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Adsorption trajectories of nonspherical particles at liquid interfaces
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The adsorption of colloidal particles at liquid interfaces is of great importance scientifically and industrially,
but the dynamics of the adsorption process is still poorly understood. In this paper we use a Langevin model
to study the adsorption dynamics of ellipsoidal colloids at a liquid interface. Interfacial deformations are
included by coupling our Langevin dynamics to a finite element model while transient contact line pinning
due to nanoscale defects on the particle surface is encoded into our model by renormalizing particle friction
coefficients and using dynamic contact angles relevant to the adsorption timescale. Our simple model reproduces
the monotonic variation of particle orientation with time that is observed experimentally and is also able to
quantitatively model the adsorption dynamics for some experimental ellipsoidal systems but not others. However,
even for the latter case, our model accurately captures the adsorption trajectory (i.e., particle orientation versus
height) of the particles. Our study clarifies the subtle interplay between capillary, viscous, and contact line forces
in determining the wetting dynamics of micron-scale objects, allowing us to design more efficient assembly
processes for complex particles at liquid interfaces.
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I. INTRODUCTION

The adsorption of colloidal particles at liquid interfaces is
of great importance for a wide range of applications including
emulsification [1], encapsulation [2], food and pharmaceu-
ticals [3], nanostructured materials [4], and reconfigurable
materials [5]. At a more fundamental level, it has also opened
the door for the creation of exotic new states of matter such as
liquid marbles [6], bijels [7,8] and “dry” water [9]. Since the
pioneering work of Pieranski [10], the equilibrium behavior
of particles at liquid interfaces has been well understood:
the huge reduction in free energy upon particle adsorption
(typically millions of kT for micron-scale particles) provides
a very strong driving force for adsorption, while the final
equilibrium height of spherical particles relative to the liquid
interface is determined by the equilibrium contact angle.

In contrast to the equilibrium situation, the dynamics of
the adsorption of micron-scale colloids at liquid interfaces is
much less understood. Intuitively, given the large driving force
for adsorption, one would expect the adsorption process to be
very fast. It was therefore a great surprise when Kaz et al.
[11] found that, after initially breaching the liquid interface,
spherical colloidal particles relax toward their equilibrium
position at a rate that is orders of magnitude slower than what
is predicted by models based on viscous dissipation [12–14].
However, they found that the logarithmically slow wetting
dynamics could be explained if one accounts for the transient
pinning of the three phase contact line at nanoscale defects on
the colloid surface [15,16]. Subsequent studies have shown
that the transient pinning and depinning of the contact line

also dominates other dynamic processes of colloids at liquid
interfaces, for example, leading to anomalously slow in-plane
Brownian diffusion [17].

The seminal work of Kaz et al. on spherical colloids has
recently been extended to ellipsoidal particles by Wang et al.
[18] and Coertjens et al. [19], and very slow adsorption dy-
namics were also found in this case. However, the adsorption
kinetics of ellipsoids is more complicated because, in addi-
tion to particle height relative to the interface, there is the
additional adsorption coordinate of particle orientation, and
the final equilibrium state is where the particle is oriented
horizontally along the interface [20]. Both experimental stud-
ies above found that particle orientation varies monotonically
with time during particle relaxation towards equilibrium, in
sharp contrast with current viscous-based models which pre-
dict a nonmonotonic variation of particle orientation with
time [21,22]. The qualitative difference between theory and
experiment has led Wang et al. to propose that contact line
pinning controls not only the adsorption timescale, but also
the adsorption trajectory (i.e., how particle orientation varies
with particle height) of nonspherical particles [18].

However, it is important to note that the viscous model
used by de Graaf et al. [21] did not take into account a
number of important effects. First, the ratio of the transla-
tional to rotational friction coefficients used in the model was
physically unrealistic [21]. In addition, the model neglects
the deformation of the liquid meniscus around the adsorb-
ing particle though these deformations are almost certainly
significant for particle adsorption in the low capillary num-
ber regime [20,23–26]. It is therefore important to develop a
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theoretical model which incorporates these effects before we
can accurately assess the role played by different driving
forces (capillary, viscous, contact line pinning, etc.) in deter-
mining the adsorption trajectory of nonspherical particles at
liquid interfaces.

In principle, the particle-based simulations in Refs. [22,27]
can meet some of these requirements, but it is not possible
for current simulations to achieve the very long timescales
required to access the low capillary and Reynolds number
regimes that are relevant to the experiments. Alternatively,
Wang et al. [18] have developed a contact line hopping model
[11,15,16] that is able to accurately model their experimental
data for the adsorption dynamics of ellipsoids. However, in
order to make their calculations tractable, the authors have
made the simplifying assumption that the liquid interface re-
mains flat during particle adsorption. While this assumption
appears to be reasonable for their experimental system (see
Ref. [18] and our discussion later), it is not physically realistic
in general as discussed earlier [20,23–26]. However, due to
the complexity of the model, it is difficult to incorporate
interfacial deformations within the framework of the contact
line hopping model.

The aim of this paper is to address these challenges using
a Langevin model for particle adsorption which incorporates
interfacial deformation, the correct ratio for particle friction
coefficients, and contact line pinning. Specifically, interfa-
cial deformations are included by coupling our Langevin
dynamics to a finite element model [28–30] while contact line
pinning is encoded into our model by renormalizing particle
friction coefficients [17] and using the dynamic contact an-
gle relevant to the timescale of the adsorption process [11].
Surprisingly, this simple model is able to reproduce much
of the reported experimental phenomenology. For example,
our model reproduces the monotonic variation of particle
orientation with time. Specifically, we were able to obtain
this behavior by accurately modeling interfacial deformation
and particle friction coefficients without the need to explicitly
invoke depinning dynamics of the contact line. Our model
is also able to quantitatively model the adsorption dynamics
(i.e., individual adsorption coordinates versus time) observed
by Coertjens et al. [19] but not by Wang et al. [18]. However,
even in the latter case, we are able to accurately capture the
adsorption trajectory (i.e., particle orientation versus particle
height) of the system.

Our model clarifies the different roles played by capillary,
viscous, and contact line forces in determining the wetting
dynamics of micron-scale objects. Furthermore, since the final
equilibrium state of anisotropic particles at the liquid interface
is controlled by their adsorption trajectory rather than by the
dynamics of the individual adsorption coordinate, our model
can be used as a predictive tool for designing efficient assem-
bly processes for complex particles at liquid interfaces.

II. THEORETICAL MODEL

We consider a prolate ellipsoidal particle adsorbing at a
liquid interface, with long and short axis a, b respectively and
aspect ratio m = a/b (see Fig. 1). Following experiments, we
refer to the top and bottom liquid phases as oil and water,
respectively. The configuration of the ellipsoid at any instant

FIG. 1. Variables characterizing the configuration of an ellipsoid
adsorbing at a liquid interface.

during adsorption is described by the generalized coordinates
h and φ, where h is the distance of the particle center from
the undeformed liquid interface and φ is the angle between
the particle long axis and the flat interface normal. The par-
ticle height when it first contacts the liquid interface is given
by hc(φ) = b

√
m2 cos2 φ + sin2 φ [31] so that h = +hc,−hc

corresponds to the particle touching the interface from the oil
and water side, respectively.

For micron-sized particles where gravity is negligible, the
free energy of the system is given by [21,28,29]

F = γowSow + γosSos + γwsSws, (1)

where γow, γos, γws are the interfacial tensions and Sow,
Sos, Sws are the areas of the oil-water, particle-oil, and
particle-water interfaces, respectively. Using Young’s equa-
tion γow cos θw = γos − γws where θw is the contact angle
of the oil-water interface at the particle surface, noting that
Sos = Sp − Sws (where Sp is the total area of the particle) and
dropping irrelevant constant terms, we can simplify Eq. (1) to

F = γowSow + γow cos θwSos. (2)

Note that we neglect line tension in the above free energies
as we have checked that it has a negligible effect on adsorp-
tion dynamics for experimentally measured values of the line
tension for micron-sized ellipsoids [32]. This observation is
also consistent with what other authors have found for micron-
sized objects [27].

The interfacial areas and hence particle free energy de-
pends sensitively on the boundary condition at the three
phase contact line. We consider two limiting cases, first,
where the liquid interface remains flat, second, where it is de-
formed due to the constant contact angle requirement [28,29].
The free energy in both cases is calculated using the finite
element package Surface Evolver [28–30]. Specifically, the
value of F (h, φ) is calculated on a 101 × 37 nonequidistant
grid for h ∈ [−hc, hc] and φ ∈ [0, π/2]; the data on this grid
are then interpolated with a third-order interpolation scheme
to yield the full free energy landscape.

The adsorption trajectory is found by solving the Langevin
equation for the particle at the liquid interface. In the low
Reynolds number regime where inertial forces are negligible,
this is given by the coupled differential equations

λ
dh

dt
= − ∂

∂h
F (h, φ), (3)

μ
dφ

dt
= − ∂

∂φ
F (h, φ), (4)
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where λ, μ are the translational and rotational friction coef-
ficient of the ellipsoid, respectively. The left- and right-hand
sides of the above equations are the frictional and capillary
forces, respectively, associated with translational [Eq. (3)] and
rotational [Eq. (4)] motion. Note that since we are considering
particles at liquid interfaces, λ and μ will include contribu-
tions from both viscous forces due to the bulk phases as well
as contact line forces from the interface [17]. Note also that
we have neglected random forces in the above equations since
they are subdominant compared to capillary forces at a liquid
interface.

In the general case, the friction coefficients λ and μ are
functions of h and φ due to the asymmetry in the viscosity of
the bulk phases and the anisotropy of the particle. However, as
we shall see later, the frictional forces in the experimental sys-
tems are dominated by contact line forces rather than viscous
forces. To a first approximation, we can therefore assume that
both λ and μ are independent of h, i.e., the degree to which
the particle is immersed in each of the two phases. We also
note that the translational friction coefficient along the long
and short axes of the ellipsoid differ by at most a factor of
2 in a viscous-based model [21,33]. To a first approximation,
we will therefore also assume that λ and φ are independent
of φ. Note that we have included the φ dependence of λ

explicitly in our Langevin model [33] and found that this leads
to adsorption trajectories which are essentially the same as
what we obtain for constant λ.

Assuming λ,μ are independent of h, φ therefore, we can
rescale Eqs. (3) and (4) to

dh∗

dt∗ = − ∂

∂h∗ F ∗(h∗, φ∗), (5)

dφ∗

dt∗ = − ∂

∂φ∗ F ∗(h∗, φ∗), (6)

or more compactly to

d�η(t∗)/dt∗ = −�∇F ∗(h∗, φ∗). (7)

In the above equations, h∗ ≡ h/α, t∗ = t/β, φ∗ = φ/π , F ∗ =
F/γowb2 are scaled variables, α, β are scale factors that will be
discussed in a moment, �η(t∗) = (h∗(t∗), φ∗(t∗)) is the dynam-
ical state vector of the particle at any given moment in time,
and �∇ = ( ∂

∂h∗ ,
∂

∂φ∗ ) is the grad operator in (h∗, φ∗) coordinate
space. Equation (7) tells us that the adsorption trajectories for
the particle are remarkably simple in our simplified Langevin
dynamics, i.e., they follow the path of steepest descent in the
free energy landscape F ∗(h∗, φ∗) [21].

The dynamic scale factors α and β depend on the friction
coefficient ratio μ/λ. In Ref. [21], de Graaf et al. chose α =√

a2 + 2b2, β = a2+2b2

γowb2 λ, which corresponds to μ

λ
= a2+2b2

π2 ;
we call this choice of scale factors Scaling 1. However, these
authors point out that this choice is unphysical for a viscous-
based model because it does not yield the sphere value μ

λ
=

4b2

3 for m = 1 [21]. To overcome this problem, we also con-

sider the scale factors α = 2π
3

√
a2 + 2b2 and β = 4π (a2+2b2 )

9γowb2 λ,

which corresponds to μ

λ
= 4(a2+2b2 )

9 ; we call this choice of
scale factors Scaling 2.

III. RESULTS AND DISCUSSIONS

To study the impact of different contact line boundary
conditions and dynamic scaling on adsorption kinetics, in
Figs. 2(a)–2(c) we show the adsorption trajectories calculated
from our Langevin model for the simple case of neutrally
wetting ellipsoids (θw = 90◦) with m = 2 for a flat liquid in-
terface and Scaling 1 [Fig. 2(a)], a flat interface and Scaling 2
[Fig. 2(b)], and a deformed interface and Scaling 2 [Fig. 2(c)].
Regardless of the initial angle of the particle, we see that all
adsorption trajectories that start from particle contact with the
liquid interface [left (right) red curve corresponds to contact
from the water (oil) side] end at the equilibrium state (h =
0, φ = π/2) where the ellipsoid lies flat along the interface.
However, assuming a flat liquid interface leads to trajectories
that are nonmonotonic in φ [Figs. 2(a) and 2(b)] while as-
suming a deformed liquid interface leads to trajectories are
monotonic in φ [Fig. 2(c)].

This qualitative change in the variation of φ is due to the
fact that different contact line boundary conditions lead to
very different free energy landscapes as shown in Fig. 2(d)
(flat interface) and Fig. 2(e) (deformed interface). Recall
that we are in the low capillary number regime where the
adsorption is essentially a quasistatic process, i.e., particle
adsorption is slow enough for the liquid interface to be in
equilibrium with the configuration of the ellipsoid at each
stage of the adsorption process. This means that when the
liquid interface can deform, immediately after the particle
breaches the liquid interface at h = ±hc(φ), the ellipsoid is
attached to the liquid interface (effectively instantaneously on
particle adsorption timescales) in order to satisfy the constant
contact angle condition [Fig. 2(e) left]. In this case, the free
energy of the system at h = ±hc(φ) strongly depends on φ;
for example, the horizontal state of the ellipsoid (φ = π/2)
has lower free energy compared to the vertical state (φ = 0)
since the former excludes more liquid interface compared to
the latter. In contrast, when the liquid interface is flat, the
ellipsoid is essentially detached from the liquid interface for
h = ±hc(φ) [Fig. 2(d) left] and the free energy of the system
at h = ±hc(φ) is independent of φ. The flat interface assump-
tion thus effectively raises up the corners of the landscape
at φ = π/2, causing the steepest descent paths to initially
decrease in φ. The nonmonotonic trajectories in Figs. 2(a) and
2(b) are therefore an artifact of the flat interface assumption,
and such trajectories are either strongly suppressed or disap-
pear altogether when we relax this assumption.

We next compare our theoretical model with the experi-
ments of Coertjens et al. for fluorescent polystyrene ellipsoids
with m ≈ 4 at an oil-water interface [19]. The appropriate
contact angle θw we should use for this system is a delicate
question since the contact angle evolves slowly with time
due to physical aging of the contact line [32]. To account
for this effect, we use as our effective contact angle the
dynamic (rather than equilibrium) contact angle that is rele-
vant to the timescale of the adsorption process. Specifically,
since adsorption occurs on the ∼0.3 s timescale in this case,
and the dependence of θw on particle stretching is weak [32],
we use the contact angle measured for equivalent fluorescent
polystyrene spheres on a similar timescale which is θw ≈ 90◦
[32]. Note that strictly speaking, one should also account
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FIG. 2. (a)–(c) Adsorption trajectories in the (h, φ) plane (black lines) for ellipsoids with contact angle θw = 90◦, aspect ratio m = 2 for
(a) flat interface and Scaling 1; (b) flat interface and Scaling 2; (c) deformed interface and Scaling 2. The trajectories are superposed on
contour plots of free energy landscapes, and the red curves bounding the landscape correspond to particles touching the interface from the oil
side [h = +hc(φ)] or water side [h = −hc(φ)]. For illustrative purposes, we show trajectories starting from either the oil or water side with
initial particle angles φ0 = 22.5◦, 45◦, 67.5◦. (d), (e) Free energy landscape represented as a three-dimensional plot of free energy vs h/hc

and φ and system configuration at h = −hc for ellipsoids in the vertical or horizontal orientation for (d) flat interface case and (e) deformed
interface case.

for differences in advancing and receding angles around the
contact line during particle adsorption [18]. However, as we
are seeking a minimal model to capture the essential features
of the experimental system, we have neglected this difference
to a first approximation.

Note that due to limitations of their high-speed confocal
microscopy method, Coertjens et al. were able only to mea-
sure φ as a function of time [19]. In Fig. 3 we compare
all three models discussed above with a linear-log plot of
the φ versus t data of Coertjens et al. for an initial parti-
cle angle of φ0 ≈ 30◦. We use β as our fitting parameter
to fit the drop in the data away from φ = 90◦. We see that
quantitative agreement with the experimental data is obtained
using the deformed interface and Scaling 2 model (black solid
curve) but not for the flat interface models, suggesting that the
interface is deformed rather than flat during particle adsorp-
tion. Note that in Fig. 3 the experimental relaxation data for φ

are clearly nonlogarithmic.

FIG. 3. Linear-log plot of φ vs t comparing our three theoretical
models for ellipsoids with m = 4, θw = 90◦ with the experimental
data of Coertjens et al. [19].

Using the fitted value of β for the black curve (β = 16 s)
and assuming γow = 50 mN m−1 yields λ = 10−2 kg s−1. It
is instructive to compare this value for λ with that due to
the bulk fluid viscosity. For prolate ellipsoids with m > 2,
the rotational friction coefficient due to the viscosity of the
surrounding medium η can be approximated by [33,34]

μ = 16πηa3

3[2 ln(2m) − 1]
. (8)

Combining the above equation with the ratio μ

λ
= 4(a2+2b2 )

9
assumed in Scaling 2, the translational friction coefficient is
given by

λ = 12πηa3

(a2 + 2b2)[2 ln(2m) − 1]
. (9)

For the experimental system of Coertjens et al. [19], η =
20 mPa s, a = 1200 nm, b = 300 nm, and m = 4. Inserting
these values into Eq. (9), we obtain λ = 2.5 × 10−7 kg s−1,
which is more than four orders of magnitude smaller than the
value obtained from fitting the experiments in Fig. 3. This
huge discrepancy between the viscous model and experiment
suggests that the adsorption dynamics in these experiments
is not controlled by viscous forces but (as we shall see in
a moment) by contact line forces. The good fit between our
Langevin model and experiment suggests that for this system,
we can quantitatively model the effect of contact line pinning
by renormalizing the friction coefficient of the particle, sim-
ilar to what was found by Boniello et al. for the in-plane
diffusion coefficient of particles at a liquid interface [17].
Note that the renormalization of friction coefficients due to
contact line pinning is not merely a phenomenological fitting
exercise. Instead, a microscopic basis for this procedure has
been provided by Boniello et al. who explicitly showed that
taking into account the thermally activated fluctuations of the
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contact line via the fluctuation-dissipation theorem leads to
significant enhancements of particle friction coefficients [17].

Adapting their approach to our problem, the contribution
from contact line fluctuations to the translational friction co-
efficient is given by the fluctuation-dissipation theorem as [35]

λ = 1

2kBT
〈 f (0)2〉τc, (10)

where kBT is the thermal energy, f (0) is the instantaneous
surface tension force exerted by the liquid interface on a triple-
line segment of length �D between neighboring nanoscale
surface defects, and τc is the correlation time of the fluctua-
tions. The random nature of the fluctuations allows us to write
the mean squared force as

〈 f (0)2〉 ≈ n(γow�D)2, (11)

where n = 2π [(a2 + 2b2)/3]1/2/�D is the number of uncor-
related triple-line segments around the ellipsoid. On the other
hand, the correlation time due to the thermally activated jumps
of the contact line has the Arrhenius-like form [36]

τc ≈ ηVm

kBT
exp

[
�2

Dγow(1 + cos θw )

kBT

]
, (12)

where Vm ≈ 3 × 10−29 m3 is the molecular volume of water.
Substituting Eqs. (11) and (12) into Eq. (10), we obtain

an expression for the friction coefficient λ involving only
one fitting parameter, namely, the distance between surface
nanoscale defects �D. Using the value λ = 10−2 kg s−1 ob-
tained from fitting the experimental data in Fig. 3 and the
experimental parameters for Ref. [19] discussed above, we ob-
tain �D ≈ 0.9 nm. This nanometric value for �D is physically
reasonable and provides support that contact line pinning is
indeed what gives rise to the significantly enhanced value for
the friction coefficient.

We next compare our theoretical model with the exper-
iments of Wang et al. [18] for polystyrene ellipsoids with
m ≈ 2.6 [37] at an oil-water interface. The adsorption process
for this system is much faster, occurring on the ∼0.03 s
timescale. Once again, for θw we use the dynamic contact an-
gle measured for an equivalent sphere on this timescale, which
is θw ≈ 45◦ [11]. The digital holography technique used by
Wang et al. is capable of measuring both φ and h as a function
of time, allowing us to compare theory and experiment for
both the dynamics of the individual coordinates (i.e., φ or
h versus t) and the adsorption trajectory (i.e., φ versus h);
the latter representation of the data is particularly useful as
it allows us to perform a parameter-free comparison between
theory and experiment.

In Figs. 4(a) and 4(b) we compare all three models dis-
cussed above with linear-log plots of the experimental data
for the average value of φ versus t [Fig. 4(a)] and h versus
t [Fig. 4(b)]. We note that, in contrast to Fig. 3, the experi-
mental dynamics of the individual adsorption coordinates are
logarithmic. We also note that none of the three theoretical
models can reproduce the experimental data in Fig. 4, even if
we renormalize the friction coefficients to account for contact
line pinning. The discrepancy between theory and experiment
is perhaps not surprising since, as pointed out in Refs. [11,18],
it is not possible for a Langevin model where dissipative

FIG. 4. Comparison of our three theoretical models for ellipsoids
with m = 2.6, θw = 45◦ with the experimental data of Wang et al.
[18] for (a) linear-log plot of φ vs t ; (b) linear-log plot of h vs t ; (c)
φ vs h.

forces are parameterized by a handful of friction coefficients
to generate the hierarchy of timescales required for logarith-
mic dynamics. However, the discrepancy between theory and
experiment seen in Fig. 4 also highlights the fact that the
contact line dynamics in the experiments of Wang et al. [18]
is qualitatively different from that of Coertjens et al. [19]
(Fig. 3). We will discuss possible reasons for this difference
at the end of this section.

However, while the theoretical models are not able to cap-
ture the dynamics of the individual adsorption coordinates,
in Fig. 4(c) we see that they are able to capture adsorption
trajectory (i.e., φ versus h plot) of the experimental system
surprisingly well. In particular, all three models are able to
reproduce the essentially linear relationship between φ and
h found experimentally with no fitting parameters. It is also
interesting that apart from small discrepancies in the early
stage dynamics, all three models predict very similar adsorp-
tion trajectories.

We believe that the similarity between the flat and de-
formed interface models (with Scaling 2) in Fig. 4(c) is due
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FIG. 5. Interfacial deformation calculated from Surface Evolver
for an ellipsoid with m = 2.6, φ = π/2, h = −hc for contact angle
(a) θw = 45◦ and (b) θw = 90◦.

to the fact that the interfacial deformation during particle
adsorption is small when we are far from the neutrally wet-
ting regime (recall that the effective contact angle relevant
to the experiments in Ref. [18] is θw ≈ 45◦). This is illus-
trated in Fig. 5 where we show the deformed liquid interface
around an ellipsoid with m = 2.6, φ = π/2, h = −hc for
contact angle θw = 45◦ [Fig. 5(a)] and θw = 90◦ [Fig. 5(b)].
We see that deformation of the liquid interface for θw =
45◦ is much smaller compared to θw = 90◦ [average height
of contact line is −0.289b and −0.734b in Figs. 5(a) and
5(b), respectively]. The small interfacial deformation far from
the neutrally wetting regime may also explain why the flat
interface approximation works so well in modeling the ex-
perimental data of Wang et al. [18]. However, we emphasize
that the flat interface approximation is not accurate in general.
Specifically, close to the neutrally wetting condition, signif-

icant discrepancies emerge between the flat and deformed
interface models (see Fig. 3).

The similarity between the Scaling 1 and Scaling 2 models
(with flat interface) in Fig. 4(c) is most likely due to the
fact that far from the neutrally wetting regime, all particle
adsorption flow lines converge onto a “dynamical attractor”
after the initial stages of the adsorption [21]. This is illustrated
in Figs. 6(a)–6(c) where we clearly see the emergence of an
attractor in the adsorption flow lines for all three models. The
attractor is formally defined as the locus of points in the free
energy landscape F ∗(h∗, φ∗) where one of the eigenvectors of
the Hessian matrix �∇ �∇T F ∗ (the one with positive eigenvalue
or principal curvature) is parallel to the gradient of the free
energy [21] and the resultant attractor is in general sensitive
to the dynamic scaling assumed. However, far from the neu-
trally wetting regime, the free energy landscape develops a
narrow valley [see Figs. 6(a)–6(c)], and since attractors are
constrained to be in the vicinity of this valley, the attractors ef-
fectively become insensitive to the dynamic scaling used. This
point is illustrated in Fig. 6(d) where we see that the attractors
from all three models essentially the same. This explains why
apart from small discrepancies in the early stage dynamics,
the Scaling 1 and Scaling 2 models with flat interface (and
indeed Scaling 2 model with deformed interface) predict very
similar adsorption trajectories in Fig. 4(c).

The fact that far from the neutrally wetting regime, dy-
namic attractors are essentially determined by the geometry
of the free energy landscape rather than the dynamic scaling
model may also explain why in Fig. 4(c) all three theoretical
models are able to capture the main features of the experi-

FIG. 6. (a)–(c) Adsorption trajectories in the (h, φ) plane, h < 0 (black lines), for ellipsoids with contact angle θw = 45◦, aspect ratio
m = 2.6 for (a) flat interface and Scaling 1; (b) flat interface and Scaling 2; (c) deformed interface and Scaling 2. The trajectories are superposed
on contour plots of free energy landscapes, and the red curve bounding the landscape corresponds to particles touching the interface from the
water side. Note that in (a)–(c), the adsorption trajectories converge onto dynamical attractors which roughly lie along the valley of the free
energy landscape. (d) Comparison of dynamical attractors from (a)–(c) with the experimental adsorption trajectories for polystyrene ellipsoids
from Wang et al. [18].
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mental adsorption trajectory even though they cannot capture
the dynamics of the individual adsorption coordinates. This
point is evidenced in Fig. 6(d) where we see that, after the
initial stages of the adsorption, the experimental adsorption
trajectory (data points) largely coincides with the dynamic
attractors of all three models (lines).

Another reason why our theoretical models are able to
capture the adsorption trajectory in Fig. 4(c) even though they
cannot capture the time dependence of the individual adsorp-
tion coordinates may be because the coupling between φ and h
in our Langevin model comes from the capillary forces alone,
and these forces depend only on particle configuration and are
independent of the frictional forces [see Eqs. (3) and (4)]. This
means that these models may still be able to capture the cou-
pling between φ and h accurately even if they do not correctly
capture the frictional forces resisting particle adsorption.

Finally, we note that the experimental trajectory deviates
from the theoretical models in the late stages of the adsorption
in Figs. 4(c) and 6(d). This deviation is most likely due to
the fact that when the experimental system is close to the
equilibrium tilt angle of φ = 90◦, the capillary force driving
particle adsorption becomes too small to overcome contact
line pinning so that the ellipsoid becomes kinetically arrested
and therefore cannot reach the equilibrium tilt angle [11].

Before leaving this section, we return to the interesting
question about why the contact line dynamics seen in the
experiments of Wang et al. [18] are so different from that of
Coertjens et al. [19]. To frame this discussion in a broader
context, it is interesting that contact line dynamics can be
modeled by renormalizing friction coefficients in some sys-
tems, e.g., Refs. [17,19], but not others, e.g., Refs. [11,18].
We speculate that this difference could be due to large dif-
ferences in the nanoscale surface defect density between the
two sets of systems, which in turn lead to very different con-
tact line dynamics. For example, for the polystyrene spheres
at the air-water interface studied in Ref. [17], the area per
defect was determined to be A = �D ≈ 0.2 nm2, while for
the polystyrene spheres at the oil/water interface studied in
Ref. [11], the area per defect was determined to be in the range
A ≈ 5–30 nm2. Interestingly, for the polystryrene ellipsoids
studied in Ref. [19], from the data in Fig. 3 we determined a
rather small area per defect of A = �D ≈ 0.8 nm2, consistent
with our speculation above.

In order to test this hypothesis, in the Appendix we use
the contact line hopping model of Kaz et al. [11] to calculate
the contact line dynamics (i.e., particle height versus time)
for the two spherical particle systems discussed above. In
Fig. 7(a) we show the linear-log plot of the normalized height
of the sphere z̄ versus the normalized time t̄ for sulphate ter-
minated polystyrene spheres at an oil-water interface studied
by Kaz et al. [11] which have A ≈ 5 nm2 (see the Appendix
for further details). We see that the relatively large value of
A in this case leads to an essentially logarithmic time depen-
dence for particle height. On the other hand, in Fig. 7(b) we
show the linear-log plot of z̄ versus t̄ for sulphate or amidine
terminated polystyrene spheres at an air-water interface stud-
ied by Boniello et al. [17] which have A ≈ 0.18 nm2 (again
see Appendix for further details). We see that the relatively
small value of A in this case leads to a nonlogarithmic time
dependence for particle height.

FIG. 7. Linear-log plot of normalized height z̄ vs normalized
time t̄ for microspheres adsorbing at a liquid interface calculated
from contact-line hopping model for experimental parameters from
systems studied by (a) Kaz et al. [11] and (b) Boniello et al. [17].

Note that contact line pinning may arise from nanoscale
surface features due to chemical [11], topological [32], or
charge [38,39] heterogeneities. This means that small differ-
ences in surface chemistry or sample preparation protocols
may lead to large differences in contact line dynamics, even
between systems which are nominally similar. Regardless of
the exact microscopic origin for the different contact line
dynamics, what seems clear from comparing the different
experimental data on interfacial colloid dynamics is that while
contact line pinning always leads to slower wetting dynamics,
the logarithmic time dependence may not be universal but may
be system dependent. This may explain why contact line dy-
namics can be modeled by renormalizing friction coefficients
in some systems but not others.

IV. CONCLUSIONS

In summary, we have developed a simple Langevin model
which accurately captures the deformation of the liquid
meniscus and uses the correct ratio for the translational and
rotational particle friction coefficients. The effect of contact
line pinning is incorporated into the model by renormalizing
particle friction coefficients and using the appropriate dy-
namic contact angle. Using this simple model, we were able
to reproduce the monotonic variation of particle orientation
with time that is observed experimentally. Specifically, we
were able to obtain this behavior by accurately modeling
interfacial deformation and particle friction coefficients with-
out the need to explicitly invoke depinning dynamics of the
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FIG. 8. Variables used in the model of Kaz et al. [11] to charac-
terize the configuration of a sphere adsorbing at a liquid interface.

contact line. We were also able to quantitatively model the
adsorption dynamics of the individual adsorption coordinates
(i.e., adsorption coordinate versus time) for some experimen-
tal ellipsoidal systems but not others. However, even for the
latter case, our model was able to accurately capture the ad-
sorption trajectory (i.e., particle orientation versus height) of
the particles.

Our model clarifies the different roles played by capillary,
viscous and contact line forces in determining the wetting
dynamics of micronscale objects. Note that since the final
equilibrium state of the anisotropic particle is controlled by its
adsorption trajectory rather than by the adsorption dynamics
of the individual coordinates, our theoretical model can be
used as a predictive tool for designing and controlling the as-
sembly of complex particles at liquid interfaces, and for future
work we plan to use it to study the adsorption of particles with
other nonspherical geometries.
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APPENDIX: ADSORPTION DYNAMICS FROM CONTACT
LINE HOPPING MODEL

In this Appendix, we calculate the adsorption dynamics of
a sphere at a liquid interface using the contact line hopping
model of Kaz et al. [11]. The configuration of a sphere of
radius R at any instant during adsorption can be described
by the height of the particle apex above the liquid interface z

(see Fig. 8). Assuming the liquid interface remains flat during
particle adsorption, z is related to the dynamic contact angle
θD by

z = R(1 − cos θD). (A1)

Using the contact line hopping model of Blake et al. [15],
Kaz et al. [11] derived the following equation of motion for z:

Rż =
√

z(2R − z)V0e−U/kT +γ A(cos θD−cos θE )/2kT , (A2)

where ż is the z velocity of the particle, kT is the thermal
energy, V0 is the molecular hopping speed, U is the energy bar-
rier to molecular hopping at the contact line due to nanoscale
surface defects on the colloid, A is the area per surface de-
fect, γ is the surface tension of the liquid interface, and θE

is the equilibrium contact angle. Substituting Eq. (A1) into
Eq. (A2), we can replace θD with z to get

Rż =
√

z(2R − z)V0 exp

[
− U

kT
+ γ A

2kT

(zE − z)

R

]
, (A3)

where zE = R(1 − cos θE ). Finally, using scaled variables
z̄ = z/R, t̄ = t/τ where τ−1 = V0

R exp (− U
kT ), we can write

Eq. (A3) more compactly as

dz̄

dt̄
=

√
z̄(2 − z̄) exp [a(z̄E − z̄)], (A4)

where a = γ A
2kT is the dimensionless area per defect. Eq. (A4)

is a first-order, separable ODE which can be easily solved to
find t̄ as a function of z̄:

t̄ =
∫ z̄

0

dz̄′
√

z̄′(2 − z̄′) exp[a(z̄E − z̄′)]
, (A5)

where the range of z̄ is 0 � z̄ � z̄E .
For the sulphate terminated polystyrene spheres at an oil-

water interface studied by Kaz et al. [11], θE ≈ 110◦, A ≈
5 nm2, γ = 37 mN m−1, and therefore a ≈ 23. In Fig. 7(a)
we show the linear-log plot of z̄ versus t̄ calculated from
Eq. (A5) for these parameters. We see that the relatively large
value of A in this case leads to an essentially logarithmic time
dependence for z̄ (or h). On the other hand, for the sulphate or
amidine terminated polystyrene spheres at an air-water inter-
face studied by Boniello et al. [17], θE ≈ 45◦, A ≈ 0.18 nm2,
γ = 71 mN m−1, and therefore a ≈ 1.6. In Fig. 7(b) we show
the linear-log plot of z̄ versus t̄ calculated from Eq. (A5) for
these parameters. We see that the relatively small value of A
in this case leads to a nonlogarithmic time dependence for z̄
(or h).
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