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One-dimensional colloidal model with dielectric inhomogeneity
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We consider a one-dimensional model allowing analytical derivation of the effective interactions between
two charged colloids. We evaluate exactly the partition function for an electroneutral salt-free suspension with
dielectric jumps at the colloids’ position. We derive a contact relation with the pressure that shows there is
like-charge attraction, whether or not the counterions are confined between the colloids. In contrast to the
homogeneous dielectric case, there is the possibility for the colloids to attract despite the number of counterions
(N) being even. The results are shown to recover the mean-field prediction in the limit N → ∞.
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I. INTRODUCTION

Electrostatic interactions are key to a wealth of phe-
nomena in soft condensed matter: like-charge attraction,
overcharging/charge inversion, self-assembly, electrophore-
sis, etc. [1–6]. Nonetheless, understanding many-body cor-
related interactions from a fundamental point of view is
usually shielded by mathematical complexities that can only
be bypassed with physical insight. Take, for example, one
of the simplest possible settings: two similar charged plates
interacting in the presence of neutralizing counterions. For
high counterion valency and/or large colloidal charge, these
plates can attract each other providing an example of like-
charge attraction. This phenomenon challenges our intuition
of electrostatics; it was reported as early as 1836 in a different
setting, for bare like-charged metallic disks at short distances
[7]. The two previous examples exhibit like-charge attraction
through different mechanisms; bare asymmetric conductors
have dominant local attractive interactions due to charge re-
distribution over the surface [8,9], while the plates attract
under the mediation of correlated counterions, in a strongly
coupled regime [10–12]. This non-mean-field effect [13] has
been confirmed experimentally [14–16] and computationally
[17–21]. While the two phenomena alluded to are ruled by
different mechanisms, both feature short-range attraction, at
variance with the one-dimensional results to be presented in
our study, showing attraction at long distances.

The majority of earlier studies concentrated on systems
with a global homogeneous dielectric medium. However,
while a relevant element in the description of colloidal sys-
tems lies in the dielectric discontinuity between the inside of
the colloidal particles and the solvent medium, exact results
accounting for this effect are scarce [22–27]. The present work
reports exact results in a one-dimensional setting for the pres-
sure and counterion density profile in the presence of dielec-
tric jumps. Inspiration comes from previous studies that used
lower dimensional systems for both colloids [28–32] and elec-
trolytes [33–36] to compute the properties for a homogeneous

dielectric medium. We consider here two symmetric colloids
and N neutralizing counterions, a so-called salt-free system
(no counterions). Unlike in our previous work [37], the under-
lying medium is not a homogeneous dielectric, but it features
a dielectric discontinuity. The considered piecewise linear
dielectric medium changes the interaction potential. At each
colloid’s boundary there is a dielectric discontinuity, as seen
in Fig. 1. Two models are considered: the colloids’ boundary
is either impermeable to the counterions or not. When they are
permeable, the counterions not only populate the interstitial
region between the colloids (0 � x � L in Fig. 1), but also the
colloid’s interior (x � 0 and x � L); see, e.g., Refs. [38–40]
for an analysis of this penetrable model.

It is worth stressing here that one-dimensional models may
shed light on more realistic three-dimensional situations. In-
deed, the equation of state for two like-charged plates with
neutralizing counterions has been shown to coincide, under
conditions of high enough coupling and small separations, to
its one-dimensional counterpart [11,21,41]. This stems from
the fact that when the interplate separation is smaller than the
typical distance between counterions, counterion interactions
become immaterial and the 1D model with N = 1 counterion
subsumes the 3D phenomenology. We will start by investigat-
ing this single counterion case.

The paper is organized as follows. The “pressure,” which in
1D is merely the force, is obtained in Sec. II for both canonical
and isobaric ensembles to examine the possible occurrence of
like-charge attraction. The density profile is then calculated
and a contact condition is established for both impermeable
and permeable colloids. In the former case, the effects of
electrostatic images cancel out and we get the same result
as for the homogeneous dielectric situation, while for the
latter, the dielectric jump modulates the counterion density
and consequently the pressure. In Sec. III, the one-particle
results are generalized for an arbitrary number N of inter-
acting counterions. Finally, we compare in Sec. IV our exact
treatment to the mean-field prediction, which proves to be a
fair approximation even for small N .
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FIG. 1. Sketch of the colloidal suspension with three counteri-
ons (N = 3, shown by the filled disks). The dark rectangles at 0
and L represent the colloidal charges. The dielectric constant is ε2

for 0 < x < L and ε1 elsewhere. The impermeable case (a) forbids
particles from crossing the spatial regions delimited by the colloids’
positions. For example, in sketch (a) the positions x1, x2, and x3 of
the left, center, and right counterion are restricted to the intervals
given by x1 < 0, 0 < x2 < L, and x3 > L, respectively. Instead, the
permeability condition (b) refers to counterions with no restriction
on the positions x1, x2, and x3. In the canonical situation, the distance
L between the two colloids is fixed, while it fluctuates under isobaric
conditions.

II. ONE COUNTERION

In this section, we present the results for a single coun-
terion (N = 1) of charge e. Such a limiting case is far from
experimental reality, where the colloidal charge largely ex-
ceeds the ionic one; it nevertheless offers a useful starting
point. Two colloids, each with charge −e/2, are located at x =
0 and x = L. The dielectric medium is piecewise constant with
ε2 for x ∈ [0, L] and ε1 everywhere else (Fig. 1). We character-
ize the dielectric jump by the parameter � = (ε2 − ε1)/(ε2 +
ε1). This quantity is bounded, with −1 � � � 1. The two di-
electric jumps create an infinite set of image charges, leading
to an electric potential defined in Eqs. (A11) and (A12). Note
that the self-energy terms qq′�L/(1 − �)2ε2 induced by the
image charges will cancel out in the total potential energy due
to electroneutrality, unlike the cases with one discontinuity in
1D or an arbitrary number in 3D. This section first addresses
the impermeable case, and then connects it to its permeable
counterpart. In the former, the counterion is restricted to be
in one of the three spatial regions delimited by the points
where the dielectric medium is discontinuous. On the other
hand, in the permeable situation, the counterion position is
unrestricted. In both cases, we obtain a contact-theorem-like
relation, establishing a connection between the intercolloidal
force, and some contact density.

A. Impermeable colloids

With an impenetrable wall at 0 and L, there are three pos-
sibilities to place the counterion: x < 0, 0 < x < L, or x > L.
Throughout this paper, we will call these the left, middle, and
right regions, respectively. We can then label each configu-
ration by specifying the total number of counterions N , and
the subindexes N� and Nr specify how many counterions are
in the left and right regions, respectively. With this notation,
the potential energy U1 for a colloidal suspension with one
counterion is

U1 = e2

ε2

[
L

4
− LNr

(
1 + �

1 − �

)
+ x(Nr − N�)

(
1 + �

1 − �

)]
. (1)

The previous expression is obtained by adding the potential
interactions V (x, x′) among particles and the self-interaction
terms V (x, x)/2, where V is defined in Appendix A. The coun-
terion density is proportional to the Boltzmann factor of U1,
and the partition functions zN�,Nr (N, L̃,�) for each possible
impermeable system follow as:

z1,0(1, L̃,�) =
(

1 − �

1 + �

)
e−L̃/4 left region, (2a)

z0,0(1, L̃,�) = L̃ e−L̃/4 middle region, (2b)

z0,1(1, L̃,�) =
(

1 − �

1 + �

)
e−L̃/4 right region, (2c)

where x̃ = xβe2/ε2 (β = 1/kBT ) is a dimensionless length.
These partition functions are proportional to their homoge-
neous expressions with � = 0:

zN�,Nr (1, L̃,�) =
(ε1

ε2

)N�+Nr

zN�,Nr (1, L̃, 0), (3)

where ε1/ε2 = (1 − �)/(1 + �). Equation (3) yields the
same pressure as for a system with � = 0, which was shown
in [37] to follow the form of the contact condition [42,43],
where a pressure is written as the sum of a contact density
term, minus a term involving the square of some charge,

ñ(0+) = P̃c + (1/2 − N�)2, (4a)

ñ(0−) =
(ε2

ε1

)
N2

� . (4b)

Here, P̃c = ε2Pc/e2 and ñ = nβe2/ε2 are the rescaled canoni-
cal pressure and particle number density, respectively, and the
discontinuity of the ionic density at x = 0 is a consequence
of the impermeability of the three compartments. Recovering
the contact relation is not a surprise, since it is an exact
result for impermeable charged bodies. Equation (4b) is the
contact theorem in the left region (̃x � 0): this region does
not contribute to the force exerted on the leftmost charge. Be-
sides, the factor ε2/ε1 stems from the dimensionless number
density ñ = ε2n/βe2. The equivalent expressions for ñ(L̃±)
follow from the replacement N� → Nr . The particular case in
which the counterion is between the colloids has been studied
before, and it will be shown to be equivalent to the permeable
situation with � = 1, where the ion cannot escape the central
segment 0 < x < L, due to the strong image charge repulsion.
It can be shown from Eq. (4a) and the expression for ñ(0+)
that follows from (1) and (2) that, independently from L, there
is like-charge attraction. As alluded to in the Introduction,
the phenomenology obtained in 1D with N = 1 counterion is
relevant for the prototypical 3D system of strongly charged
plates neutralized by counterions: the small distance equation
of state takes the very same form in both cases, as discussed in
[41]. In the impermeable case, we conclude that the dielectric
jump is invisible to the pressure, from a cancellation of the
forces exerted by the (in 1D infinite range) image charges.
Each dielectric only affects the distribution of the particles
that occupy it, and the sole contribution to the colloid’s pres-
sure is exclusively through the total charge of the left and right
regions.
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FIG. 2. Number density for a one- (N = 1) counterion system
with permeable colloids at a distance L̃ = 1. The probability of
finding the particle between the colloids is monotonically increasing
with �. By virtue of the contact theorem, the repulsive contribution
to the pressure increases, as does the pressure itself, as seen in Fig. 3.
The limit � = 1 is equivalent to the model studied in [29,31] where
two impermeable colloids interact with counterions sandwiched in
between.

B. Permeable colloids

We now allow the counterion of charge e to lie anywhere
in the line, without positional restriction. Unlike with 3D
Coulomb potential, there is no divergent term when the coun-
terion overlaps with the colloidal (point) charge, due to the
linear nature of the 1D Coulomb potential. This situation is
equivalent to that in three dimensions, when a point ion ap-
proaches a uniformly charged plane. We move on to describe
in detail the equation of state, the contact condition, and the
counterion position fluctuations.

1. Equation of state

Getting physical intuition on the pressure’s behavior re-
quires an understanding of how the counterion number density
n1 is shaped by the dielectric jump. This connection is en-
coded in the contact theorem, but it can also be identified
with the expression obtained through the direct calculation of
the pressure, following from the free energy. In the present
one-particle problem, the ionic density is again given by the
Boltzmann factor of the potential in Eq. (1),

ñ1(̃x, L̃,�) = 1

L̃ + 2
(

1−�
1+�

)
⎧⎨⎩ẽx( 1+�

1−� ), x̃ < 0,

1, 0 < x̃ < L̃,

e(L̃−x̃)( 1+�
1−� ), x̃ > L̃,

(5)

where the continuity of the ionic density is enforced. We
observe the appearance of a decay length (1 − �)/(1 + �) =
ε1/ε2 at each side, quantifying the “leaking” of the ion outside
the central region. Equation (5) shows that for negative dielec-
tric jumps (ε1 > ε2), attractive images drive the counterion to
the exterior regions (left and right). In contrast, when � > 0
the image charges repel the counterion, thus increasing the
middle region density (see Fig. 2). This leads to an increase of
pressure as a function of �.

For a system at constant length (canonical situation),
the permeable and impermeable cases are related through
their partition functions. The former is given by the sum
of all the latter situations: Zc(1, L̃,�) = z1,0(1, L̃,�) +
z0,0(1, L̃,�) + z0,1(1, L̃,�). For N = 1, a direct computation
is tractable, and thus it can be checked by direct integration of
the Boltzmann factor that Zc(1, L̃,�) is the sum of all possible
zN�,Nr (1, L̃,�):

Zc(1, L̃,�) = e−L̃/4

[
L̃ + 2

(
1 − �

1 + �

)]
. (6)

It follows that the canonical pressure P̃c = d ln Zc/dL can be
written as the sum of an attractive and a repulsive term,

P̃c = −1

4
+ 1

L̃ + 2
(

1−�
1+�

) . (7)

The attractive term is the force between two opposite
charges ±e/2 while the repulsive term is the pressure exerted
by a free counterion confined in an effective length Leff =
L̃ + 2ε1/ε2. The counterion density in the middle region is
indeed uniform, for the reason that the electric field acting
there cancels by symmetry. The effective length is the sum
of the colloids’ distance and the decay length alluded to after
Eq. (5). Since there is an L̃-independent term in the effective
length, the pressure remains finite even when the colloids
collapse onto each other (L̃ → 0). The exception is for � = 1,
where the effective length vanishes since the model becomes
effectively impermeable: the counterion cannot escape the
middle region, which leads to a diverging entropic cost for
L → 0 in the canonical fixed-L ensemble, and thus a diverging
pressure. The confinement of the counterion at � = 1 can be
understood in terms of image charge interactions: for � > 0,
the dielectric jump determines the magnitude of the repul-
sive force exerted onto the counterion by the image charges,
which at � = 1 is maximal and strong enough to prevent the
counterion from leaving the middle region. In this sense, the
system becomes effectively impermeable due to the confine-
ment effect of the image charges, and not because the colloids
would preclude the ions from going through. Figure 3 shows
that a region of like-charge attraction always exists regardless
of the dielectric jump. It is given by L̃ > (2 + 6�)/(1 + �).
Remembering the definition of our rescaled lengths, L̃ =
Lβe2/ε2, this criterion is expected: it states that for a fixed
length L, attraction is triggered by decreasing the temperature
T ∝ β−1: like-charge attraction indeed is a strong-coupling
phenomenon, here a low-T feature.

The contact theorem is derived for an impermeable system,
but an equivalent relation can be found for permeable situa-
tions. By replacing the electric field by its statistical average,
we get the contact condition:

P̃c = ñ(0) −
〈(

1
2 − N�

)2
〉
, (8)

where the term in the average is the square of the total charge
in the left region x̃ � 0, including thus the charge −e/2 at
x = 0. The contact theorem yields Eq. (7) when the quantities
ñ(0), 〈N�〉, and 〈N2

� 〉 are replaced by their explicit expressions,
which will be computed in the next section. Therefore, we
can view the (positive) repulsive term in Eq. (8) as given by
the contact number density, which is monotonically increasing
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FIG. 3. Equation of state for the canonical (P̃c) and isobaric (P̃)
ensemble with a permeable colloid and N = 1 counterion. Except
for � = 1, the effective length Leff is nonvanishing and thus keeps the
canonical pressure bounded for any colloid distance, at variance with
the average isobaric length 〈L̃〉 that vanishes as P̃ → ∞. The extreme
dielectric discontinuity with � = 1 indeed makes ionic excursions
in the outer right or left regions energetically too costly. There is
the possibility of like-charge attraction (state points inside the gray
shade) for any given dielectric jump � since both P̃c and P̃ tend to
−1/4 at infinite colloid separation. The reason why P̃c(� = 1) =
P̃(� = −1) is explained in Appendix B.

with �. As previously stated, the attractive term is constant
and given by the force between the colloidal particles. This
force follows from the term −(1/2 − N�)2, which yields −1/4
due to the special feature N� = N2

� of the single counterion
case (N� is indeed either 0 or 1). Note that Eq. (8) when � = 1
coincides with Eq. (4a) because these respective permeable
and impermeable cases have the same density profile: � = 1
precludes counterions excursions outside the central region.

We now turn to the equation of state for the isobaric ensem-
ble. In this ensemble, the number of particles, temperature,
and pressure are fixed. Unlike in the canonical case, the sys-
tem’s length is not fixed; it is allowed to fluctuate in order to
preserve a constant pressure by exchanging length and work
with the barostat (i.e., the piston). Then, instead of using
the system’s length for the equation of state, we compute its
average, which is given by 〈L̃〉 = −∂ ln ZP/∂P̃, where ZP is
the Laplace transform of the canonical partition function:

〈L̃〉 = 2

P̃ + 1/4
− 4(1 − �)

4(1 − �)P̃ + 3 + �
. (9)

The inversion of P̃ as a function of 〈L̃〉 shows that the asymp-
totic value of the pressure at infinite colloid distance is −1/4,
which is the same as the canonical ensemble limit.

2. Fluctuations

It was previously stated that the fluctuations are irrelevant
to understand the pressure for N = 1 because all moments
of the number of left (and right) counterions are the same,
〈Nm

� 〉 = 〈N�〉 for all orders m. However, for N > 1 they will
play a key role, and for the sake of completeness we discuss
fluctuations already for N = 1. The moments 〈Nm

� 〉 can be

computed using the probability of each of the impermeable
configurations: pN�,Nr = zN�,Nr /Z . The average is then defined
as 〈(·)〉 = ∑

N�,Nr
(·)pN�,Nr . In the present case, 〈N�〉 only fea-

tures a contribution from z1,0/Z:

〈N�〉 = 〈N2
� 〉 =

1−�
1+�

L̃ + 2
(

1−�
1+�

) , (10)

so that

〈N2
� 〉

〈N�〉2 = 2 +
(

1 + �

1 − �

)
L̃. (11)

The fluctuations of N� are monotonically increasing in L̃, with
a range given by 2 � 〈N2

� 〉/〈N�〉2 < ∞. For a greater number
of counterions, the behavior is also monotonically increasing,
but unlike for N = 1, 〈N2

� 〉/〈N�〉2 is bounded from above.
We now turn our attention to the compressibility and its re-

lation to the variance of the number of particles, σ 2
N . In a grand

canonical situation, σ 2
N would be related to the compressibility

χT through

kBT χT = L σ 2
N

〈N〉2 . (12)

We should not expect this fluctuation-response connection
to hold in our canonical or isobaric cases; it is nevertheless
instructive to study the quantitative violation of this relation.
First, we compute the variance of the number of inside coun-
terions Nin = N − N� − Nr :

σ 2
Nin

=
(

L̃

L̃ + 2
(

1−�
1+�

))(
2
(

1−�
1+�

)
L̃ + 2

(
1−�
1+�

))
, (13)

where we identify two factors on the right-hand side of the
equation: 〈Nin〉 (left factor) and 〈Nout〉 (where Nout = N� + Nr)
(on the right). We then get σ 2

Nin
= 〈Nin〉 〈Nout〉. Using the ex-

pression for 〈Nin〉, it follows that σ 2
Nin

/ 〈Nin〉 ρin is the total
exterior effective length:

L̃
σ 2

Nin

〈Nin〉2 = 2

(
1 − �

1 + �

)
, (14)

where we have used ρin = 〈Nin〉 /L. To see how this compares
with the direct calculation of the compressibility, we proceed
to compute χ̃−1

c = −L̃∂P̃c/∂L̃:

χ̃c = 4

L̃

(
1 − �

1 + �

)2

+ 4

(
1 − �

1 + �

)
+ L̃. (15)

We identify in the previous equation the compressibility of
the impermeable configuration with N� = Nr = 0, L̃, which is
dominant for large lengths. Quite expectedly, this very term
is recovered with � = 1. The computations for the isobaric
ensemble are analogous:

〈L̃〉
σ 2

PNin

〈Nin〉2
P

= 〈L̃〉
(

1 − �

1 + �

)(
2P̃ + 1

2

)
, (16)
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FIG. 4. Canonical and isobaric compressibilities as a function of
L̃ and 〈L̃〉, respectively, at � = 0. The fluctuation-response connec-
tion given by Eq. (12) (broken lines, one for canonical and one for
isobaric) is clearly violated in both ensembles. The behavior at zero
length is radically different: χ̃c diverges while χ̃P vanishes. Both
ensembles predict unbounded growth with differing rates as L̃ → ∞.

where 〈L̃〉 is given by Eq. (9). The isobaric compressibility
χ̃P = −〈L̃〉−1

∂ 〈L̃〉 /∂P̃ is

χ̃P = 1

P̃ + 1
4

+ 4(1 − �)

4P̃(1 − �) + 3 + �
− 4(1 − �)

4P̃(1 − �) + 5 + �
.

(17)
Just as in the canonical ensemble, the term for the imper-

meable colloid with the counterion in the interstitial region
appears explicitly, 1/(P̃ + 1/4), and it dominates for P̃ →
−1/4. To compare with the canonical ensemble results, we
express the isobaric pressure as a function of 〈L̃〉 and find
that χ̃P vanishes as 〈L̃〉 → 0. This is at variance with the
canonical expression, Eq. (15), which diverges as 1/L̃; see
Fig. 4. This is understood as follows. The isobaric length
of the system requires an infinite pressure to vanish and be
fluctuationless. The corresponding susceptibility, measured
from the response of the mean length to an extra change of
pressure, thus vanishes. On the other hand, at a fixed L̃ close to
0, ∂L̃/∂P̃c approaches its minimum nonvanishing value due to
the decay length term, and thus L̃−1∂L̃/∂P̃c diverges. In other
words, within the canonical description at short separations,
the mean number of counterions in the interior regions is
small, and it does not resist compression, hence the large
compressibility signaled by the divergence of χ̃c. Besides, in
the infinite length limit, both compressibilities show linear be-
havior: lim〈L̃〉→∞ χ̃P/ 〈L̃〉 = (2 + �)/4 and limL̃→∞ χ̃c/L̃ =
1. This illustrates how the ensembles drastically differ when
the thermodynamic limit is not being considered (note that
L̃ → ∞ does not correspond to the thermodynamic limit since
N is set here to 1).

III. N COUNTERIONS

Let us now consider the case of N counterions of charge
e in the same dielectric setting as considered so far, and
colloids with charge −eN/2 each such that electroneutrality

holds. We will compute the equation of state for any N and
show, both from statistical and mechanical arguments, that a
contact condition exists regardless of the permeability of the
colloids. The electrostatic potential energy UN for a colloidal
suspension with N counterions reads

UN = e2L

ε2

[
N2

4
− NNr − 2�N2

r

1 − �

]
+ e2

[
N�∑

i=1

(1 − 2i)
xi

ε1

+
N−Nr∑

i=N�+1

(2i − 1 − N )
xi

ε2
+

N∑
i=N−Nr+1

(2N − 2i + 1)
xi

ε1

]
,

(18)

where the positions are labeled such that x̃1 < · · · < x� <

0 < x�+1 < · · · < xN−Nr < L̃ < xN−Nr+1 < · · · < x̃N , and UN

is computed using the same procedure as outlined for U1 [see
Eq. (1)]. The first N� and last Nr positions are in the left and
right regions, respectively. From the previous equation, the
force felt by particle k is

−∂UN

∂xk
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
e2

ε1
(2k − 1), k � N�,

e2

ε2
(N + 1 − 2k), N� < k � N − Nr,

e2

ε1
(2k − 2N − 1), k > N − Nr .

(19)

Just as in the case � = 0, the force felt by a counterion in
1D depends only on the difference between the total charge on
its right [e(N − k)] and that on its left [e(k − 1)]. However,
due to the factors ε1,2, the forces on the counterions are not
commensurable in general.

A. Impermeable colloids

In this section, we will derive results for an impermeable
colloid with an arbitrary number of counterions, which, as
in the one counterion case, will provide the building blocks
of the partition function in the permeable case. The system
consists of N counterions with a fixed number of particles in
each of the three regions: N�, N − N� − Nr , and Nr in the left,
middle, and right region, respectively. With this convention,
the partition function zN�,Nr (N,�, L̃) is

zN�,Nr =
∫
D

e−ŨN

N∏
k=1

dx̃k, (20)

where ŨN = UNβ and D = {−∞ < x̃1 < · · · < x� < 0 <

x�+1 < · · · < xN−Nr < L̃ < xN−Nr+1 < · · · < x̃N < ∞}. Fol-
lowing a similar procedure to that in previous works
[31,33,37], we find that the partition function is proportional
to the uniform dielectric expression (� = 0):

zN�,Nr (N,�, L̃) =
(

1 − �

1 + �

)N�+Nr

zN�,Nr (N, 0, L̃), (21)

where zN�,Nr (N, 0, L̃) is found in [37]. As stated in Sec. II and
discussed in Appendix D, there is a contact condition for the
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uniform dielectric case, which transposes here into

ñN�,Nr (0+) = P̃c + (N/2 − N�)2, (22a)

ñN�,Nr (0−) =
(ε2

ε1

)
N2

� , (22b)

where the density profile is given by

ñN�,Nr (̃x < 0) = N�!2(1 + �)

(1 − �)

×
N�∑

k=1

N�∑
j=k

2 j(−1)2N�−k− j ( j + k − 1)!e j2 x̃( 1+�
1−� )

(k − 1)!2( j + N�)!( j − k)!(N� − j)!
, (23)

ñN�,Nr (0 < x̃ < L̃) =
(

1+�
1−�

)N+1

zN�,Nr (N,�, L)

N−Nr∑
k=N�+1

k!2

× (N + 1 − k)!2zN�,N+1−k (N,�, x)zk,Nr (N,�, L − x),
(24)

and ñN�,Nr (̃x > L̃) = ñNr ,N�
(L̃ − x̃).

B. Permeable colloids

We generalize next the permeable case introduced in
Sec. II B to an arbitrary number of ions N . The canonical
partition function can be written again in terms of nested
integrals:

Zc(N,�, L̃) =
∫

−∞<x̃1<···<x̃N <∞
e−ŨN

N∏
k=1

dx̃k . (25)

Just as in the one-counterion case, Eq. (25) is the sum over all
the possible configurations of N particles arranged in the three
regions delimited by the colloid’s positions:

Zc(N,�, L̃) =
N∑

N�=0

N−N�∑
Nr=0

zN�,Nr (N,�, L̃), (26)

ZP(N,�, P̃) =
N∑

N�=0

N−N�∑
Nr=0

zPN�,Nr
(N,�, P̃), (27)

where the lowercase partition functions have N� counterions
at x̃ < 0 and Nr at x̃ > L̃. For the isobaric partition function,
we reach a compact expression:

ZP =
⎛⎝	 N

2 
−1∑
n=0

n∑
m=0

+
N∑

n=	 N
2 


N−n∑
m=0

⎞⎠ 2
(

1−�
1+�

)n+m

2δmn (n!m!)2

× �
(
m − N

2 − i
√

P̃
)
�

(
m − N

2 + i
√

P̃
)[(

N
2 − n

)2 + P̃
]
�

(
N
2 − n − i

√
P̃

)
�

(
N
2 − n + i

√
P̃

) ,

(28)

where �(x), 	x
, and �x
 are the gamma, ceiling, and floor
functions, respectively, and the first double sum has poles
of order 2 while the second has simple poles. The canonical

partition function is

Zc(N,�, L̃)

=
	 N

2 
−1∑
k=0

e−( N
2 −k)2L̃

k∑
n=0

n∑
m=0

(anmkL̃ + bnmk )

+
� N

2 
∑
k=0

e−(N/2−k)2L̃
N−k∑

n=	 N
2 


k∑
m=0

cnmk + δ N
2 � N

2 

N
2 −1∑
n=0

n∑
m=0

cnm N
2

+
	 N

2 
−2∑
k=0

e−( N
2 −k)2L̃

	 N
2 
−1∑

n=k+1

k∑
m=0

cnmk, (29)

where the coefficients ai jk , bi jk , and ci jk are found in Ap-
pendix C. Note that the term with the factor δ N

2 � N
2 
 vanishes

for an odd number of counterions.

1. Equation of state

The pressure can be computed from the partition function
or alternatively using the following contact relation (derived
in Appendix D):

P̃c = −N2

4
+ N

∫ 0

−∞
dx ñ(x) + 2�

1 + �
ñ(0). (30)

This expression can be cast in terms of averages taken
over all impermeable configurations each with weight
zN�,Nr (N,�, L̃)/Zc(N,�, L̃):

P̃c(N,�, L̃) = −N2

4
+ N〈N�〉 + 2�

1 − �

〈
N2

�

〉
, (31)

which gives an explicit intuition of the effect of the dielec-
tric jump: The sign of � determines if the third term of
the equation is attractive or repulsive. As already seen in
the one-counterion case, � > 0 creates like-charge images
that increase the intercolloid counterion density. The opposite
behavior is seen with attractive image charges. The symmetry
of the system allows us to deduce limiting cases, as

P̃c(N,�, 0) = N2

4
+ 2�

1 − �

〈
N2

�

〉
, (32a)

P̃c(N,�, L̃) −−−→
L̃→∞

{− 1
4 N odd,

0 N even,
(32b)

through simple arguments. At zero length, the average num-
ber of particles on each side is N/2 by symmetry, which in
Eq. (31) shows that for small separations, the effect of the
dielectric jump is exclusively due to the fluctuation of coun-
terions number. The term 〈N2

� 〉 is straightforward to compute
using the impermeable partition functions, which are given
by zN�,Nr (N,�, 0) = [(1 − �)/(1 + �)]N (Nr!N�!)−2. In the
opposite limit, L → ∞, the system tries to decouple into
two neutral subsystems, one for each colloid. This process
happens successfully for N even, which leads to a vanishing
attraction between the two neutral systems. This mechanism
is frustrated when N is odd, and thus cannot be exactly shared
in two moieties. Then, the colloids are screened by N − 1
counterions, and together with the missing particle (delocal-
ized in the interstitial region) they form an effective system
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FIG. 5. Equation of state for the canonical (symbols) and
isobaric (lines) ensemble with permeable colloids and N = 2 counte-
rions. The pressure vanishes asymptotically for large distances [see
Eqs. (32b) and (33b)], while the zero length pressure depends on
the ensemble and dielectric jump [see Eqs. (32a) and (33a)]. The
possibility for like-charge attraction in a fixed length system exists
for � < −3/5 (plot inside gray shade) with a minimum value of
P̃c = −1/3. Note that the only canonical pressure that diverges at
L̃ = 0 is that for � = 1, as was the case for N = 1.

of charge −e/2, which was already shown to have like-charge
attraction of (rescaled) magnitude −1/4 when L → ∞ [31].
The reason is that at such distances, the pressure becomes
purely electrostatic, and the effective colloid of charge −e/2
on the leftmost region is attracted by the other rightmost effec-
tive colloid of charge −e/2, plus the delocalized ion of charge
e. The net field on the leftmost colloid is thus attractive. These
results are verified through the computation of the pressure
from Eq. (29).

The isobaric pressure diverges as the colloids come close,
which is expected to enforce zero length fluctuations. This
marks a clear distinction between ensembles. In the opposite
limit of infinite distance, the asymptotic behavior is the same
as in the canonical ensemble:

P̃(N,�, 〈L̃〉) −−−−→
〈L̃〉→0

∞, (33a)

P̃(N,�, 〈L̃〉) −−−−→
〈L̃〉→∞

{− 1
4 , N odd,

0, N even.
(33b)

Both the canonical and isobaric ensembles share a dichotomy
of the pressure behavior, depending on the parity of N . In
this sense, the qualitative behavior is summarized for both
ensembles by the cases N = 1 (Fig. 3) and N = 2 (Fig. 5).
Take, for example, N = 3 (Fig. 6): although the equation of
state cannot be quantitatively described by the N = 1 case,
the key features, such as the asymptotic values, the presence
of like-charge attraction, and � dependence, are the same. The
same is true for any even N and N = 2.

2. Counterion density

We have seen that there is an explicit connection between
pressure, density, and average number of particles in each
region. In this section, the counterion density profile is com-

0 5 10 15 20 25 30
−0.5

0

0.5

1

Repulsion
Like-charge attraction

L or L

P
c

or
P

Pc(Δ = 1)

Pc(Δ = 0)

Pc(Δ = −1)
P (Δ = 1)

P (Δ = 0)

P (Δ = −1)

FIG. 6. Equation of state for the canonical (symbols) and
isobaric (lines) ensemble with permeable colloids and N = 3 coun-
terions. Note the coincidental proximity of P̃c(� = 0) and P̃(� =
−1). Yet, while P̃c(� = 0) has a finite value when L̃ = 0, P̃(� =
−1) diverges as 〈L̃〉 → 0.

puted explicitly. Specifically, the density at the dielectric jump
is found to be proportional to the average squared outside
number of counterions. Besides, the aforementioned separa-
tion in effective objects at large separation has an explicit
fingerprint on the density profile.

The density profile ñ(̃x,�, N, L̃) is defined piecewise for
computational convenience just as when N = 1: ñ(x < 0),
ñ(0 < x̃ < L̃), and ñ(̃x > L̃) for the left, middle, and right
regions, respectively. By symmetry, x̃ > L is computed using
ñ(̃x) = ñ(L̃ − x̃). The results are expressed in terms of the
partition functions and density profiles obtained for the case
with a fixed number of counterions per region, which can be
found in [37],

ñ(̃x) =
N∑

N�=0

N−N�∑
Nr=0

zN�,Nr (N,�, L̃)

Z (N,�, L̃)
ñN�,Nr (̃x, N,�, L̃), (34)

where ñN�,Nr is the density profile for an impermeable col-
loid [Eqs. (23) and (24)]. The normalized counterion density
ρ̃ = ñ/N , displayed in Fig. 7, behaves as already observed
with N = 1: �, which is associated with the sign of the
image charges, regulates the population of counterions in each
region, while the dimensionless length determines if the sys-
tem has decoupled into two screened colloids depending on
whether their double layers decouple or not, according to the
parity of N . The situations with N = 1 and 2 turn out to be
emblematic of the odd and even N cases, respectively (see
Figs. 2 and 7).

From Eq. (22b) we know that ñN�,Nr (0−) = (1 + �)/(1 −
�)N2

� and thus ñ(0) is proportional to 〈N2
� 〉. Therefore, the

pressure [Eq. (31)] can be cast either in terms of ñ(0) or
〈N2

� 〉. We can obtain compact results for the infinite length
limit of those two moments. The following expressions are for
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FIG. 7. Normalized counterion density (̃ρ = ñ/N) for permeable
colloids at distances L̃ = 1 (left column) and 10 (right column),
with N = 2 counterions (top row) or 3 counterions (bottom row).
For all cases, the counterions are expelled to the exterior regions
as the dielectric jump � goes to −1, and conversely drawn inside
in the opposite limit � → 1. For large separations, the even case
(b) decouples with a nearly vanishing density at L̃/2. Instead, the
odd case (d) shows an almost constant density in the middle region,
which accounts for the counterion that is shared between the colloids:
this causes colloids to attract each other.

N > 1:

lim
L̃→∞

〈N�〉 =
⎧⎨⎩

∑p
n=0

∑n
m=0

m+n
2 anmp∑p

n=0

∑n
m=0 anmp

, N = 2p + 1,∑p
n=0

∑n
m=0

m+n
2 cnmp∑p

n=0

∑n
m=0 cnmp

, N = 2p,
(35a)

lim
L̃→∞

〈N2
� 〉 =

⎧⎪⎨⎪⎩
∑p

n=0

∑n
m=0

m2+n2

2 anmp∑p
n=0

∑n
m=0 anmp

, N = 2p + 1,

∑p
n=0

∑n
m=0

m2+n2

2 cnmp∑p
n=0

∑n
m=0 cnmp

, N = 2p.
(35b)

When � = 0, the system tries to decouple into two sym-
metric neutral subsystems, succeeding when N is even and
failing otherwise, with each screened colloid having half of
its counterions on each side. This allows us to have a very
good estimate of the average number of left particles 〈N�〉 ≈
�N/2
/2 = p/2 when L̃ → ∞ and N = 2p + 1 or 2p for each
parity case, respectively. In the limiting cases � = 1 we have
〈N�〉 = 0, and in the opposite case � = −1 we get 〈N�〉 = p.
These results are generalized in Table I.

3. Fluctuations

We now proceed to examine the fluctuations of the left side
number of particles, which are the same for the right side.
These fluctuations are an increasing function of � (except for
L̃ = 0, where � is irrelevant). This can be seen in terms of
the positive image charges that drive the counterions close
to the colloid (see the particle densities in Figs. 2 and 7),
which favors the “crossing” of counterions between interior
and exterior regions. The fluctuations 〈N2

� 〉/〈N�〉2 follow from
the previously defined moments for the number of left coun-
terions; see Fig. 8.

TABLE I. Asymptotic behavior of the mean outside particle
number.

N lim
L̃→∞

〈N�〉 lim
L̃→∞

〈N2
� 〉

1 0 0
2 1

2 − �

2
1
2 − �

2

3 2 − 4
3−�

2 − 4
3−�

4 1 + 2�

�2−3
4(1−�)
3−�2

5 6(1−�)
5−�2−2�

6(4−3�)
5−�2−2�

− 3

6 3
2 − 2�

5−3�2 − �

2
3
2 + 6(1−�)

5−3�2 − 3�

2

From the limiting behavior found in Eqs. (35), we can
extract the asymptotic value for L̃ → ∞ [except when N = 1,
which has an oblique asymptote; see Eq. (11)]. Notice that as
the number of counterions increases, the characteristic sepa-
ration length for which the fluctuations reach their terminal
value approaches 0.

IV. WHEN DOES MEAN FIELD APPLY?

We finally address the connection to mean-field re-
sults,where Poisson’s equation ruling the behavior of the mean
electrostatic potential φ(x) is closed by the assumption that
the ionic density is given by the Boltzmann distribution:
nPB(x) = n0 exp(−eβφ), n0 being some normalization con-
stant. This results in the Poisson-Boltzmann equation (PB):

φ′′(x) = −2en0

ε(x)
e−eβφ(x), (36)

where the factor 2 stems from the Poisson equation convention
[44].

We expect this framework to become operational under
conditions of weak electrostatic coupling: with the colloid
charge q being fixed, this is achieved when e → 0, while
of course keeping the electroneutrality constraint satisfied
(Ne = 2q, meaning that N → ∞). The rescaled length used
in previous sections, involving the charge e, becomes inade-
quate and has to be slightly modified. The Poisson-Boltzmann
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6
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N
2

/
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2
(d)Δ = −1
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FIG. 8. Fluctuations for N � 4 counterions and different values
of the � jumps: (a) � = 0.5, (b) � = 0, (c) � = −0.5, and (d) � =
−1. For N > 1, the fluctuations saturate for a large enough L̃.
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FIG. 9. Comparison of the Poisson-Boltzmann P̂PB and exact
pressures for N = 4 and 25. The colloids charge q is fixed and the
counterions charge varies, for the exact calculation, as e = q/2N . In
the limit N → ∞, e → 0 while keeping eN = 2q fixed; mean-field
theory becomes exact. Note that with as few as 25 counterions,
the Poisson-Boltzmann pressure yields good results [panels (b) and
(c)], except for � = −0.99 [panel (a)] where the coupling constant
(41) is very large. The inset zooms the small L̂ values for which
PB is quantitatively and qualitatively off with respect to the exact
calculation. As � approaches −1, more counterions are required
to be in the weak-coupling regime 
in � 1. Note that like-charge
attraction is completely lost in the Poisson-Boltzmann theory [13].

equation is solved piecewise and the solutions are matched
with the continuity of φ and the discontinuity of the electric
field φ′ due to the fixed charges. The pressure PPB follows
from the contact theorem, which, quite remarkably, also holds
within mean-field. Introducing the rescaled pressure P̂PB =
PPB(ε1 + ε2)/(2q2), we get

√
1 − � sec

(
P̂

1
2

PBL̂√
1 + �

)
+ √

1 + � tan

(
P̂

1
2

PBL̂√
1 + �

)
= 1

P̂
1
2

PB

,

(37)

where we have introduced the rescaled length L̂ =
Lβqe/(ε1 + ε2).

For � = 1, we recover the “impermeable” results with
all counterions in the interstitial region, obtained in [31] by
taking the mean-field limit from an exact description; see
also [45]. Besides the pressure, it is interesting to see how
the ionic density within the exact treatment compares with
the mean-field limit. Introducing n̂PB = nPB(ε1 + ε2)/q2β, the
rescaled density profile is

n̂PB(̂x)

P̂PB
=

⎧⎪⎨⎪⎩
sec2

(
(2̂x−L̃)P̂

1
2

PB√
1+�

)
, x̂ ∈ [0, L̃],[

2(̂x−L̂)P̂
1
2

PB√
1−�

+ cos
(

P̂
1
2

PBL̂√
1+�

)]−2
, x̂ �∈ [0, L̃].

(38)
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FIG. 10. Density profile for N = 1, 4, and 25, and L̂ = 1:
comparison of the exact results with the Poisson-Boltzmann approx-
imation, n̂PB. For N = 25 counterions, the mean-field theory yields
a fair approximation. The panels show a range of dielectric jumps:
(a) � = 1, (b) � = 0, (c) � = −0.5, and (d) � = −0.99.

The results for the pressures and the density profiles are
shown in Figs. 9 and 10. They reveal that for as few as N = 4
counterions, the mean-field approach gives a good approxi-
mation to exact results, especially for non-negative dielectric
jumps. To understand why this is happening, we examine the
coupling constants: 
out and 
in for the outside (ε1, left and
right regions) and inner sectors (ε2, middle region), respec-
tively. These quantities follow from comparing the ion-ion
typical interaction energy, discarded at the PB level, to kT :


α = e2aα/εα

kT
α = in, out, (39)

where the numerator is the typical electrostatic work needed
to compress a pair of counterions in the system, and we
take aα = kT εα/(e2 〈Nα〉 /2) as the average counterion sepa-
ration in the region of interest. This length follows from the
quotient of the double-layer length in each region and the
corresponding number of counterions there. The double-layer
length was computed exactly for the impermeable case with
all counterions in between the colloids [31]. Its size is of order
(kT εin/e2)(N − 1)/(N + 1) for any colloid separation L̃, and
therefore N independent whenever N exceeds a few units.
Then, for the impermeable case worked out in [31], the aver-
age length between counterions behaves like kT εin/[e2(N/2)],
where N/2 is the counterions in each double-layer. It can be
checked that this result generalizes to a permeable system
by replacing the corresponding number of counterions for
the double-layer at each region N/2 → 〈Nα〉 /2 and using the
respective dielectric constant.

The exact expressions of 〈Nout〉 and 〈Nin〉 are cumbersome,
but we are only interested in their limiting behavior as � →
±1, corresponding to ε1 � ε2, or to the reverse. These limits
lead to a depletion in a given region (a small 〈Nα〉), which en-
tails the failure of mean-field. We then proceed to estimating
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FIG. 11. Density profile n̂ for N = 25 and L̂ = 2 normalized by
Poisson-Boltzmann solution n̂PB. The colloid positions are marked
by the two vertical dotted lines delimiting the “in” region, and the
horizontal dashed line marks the mean-field behavior. Such a plot is
more appropriate than Fig. 10 to appreciate the mean-field departure
from the exact solution, depending on the region (in or out). Note that
as � decreases and approaches −1, the quotient n̂/̂nPB departs further
and further from unity in the inner region: the Poisson-Boltzmann
solution is then less and less accurate, as embodied in the value of

in [see Eq. (41)].

〈Nα〉 using the results reported in Sec. III B 2. We focus on
large enough L̃.

For 〈Nout〉 we know that as � → −1 it approaches N/2 and
as � → 1 it goes to zero as 〈Nout〉 ∼ (1 − �)/(1 + �) [this
follows from Eq. (35) and 〈Nout〉 = 2 〈N�〉]. We can condense
both behaviors using 〈Nout〉 ∼ N (1 − �)/2. In a similar fash-
ion, 〈Nin〉 ∼ N (1 + �)/2 and thus the coupling constants are
defined as


out = 4

N (1 − �)
, (40)


in = 4

N (1 + �)
. (41)

The weak-coupling regime, defined by 
α � 1 (α =
in, out), is suitable for a mean-field description, when the
discrete nature of counterions can be neglected; for � = 0,
we recover the results reported in [29,31]. This regime is
met when N increases beyond a few units, irrespective of
temperature. The irrelevance of temperature is specific to one-
dimensional systems. In dimensions 2 and 3, increasing T
leads to a decrease of 
, bringing it closer to the mean-field
regime. We see in Figs. 9 and 10 that the Poisson-Boltzmann
theory gives a good approximation of the exact system when
N = 25. There is an exception when � = −1 (Fig. 9) for
which the mean-field pressure vanishes while its exact coun-
terpart has negative values. This is expected due to the term
1/(1 + �) in the coupling parameter; as � approaches −1,
a greater number of counterions is required to be in the
mean-field regime. The effect of � in each region is better
seen in Figs. 11 and 12, where the local density profile n̂(̂x)
with N = 25 is compared to the Poisson-Boltzmann solution
n̂PB(̂x).

0 5 10 15 20 25 30
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0.6

0.8
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Ξout ∼ 0.16

Ξout ∼ 0.08

x

n
/
n

P
B

Δ = 0.9
Δ = 0.0

Δ = −0.9
PB

FIG. 12. Same as Fig. 11, focusing on the right side of the ex-
terior region. Note that as � increases and approaches 1, the mean
field departs further and further from the exact density, as embodied
in Eq. (40).

These deviations are seen to increase in each region ac-
cording to the respective coupling constant. Note that 
α is
inversely proportional to the number of counterions, which is
the same behavior found for an impermeable colloid with all
the counterions in the middle region [29,31].

V. CONCLUSIONS

We have obtained the exact solution for a schematic one-
dimensional colloidal model with an arbitrary number of
counterions in the presence of dielectric discontinuities (see
Fig. 1). The colloids are either impermeable or not to the
counterions. We find that the pressure, which in 1D coincides
with the force, can assume negative values (see Figs. 3 and 5);
there is like-charge attraction in a given domain determined by
the distance between colloidal particles, the dielectric jump,
and the number of counterions. Unlike for a uniform dielectric
medium, the presence of a dielectric discontinuity enables the
possibility for like-charge attraction in a permeable colloid for
any N , regardless of its parity. Additionally, we find a contact-
theorem-like relationship that connects density to pressure.
This allows us to see how the image charges, induced by the
dielectric discontinuity, shape the counterion density through
attraction or repulsion and thus the interaction among col-
loids. Both the pressure (Fig. 9) and density profile (Fig. 10)
are shown to converge toward the mean-field prediction: for a
large number of counterions, the Poisson-Boltzmann equation
is in excellent agreement with the exact theory. This is consis-
tent with the 1D strong-coupling parameter found in previous
works [29,31]: besides the total number of ions, the validity
of mean-field here depends on the dielectric discontinuity, but
not on temperature, at variance with two- or three-dimensional
systems.
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APPENDIX A: POTENTIAL FROM DIELECTRIC IMAGES

In this Appendix, we provide the expression of the 1D
potential V (x, x′), created at x by a charge q at x′; it is a
solution of the Poisson equation [44]. The particle is in a
piecewise linear dielectric medium defined by ε1 and ε2 for
x �∈ [0, L] and x ∈ [0, L], respectively, as seen in Fig. 13. V
can be computed using the method of images as follows.

Consider a charge q at 0 < x′ < L (Fig. 13). This charge
creates a series of images iL

k and iR
k with respect to the left and

right colloids. Their respective positions are xL
k and xR

k :

xL
1 = −x′, xR

1 = 2L − x′,

xL
2 = −(2L − x′), xR

2 = 2L + x′,

xL
3 = −(2L + x′), xR

3 = 4L − x′,

xL
4 = −(4L − x′), xR

4 = 4L + x′,
...

...

Each image creates a potential V α
k (x) = −q�k|x − xα

k |/ε2

(α = L, R) at x ∈ [0, L]. Therefore, the potential created by
the image charges is

∞∑
k=1

(V L
k + V R

k ) = −2Lq

ε2

∞∑
k=1

k�k (A1a)

= − 2Lq�

ε2(1 − �)2
. (A1b)

Finally, the potential for x, x′ ∈ [0, L] is

V (x′, x) = − q

ε2
|x′ − x| +

∞∑
k=1

(V L
k + V R

k ) (A2a)

= − q

ε2
|x′ − x| − 2L�

ε2(1 − �)2
. (A2b)

Now for x < 0, we use a solution to the Poisson equation in
which there is no charge:

V (x < 0, x′) = ax + b. (A3)

The constants a and b are found using the continuity of V and
the displacement field at x = 0. By enforcing these conditions
on Eqs. (A3) and (A2b), it follows that

ε1a = q, (A4)

b = −qx′

ε2
− 2L�

ε2(1 − �)2
, (A5)

and therefore

V (x < 0, x′) = qx

ε1
− qx′

ε2
− 2L�

ε2(1 − �)2
. (A6)

−(2L − x′) −x′ 0 x′ L 2L − x′ x′ + 2L

iL2 iL1 iR1 iR2

FIG. 13. Sketch of the image charge construction to compute the
potential V due to the dielectric discontinuities. The superindexes
L and R are for images generated by reflection upon the left (at
x = 0) or right (at x = L) boundaries, respectively. The subindex
indicates the generation of the image, where 1 is created by the
central counterion itself, and the following generations are created
by the images of the images, etc., in an iterative manner.

The missing x > L case is found using an analog procedure
applied to the continuity at x = L. Finally, the situations with
x′ < 0 and x′ > L can also be found using the symmetry of
the potential:

V (0 < x < L, x′ < 0) = V (x′ < 0, 0 < x < L) (A7a)

= qx′

ε1
− qx

ε2
− 2L�

ε2(1 − �)2
. (A7b)

By solving again the Poisson equation (but now in a region
with charge), we have

V (x < 0, x′ < 0) = −q|x′ − x|
ε1

+ b2 (A8)

and b2 follows from comparing (A7b) and (A8):

qx′

ε1
+ b2 = qx′

ε1
− 2L�

ε2(1 − �)2
(A9)

and finally

V (x < 0, x′ < 0) = −q|x′ − x|
ε1

− 2L�

ε2(1 − �)2
. (A10)

To summarize, the potential created at point x by a charge
q located at x′ is defined piecewise as

V (x, x′ < 0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− q|x−x′|

ε1
− 2Lq�

(1−�)2ε2
, x < 0,

− qx
ε2

+ qx′
ε1

− 2Lq�

(1−�)2ε2
, 0 < x < L,

− qx
ε1

+ qx′
ε1

− 2Lq�2

(1−�)2ε2
, x > L,

(A11)

V (x, 0 < x′ < L) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
qx
ε1

− qx′
ε2

− 2Lq�

(1−�)2ε2
, x < 0,

− q|x−x′|
ε2

− 2Lq�

(1−�)2ε2
, 0 < x < L,

− qx
ε1

+ qx′
ε2

− 2Lq�2

(1−�)2ε2
, x > L.

(A12)

The missing right potential is computed by symmetry using
V (x, x′ > L) = V (L − x, L − x′). An alternative derivation
follows from integrating the transverse degrees of freedom of
the equivalent 3D system (see [46] for a multilayered dielec-
tric medium).

The information conveyed by these relations is that when a
charge q sits at x′, the modulus of the electric field created at
point x is always q/εi if x is in the region with permittivity εi,
while the direction of the force changes depending on whether
x is located on the right or on the left of the source at x′.
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APPENDIX B: OVERLAPPING EQUATIONS OF STATE

This Appendix contains details on the mapping between
the canonical ensemble with � = 1 and the isobaric ensemble
with � = −1, when N = 1. Figure 3 illustrates this corre-
spondence. We have shown in the main text that the equation
of state reads, in both cases,

P̃c = P̃ = 1

L̃
− 1

4
, (B1)

at the expense of a slight abuse of notation (replacing L̃ by
〈L̃〉 in the isobaric case). When � = 1, the counterion is
confined between the colloids, unlike when � = −1, where it
is expelled from the middle region. The confined case can be
understood intuitively: the repulsive term, 1/L̃ in (B1), is the
density of an ideal gas in a box of size L; the counterion indeed
is in a zero-field region. The attractive term is the electric
force exerted on the right colloid by the other colloid and the
counterion.

On the other hand, the case � = −1 features an empty
middle region; the attractive image charges force the coun-
terion to be either on the left or right region. By symmetry,
the two possibilities have the same pressure contribution. To
understand the isobaric result at � = −1, we consider that
the right colloid is now able to fluctuate in position while
the left one is fixed. An external operator exerts a force P
onto the right colloid (with the convention that P > 0 when
pushing the right colloid toward the left one). To compute the
pressure, we can then use the contact theorem (D1) at x = 0
(left colloid position). The attractive field term is −1/4 and the
repulsive kinetic term is given by the right colloid’s contact
density. This density is exponential since the right colloid is
subject to a constant force −1/4 − P̃. Therefore, the suitably
normalized right colloid density profile reads

ñ(̃xCR ) = (
P̃ + 1

4

)
e−(P̃+1/4)̃xR , (B2)

where x̃CR � 0 is the position of the right colloid and 〈L̃〉 is its
average position. The contact theorem then holds trivially:

P̃ = ñ(0) − 1
4 , (B3)

and a byproduct of the argument is that

〈̃xR〉 = 〈L̃〉 = (
P̃ + 1

4

)−1
. (B4)

The isobaric equation of state (B1) is thereby recovered. The
similar form taken by the canonical pressure for (N = 1, � =
1) and isobaric pressure for (N = 1, � = −1) is therefore
coincidental: the kinetic contributions to the pressure stem
from different ionic and colloid profiles.

APPENDIX C: FAMILY OF CONSTANTS

The following coefficients hold for all N :

anmk = 21−δnm
(

1−�
1+�

)m+n[
i
(

N
2 − k

)]−2δ N
2 � N

2 


(m!n!)2(m − k)n−m(k + m − N )n−m

× (2k − N )2

(k + n − N )2
	 N

2 
−n
(n − k)2

k−n�
(	N

2 
 − k
)2 , (C1)

bnmk = 2anmk

N − 2k

(HN−k−m − Hk−m + HN−k−n − Hk−n

2

+H	 N
2 
−k−1 − H� N

2 
−k + δknHk−n −
1 − δ N

2 � N
2 


N
2 − k

)
,

(C2)

cnmk = 21−δnm (m!n!)−2(k + m − N )−1
k−m

(
1−�
1+�

)m+n

(2k − N + 1)N−k−n(m − k)k−m(N − k − n)!
, (C3)

where Hn is the nth harmonic number, (x)n = �(x + n)/�(x)
is the Pochhammer symbol, and (x)2

n = [(x)n]2. The Kro-
necker delta δ N

2 � N
2 
 is used for terms that appear exclusively

when N is even.

APPENDIX D: CONTACT THEOREM: TWO DERIVATIONS

The structure of the partition function and the density pro-
file is given by the sum of all possible values of (N�, Nr ),
such that N� + Nr � N , each with its respective weight given
by zN�,Nr (N,�, L̃)/Z (N,�, L̃). In a similar fashion to that
in Secs. II B and III B, the contact condition for permeable
colloids follows from the impermeable cases. From previous
works (see [37]), we already know the contact theorem for
impermeable colloids:

P̃Nr ,N�
= ñ(0+) − (N/2 − N�)2, (D1)

where P̃Nr ,N�
is the canonical pressure for a system with N�

and Nr counterions in the left and right regions, respectively.
In this Appendix, the indexes regarding the type of ensemble
are omitted since we will discuss exclusively the canonical
functions. By averaging Eq. (D1) over all possible configura-
tions of N counterions with a fixed number of counterions in
the left and right regions, we get a contact condition:

P̃ = ñ(0) − 〈
(N/2 − N�)2

〉
, (D2)

where we have used the fact that density is continuous for the
permeable case and thus ñ(0±) = ñ(0). This expression can be
stated in terms of the average number of counterions by using
the contact theorem for the exterior region in the impermeable
case ñ(0−) = (ε2/ε1)N2

� . Upon averaging, we get

ñ(0) = 1 + �

1 − �

〈
N2

�

〉
, (D3)

where ñ(0−) = ñ(0) was used again. The previous result al-
lows us to express the pressure obtained in Eq. (D2) in terms
of the moments of the total charge in the left region:

P̃ = 1 + �

1 − �

〈
N2

�

〉 −
〈(N

2
− N�

)2〉
, (D4)

which if expanded yields Eq. (31).
Let us now turn to a derivation of a contact relation from a

mechanical approach. We start from the stress tensor compo-
nent Txx, which in 1D is given by [47]

Txx = −kT n(x) + ε(x)

4
E2(x). (D5)

We define the dimensionless stress tensor as T̃̃x̃x = Txxε2/e2,
which in turn will give us a dimensionless force (pressure in
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1D) F̃ = ε2F/e2:

T̃̃x̃x = −ñ(̃x) + ε (̃x)

4ε2
Ẽ2 (̃x), (D6)

where Ẽ = ε2E/e. The force on the colloid is given by F̃ =
T̃̃x̃x(0+) − T̃̃x̃x(0−). Then we take the average, which gives

〈F̃ 〉 =
〈̃
n(0−) − ñ(0+) − 1

4

(ε1

ε2
Ẽ2(0−) − Ẽ2(0+)

)〉
. (D7)

The permeability condition yields 〈̃n(0−)〉 = 〈̃n(0+)〉, leaving
only the electric contributions:

〈F̃ 〉 = 1

4

〈
Ẽ2(0+) − 1 − �

1 + �
Ẽ2(0−)

〉
. (D8)

The fields are Ẽ (0−) = 2N�(1 + �)/(1 − �) and Ẽ (0+) =
(2N� − N ), which leads to

〈F̃ 〉 = −1 + �

1 − �

〈
N2

�

〉 +
〈(N

2
− N�

)2〉
, (D9)

and (D4) is recovered, but for the sign convention (a positive
pressure corresponds to a negative force acting on the leftmost
charge). Note that � = 0 yields a special case in which the

second moment does not contribute to the pressure:

〈F̃ 〉 (� = 0) = N2

4
− N 〈N�〉 . (D10)

We conclude with a note on the similarity in terms of the
functional form of the contact relation presented here, with
one of the few known formulas for a contactlike relation in
the presence of a dielectric discontinuity. Carnie and Chan
([48], Eq. 3.26) derived such an equation for an electrolyte
with planar geometry. Unfortunately, these results are for a
single impenetrable wall/colloid with a dielectric jump at the
interface, for which a counterion solution yields a vanishing
pressure. Remarkably, Eq. 3.26 has the same functional form
as PNr ,N�

, predicted by Eq. (D1). The difference lies in the
density profile formed around the colloid or more precisely at
contact, n(0+): for the single wall n(0+) = ε2E (0+)2/8πkT
unlike the contact density discussed in Sec. III A, which has
a dependence on N�, Nr , and L (explicit expressions found
in [37]). Besides, another difference between our results and
those reported in [48] is in the relevance of the parity of N
(say in the impermeable situation, with all counterions in the
middle region and L → ∞, that is, the closest to the infinite
length geometry worked out in [48]): this is a peculiarity of the
one-dimensional setting, where the colloids may attract with
a finite force even when L → ∞.
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[22] Y. S. Jho, M. Kanduč, A. Naji, R. Podgornik, M. W. Kim, and

P. A. Pincus, Phys. Rev. Lett. 101, 188101 (2008).
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