξ )] + σc cosh(κDξ )

εε0κD sinh (κDd )
. (A2)

The DH approximation is valid when the electrostatic
potential on the wall (ξ = 0) and on the colloid surface
(ξ = d) is small compared to kBT/e [23]. This is satisfied
when σc, σw � e/(�BλD) and σc, σw � ed/(lBλ2

D), where
�B = e2/(4πε0εkBT ) is the Bjerrum length. When the col-
loid gets very close to the wall, d → 0, the above Derjaguin
approximation fails. However, as discussed in Sec. V, this
regime does not affect our results.

One can show that the force per unit area, �(d ), is inde-
pendent of ξ and equals to [23,24]

�(d ) = εε0

2

[−ψ ′2(ξ ; d ) + κ2
Dψ2(ξ ; d )

]

= −2σcσw cosh (κDd ) + σ 2
c + σ 2

w

2εε0 sinh2 (κDd )
, (A3)

where ψ ′ = dψ/dξ . Substituting Eq. (A3) into Eq. (A1), we
obtain the force between the colloid and one surface. Inte-
grating the force, we further get the interaction potential U1

with a single wall, U1(d ) = − ∫ d
δ

dh F (h) where the lower
cutoff δ is an arbitrary distance. The total interaction poten-
tial of the colloid, when taking into account the two walls,
is U (x) = U1(d0 + x) + U1(d0 − x). After some algebra, we
obtain

U (x) = πa

εε0κ
2
D

[
2σcσw ln

(
cosh(κDd0) + cosh(κDx)

cosh(κDd0) − cosh(κDx)

)

+ (
σ 2

c + σ 2
w

)
ln

(
cosh(2κDd0)

cosh(2κDd0) − cosh(2κDx)

)]
.

(A4)

We note that since U (x) is constructed from integrating �

twice, the effective spring constant K = U ′′|x=0 [see Eq. (6)]
can be directly obtained from �,

K = 4πa�(d0). (A5)

APPENDIX B: CHARGED WALLS WITH FIXED SURFACE
ELECTROSTATIC POTENTIAL

Assuming that the walls have a fixed surface electro-
static potential, V , we repeat the calculation of Appendix A
and Sec. II.

For the space between the left wall and the colloid,
the boundary conditions are ψ |ξ=0 = V and dψ/dξ |ξ=d =
σc/(ε0ε). The solution to Eq. (1) is

ψ (ξ ) = V ε0εκD cosh [κD(d − ξ )] + σc sinh (κDξ )

εε0κD cosh (κDd )
, (B1)
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and following a similar calculation as done in Appendix A, the total interaction potential is

U (x) = πa

εε0κ
2
D

{[
(V ε0εκD)2 − σ 2

c

]
ln (cosh[κD(d0 + x)] cosh[κD(d0 − x)])

− 4σcV εε0κD

[
tan−1

(
tanh

κD(d0 + x)

2

)
+ tan−1

(
tanh

κD(d0 − x)

2

)]}
. (B2)

Qualitatively, the behavior of U when varying V is similar to
its behavior in Sec. II. The stability condition is

δ > e−κDd0 or δ < −eκDd0 , (B3)

where δ = V ε0εκD/σc. Unlike Sec. II, here the stability con-
dition does not coincide with the condition that the walls repel
the colloid at the midplane. The latter condition is

δ >
1

eκDd0 + √
1 + e2κDd0

or δ <
1

eκDd0 − √
1 + e2κDd0

.

(B4)

If the stability condition of Eq. (B3) is satisfied, we can
approximate the interaction potential around x = 0, to be U ≈
Kx2/2, with the effective spring constant

K =
(

2πa

εε0

)
2σcV εε0κD sinh(κDd0) + (V εε0κD)2 − σ 2

c

cosh2(κDd0)
.

(B5)

As shown in Sec. IV D, the value of K determines the type of
colloid diffusion. For a fixed σc, K grows as V is increased,
and decays to zero for κDd0 � 1.

[1] P. S. Burada, P. Hänggi, F. Marchesoni, G. Schmid, and P.
Talkner, Chem. Phys. Chem. 10, 45 (2009).

[2] R. Phillips, J. Kondev, J. Theriot, and H. Garcia, Physical
Biology of the Cell (Garland Science, London, 2012).

[3] T. M. Squires and S. R. Quake, Rev. Mod. Phys. 77, 977 (2005).
[4] M. Krishnan, N. Mojarad, P. Kukura, and V. Sandoghdar,

Nature (London) 467, 692 (2010).
[5] F. Ruggeri and M. Krishnan, Phys. Rev. E 96, 062406 (2017).
[6] H. Brenner, Chem. Eng. Sci. 16, 242 (1961).
[7] A. J. Goldman, R. G. Cox, and H. Brenner, Chem. Eng. Sci. 22,

637 (1967).
[8] P. Ganatos, S. Weinbaum, and R. Pfeffer, J. Fluid Mech. 99, 739

(1980).
[9] P. Ganatos, R. Pfeffer, and S. Weinbaum, J. Fluid Mech. 99, 755

(1980).
[10] K. H. Lan, N. Ostrowsky, and D. Sornette, Phys. Rev. Lett. 57,

17 (1986).
[11] L. Lobry and N. Ostrowsky, Phys. Rev. B 53, 12050 (1996).
[12] M. Hosoda, K. Sakai, and K. Takagi, Phys. Rev. E 58, 6275

(1998).
[13] M. A. Bevan and D. C. Prieve, J. Chem. Phys. 113, 1228

(2000).
[14] P. Lançon, G. Batrouni, L. Lobry, and N. Ostrowsky, Physica A

304, 65 (2002).
[15] E. R. Dufresne, D. Altman, and D. G. Grier, Europhys. Lett. 53,

264 (2001).
[16] P. Huang and K. S. Breuer, Phys. Rev. E 76, 046307

(2007).
[17] G. M. Kepler and S. Fraden, Langmuir 10, 2501 (1994).

[18] S. L. Eichmann, S. G. Anekal, and M. A. Bevan, Langmuir 24,
714 (2008).

[19] S. Fringes, F. Holzner, and A. W. Knoll, Beilstein J.
Nanotechnol. 9, 301 (2018).

[20] M. I. M. Feitosa and O. N. Mesquita, Phys. Rev. A 44, 6677
(1991).

[21] N. A. Frej and D. C. Prieve, J. Chem. Phys. 98, 7552 (1993).
[22] J. Israelachvili, Intermolecular and Surface Forces, 3rd ed.

(Academic, New York, 2011).
[23] T. Markovich, D. Andelman, and R. Podgornik, in Handbook

of Lipid Membranes: Molecular, Functional, and Materials
Aspects, edited by C. Safinya and J. Raedler (CRC Press, Taylor
& Francis Group, 2021), Chap. 6.

[24] V. A. Parsegian and D. Gingell, Biophys. J. 12, 1192 (1972).
[25] H. Ohshima, T. W. Healy, L. R. White, and R. W. O’Brien, J.

Chem. Soc., Faraday Trans. 2 80, 1299 (1984).
[26] G. A. Schumacher and T. G. M. van de Ven, Faraday Discuss.

83, 75 (1987).
[27] L. P. Faucheux and A. J. Libchaber, Phys. Rev. E 49, 5158

(1994).
[28] T. Benesch, S. Yiacoumi, and C. Tsouris, Phys. Rev. E 68,

021401 (2003).
[29] B. Lin, J. Yu, and S. A. Rice, Phys. Rev. E 62, 3909 (2000).
[30] A. W. C. Lau and T. C. Lubensky, Phys. Rev. E 76, 011123

(2007).
[31] H. Risken, The Fokker-Planck Equation (Springer, Berlin,

Heidelberg, 1996).
[32] B. Chun and A. J. C. Ladd, J. Colloid Interface Sci. 274, 687

(2004).

042607-9

https://doi.org/10.1002/cphc.200800526
https://doi.org/10.1103/RevModPhys.77.977
https://doi.org/10.1038/nature09404
https://doi.org/10.1103/PhysRevE.96.062406
https://doi.org/10.1016/0009-2509(61)80035-3
https://doi.org/10.1016/0009-2509(67)80047-2
https://doi.org/10.1017/S0022112080000870
https://doi.org/10.1017/S0022112080000882
https://doi.org/10.1103/PhysRevLett.57.17
https://doi.org/10.1103/PhysRevB.53.12050
https://doi.org/10.1103/PhysRevE.58.6275
https://doi.org/10.1063/1.481900
https://doi.org/10.1016/S0378-4371(01)00510-6
https://doi.org/10.1209/epl/i2001-00147-6
https://doi.org/10.1103/PhysRevE.76.046307
https://doi.org/10.1021/la00020a003
https://doi.org/10.1021/la702571z
https://doi.org/10.3762/bjnano.9.30
https://doi.org/10.1103/PhysRevA.44.6677
https://doi.org/10.1063/1.464695
https://doi.org/10.1016/S0006-3495(72)86155-1
https://doi.org/10.1039/f29848001299
https://doi.org/10.1039/dc9878300075
https://doi.org/10.1103/PhysRevE.49.5158
https://doi.org/10.1103/PhysRevE.68.021401
https://doi.org/10.1103/PhysRevE.62.3909
https://doi.org/10.1103/PhysRevE.76.011123
https://doi.org/10.1016/j.jcis.2004.03.066

