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Nonlinear statistical mechanics drives intrinsic electrostriction and volumetric
torque in polymer networks
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Statistical mechanics is an important tool for understanding polymer electroelasticity because the elasticity
of polymers is primarily due to entropy. However, a common approach for the statistical mechanics of polymer
chains, the Gaussian chain approximation, misses key physics. By considering the nonlinearities of the problem,
we show a strong coupling between the deformation of a polymer chain and its dielectric response, that is, its net
dipole. When chains with this coupling are cross linked in an elastomer network and an electric field is applied,
the field breaks the symmetry of the elastomer’s elastic properties and, combined with electrostatic torque and
incompressibility, leads to intrinsic electrostriction. Conversely, deformation can break the symmetry of the
dielectric response, leading to volumetric torque and asymmetric actuation. Both phenomena have important
implications for designing high-efficiency soft actuators and soft electroactive materials, and the presence of
mechanisms for volumetric torque, in particular, can be used to develop higher degree of freedom actuators and
to achieve bioinspired locomotion.
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I. INTRODUCTION

Dielectric elastomers (DEs) respond to electric fields with
large deformations and can be used to convert between elec-
trical and mechanical energy. Therefore, DEs are promising
for applications in energy harvesting, biomedical devices, and
soft, biologically inspired robotics [1–13]. The quintessential
example of a DE actuator (DEA) is a thin DE film sandwiched
between two compliant electrodes. When a voltage differ-
ence is applied across the electrodes, the DE polarizes and
compresses across its thickness and, because of the Poisson
effect, expands in the plane of the electrodes (see Fig. 1).
Previously, this deformation has been understood as entirely
a consequence of the Coulomb attraction between the elec-
trodes, which squeezes together the top and bottom of the film
[14–18].

Elastomers consist of thermally fluctuating polymer chains
linked together at various junctions (i.e., cross links). Since
these thermal fluctuations are significant, statistical mechanics
has provided much of our current understanding of poly-
mer elasticity [19,20]. In DEs, the polymers polarize in the
presence of an electric field, and since the dipoles on the
monomers prefer to be aligned with the field, their elec-
trostatic interaction affects how the chains fluctuate (and
vice versa, chain deformation affects the electrostatics). To
consistently capture the electroelasticity of DEs, one must
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consider the electrostatics as part of the statistical mechanics
formulation.

In this work, we begin with a mechanism for polarization at
the monomer scale and then use nonlinear (i.e., non-Gaussian)
statistical mechanics and orientational averaging over chains
(i.e., network modeling) to derive the free energy functional
of DEs, which implies a deformation-dependent susceptibil-
ity. The deformation dependence is such that the polarization
response may be anisotropic, which leads to a rich interplay
between deformation and polarization. We show electrome-
chanical couplings at the continuum scale that cannot be
captured through an isotropic polarization response and/or
the Coulomb effects alone. Specifically, (1) we see significant
intrinsic electrostriction, in that there is significant deforma-
tion beyond that expected by simple Coulombic attraction of
the electrodes, and (2) discover an asymmetric shear mode
of electromechanical actuation driven by volumetric torque
(by “volumetric torque,” we mean a torque per unit volume
[21])—which is a consequence of the deformation breaking
the symmetry of the polarization response. Both phenomena
have important implications for designing high-efficiency soft
actuators and soft electroactive materials. The presence of
mechanisms for volumetric torque, in particular, can be used
to develop high degree of freedom actuators with shear modes
of coupling, bending couplings, shape morphing, etc. Such
actuators could better mimic the range of motion found in bio-
logical organisms and lead to simpler, more robust soft robots.

In previous work, it has been typical to decompose
the stress into mechanical stress, σmech, and electrical (or
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FIG. 1. Dielectric elastomer actuator with dimensions of length
� in the ê1 and ê2 directions and thickness t in the ê3 direction, where
t � �: (a) undeformed configuration and (b) a voltage difference is
applied across the electrodes on the top and bottom surfaces and, as
a result, the actuator contracts across its thickness and expands in the
plane orthogonal.

Maxwell) stress, � [4,13,15–18,22–30]. The stress decompo-
sition is written as

σ = σmech + � = σmech + P(E, F, . . .) ⊗ E + ε0

2
|E|2I,

(1)

where P is the polarization, ε0 is the vacuum permittivity, and
by the notation P = P(E, F, . . .) we mean to emphasize that
the polarization response may be a function of the electric
field, E, the deformation gradient, F, and other state variables.
Citing the isotropic nature of elastomers, it is often assumed
that P(E ) = ε0χE, where χ is a scalar representing the sus-
ceptibility of the material [4,13,15–18,22–30]. However, it has
been observed at the macroscopic scale (both theoretically
and experimentally) that if the susceptibility is a function
of deformation, then an additional stress develops in the di-
electric [29,31–34]. In this work, we predict a polarization
response of the form P(E, F ) = ε0χ(E, F )E, where χ is a
second-order tensor and the direction of the polarization can
vary from being aligned with Ê [35]. It is necessary that χ is
a function of F for capturing the intrinsic electrostriction, and
the anisotropy of χ is necessary for volumetric torque.

Both the intrinsic electrostriction and shear-mode elec-
tromechanical actuations are a consequence of the strong
coupling, at the macromolecular scale, between the chain
deformation and its net dipole. In the context of statistical
mechanics, we model this coupling by working in a fixed
end-to-end vector ensemble. However, we highlight that the
commonly used linear approximation, the Gaussian chain
[36]—that is, modeling the chain as a random walk biased
by the electric field—does not properly capture the coupling
of interest. Physically, biasing the random walk only leads to
a one-way coupling: Monomer dipoles aligning with the field
causes directionality on the chain elasticity, but mechanically
stretching the chain does not change the densities of monomer
directions.

The remainder of the paper is structured as follows:
(1) Section II formulates the extra contribution to the

stress, at the continuum scale, that arises when an elastic
dielectric has a deformation-dependent susceptibility.

(2) Section III develops the nonlinear statistical mechanics
of a dielectric elastomer chain and Sec. IV shows how linear
approaches miss key physics.

(3) Section V describes how orientational averaging is
used to model the relationships between continuum-scale
quantities (i.e., deformation and polarization) and their macro-

molecular counterparts (i.e., end-to-end vectors and net
dipoles of chains within the polymer network).

(4) Sections VI and VII show the intrinsic electrostriction
and shear mode of electromechanical actuation, respectively.

II. STRESS CONTRIBUTION FROM
DEFORMATION-DEPENDENT SUSCEPTIBILITY

Here we use a thermodynamic formulation for elastic di-
electrics to show that an additional contribution to the stress
occurs when the polarization susceptibility depends on defor-
mation gradient, F. For our illustrative system, let the body
of the dielectric be denoted by � and �0 in the current and
reference configurations, respectively. A material point in the
current configuration is denoted by y and in the reference con-
figuration by x. Further, grad, div, and curl are the gradient,
divergence, and curl with respect to y and Grad, Div, and Curl
are the gradient, etc., with respect to x.

The deformation gradient is F = Grad� where � : x �→
y, y = �(x) is the deformation map. The boundary is denoted
by ∂� and ∂�0 in the current and reference configurations,
respectively. The electric field is denoted by E and the elec-
tric potential is ξ such that E = −gradξ . We decompose
contributions to the free energy density such that Wm =
Wm(F ) is a contribution to the free energy density which
is purely mechanical (e.g., some hyperelastic strain energy
density function, such as the neo-Hookean model) and We =
We(F, P̃) is a contribution to the free energy density which
corresponds to separating bound charges when the dielectric
polarizes. Therefore the total Helmholtz free energy of the
system is

	[y, P̃] =
∫

�0

dx(Wm(F ) + We(F, P̃))

+ ε0

2

∫
�

dy E2 +
∫

∂�

dy ξD · n. (2)

where E = |E| and n is the unit normal to ∂�.
For simplicity, we assume that everywhere on the boundary

either ξ is specified or there are no free charges (i.e., D · n =
0). We make the following definitions:

Ẽ = FT E, D̃ = JF−1D, P̃ = JP, (3)

where J = det F, E is the electric field, P is the polarization,
D is the electric displacement, and Ẽ, P̃, and D̃ are their
respective pullbacks to the reference configuration. These def-
initions, together with Maxwell’s equations, imply that

CurlẼ = 0, Ẽ = −Gradξ0,

D̃ = F−1(ε0JF−T Ẽ + P̃), DivD̃ = 0, (4)

where ξ0(x) = ξ (�(x)) [37–41]. Pulling back (2) to the refer-
ence configuration, we obtain

	[y, P̃] =
∫

�0

dx
(
Wm(F ) + We(F, P̃) + ε0

2
E2J

)

+
∫

∂�0

dx ξ0D̃ · N, (5)

where N is the unit normal to ∂�0.
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Optionally, we can enforce incompressibility with a La-
grange multiplier function, ζ = ζ (x). In this case, we search
for conditions in which the functional,

L[y, P̃; ζ ] = 	[y, P̃] −
∫

�0

dx ζ (J − 1), (6)

is stationary with respect to variations.
For the variation of L with respect to y to vanish, we require

that (
∂Wm

∂F
+ ∂We

∂F
+ �̃ − JζF−T

)
N = 0, on ∂�0,

Div

(
∂Wm

∂F
+ ∂We

∂F
+ �̃ − JζF−T

)
= 0, on �0, (7)

where �̃ := E ⊗ D̃ − ε0
2 E2JF−T is the Piola-Maxwell stress

(see Refs. [37,41], for example). We call the tensor

T := ∂Wm

∂F
+ ∂We

∂F
+ �̃ − JζF−T (8)

the total stress tensor and consider its various contributions.
The term ∂Wm/∂F − JζF−T is typically referred to as the
“mechanical stress” [42] and �̃ is considered the electrical
part. The remaining term involves We, which is the con-
tribution to the free energy density which corresponds with
separating bound charges when the dielectric polarizes. For a
linear dielectric,

We = 1

2ε0J
P̃ · χ−1P̃, (9)

where χ is the polarization susceptibility tensor. If the material
is incompressible, i.e., J = 1 = const, and χ is not a function
of F, as is often assumed, then the ∂We/∂F term vanishes.
However, in Sec. V we show that, for dielectric elastomers, χ

is a function of F. Thus, there is an additional contribution to
the total stress which is often not accounted for:

∂We

∂F
= − 1

2ε0J
(P̃ · χ−1P̃)F−T + 1

2ε0J
P̃ · ∂χ−1

∂F
P̃. (10)

This contribution does not vanish even if the material is in-
compressible. It is this stress contribution which leads to the
intrinsic electrostriction in dielectric elastomers.

For completeness, we also note that for the variation of L
with respect to P̃ to vanish, we require that

∂We

∂P̃
= E on �0. (11)

Again, if we consider a linear dielectric, by (9)

J−1P̃ = P = ε0χE, (12)

such that, when χ = χ(F ), the material polarization response,
P, depends on the deformation. We show in Sec. VII that, for
dielectric elastomers, not only does χ depend on F but also
it does so in such a way that P does not necessarily align
with E. When this misalignment occurs, the Maxwell stress

is asymmetric and the dielectric experiences an electrostatic
volumetric torque.

III. STATISTICAL MECHANICS OF A DIELECTRIC
ELASTOMER CHAIN

Following the simplest classical theory [19,43], we ideal-
ize the mechanics of a polymer such that (1) monomers are
rigid, (2) monomers are free to rotate about their neighboring
bonds, and (3) excluded volume effects are neglected. This
means the maximum length of the chain end-to-end vector,
r, is nb, where n is the number of monomers in the chain
and b is the monomer length. Further, in the presence of an
electric field, bound charges on a monomer can be separated
to form an electric dipole, μ. Given that the dipole depends
on the magnitude of the electric field and the orientation of
the monomer, n̂, relative to the direction of the electric field,
we use a simple anisotropic form [44,45]:

μ(n̂, E ) = ε0χμE

= ε0[χ‖n̂ ⊗ n̂ + χ⊥(I − n̂ ⊗ n̂)]E, (13)

where χμ is the dipole susceptibility tensor, χ‖ and χ⊥ are the
dipole susceptibility along n̂ and the susceptibility in plane
orthogonal to n̂, respectively, E is the local electric field, and
ε0 is the vacuum permittivity. We refer to monomers with
χ‖ > χ⊥ as field aligning (FA) and monomers with χ⊥ > χ‖
as field disaligning (FD) [46].

The energy of a single monomer has two contributions:
the energy associated with separating charges and the electric
potential of a dipole in an electric field [47,48]:

u = 1

2ε0
μ · χ−1

μ μ − μ · E = ε0�χ

2
(E · n̂)2 − ε0χ⊥

2
E2,

(14)
where �χ = χ⊥ − χ‖. We assume the monomer energy
is such that u ∼ kT and that the energy of dipole-dipole
interactions are much less than the thermal energy, i.e.,
ε0[E max ({χ‖, χ⊥})]2/b3 � kT [49]. The latter is therefore
neglected.

Next, the free energy corresponding to a constant temper-
ature and constant electric field ensemble [50] of a DE chain
is derived. To this end, we derive the density of monomers
oriented in the direction v̂:

ρ(v̂) = C exp[−κ (Ê · v̂)2 + τ · v̂], (15)

where Ê = E/E , κ = ε0E2�χ/2kT , and the unknowns, C
and τ, are determined by enforcing the normalization and
end-to-end vector constraints

n =
∫
S2

dA ρ(v̂),
r
b

=
∫
S2

dA ρ(v̂)v̂, (16)

and where S2 denotes the unit sphere. In terms of ρ, one can
show that the free energy is approximately [47]

F ≈
∫
S2

dA {ρu + kT ρ ln ρ} − nkT ln n. (17)

There are still two challenges remaining in solving for C
and τ: (1) the integrals in (16) are difficult to evaluate and
(2) the resulting systems of equations are nonlinear. How-
ever, there are two limits in which a solution is tenable. Let
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γ = r/nb denote the absolute chain stretch (where r = |r|
and r̂ = r/r). We derive approximate solutions in the limit
of small stretch (i.e., γ → 0), which we denote as Fsτ , and
near the fully stretched limit (i.e., γ → 1), which we denote
as FKG. In either case, the simplicity of the limit results from
the observation that the Boltzmann term in the exponential of
(15) is invariant with respect to v̂ → −v̂. Because of this sym-
metry, the kinematic constraint in (16) can only be satisfied if
|τ| → 0 as γ → 0 [51] and, since ρ → δ(r̂ − v̂) as γ → 1,
this implies that τ diverges in the direction of the end-to-end
vector (i.e., τ → ∞r̂). In the former limit, we can use a Taylor
expansion of ρ about |τ| = 0 (Sec. IV B). In the latter limit,
we can neglect the Boltzmann factor (Appendix A 1). Then,
using what is known about the limiting behavior, we construct
a free energy approximation:

F = FKG + (1 − γ 2)
(

lim
γ→0

Fsτ − lim
γ→0

FKG
)

= nkT (F̃m(γ ) + F̃e(γ , E ) + F̃o(γ , E, Ê · r̂)), (18)

where

F̃m = γL−1(γ ) + ln

(L−1(γ ) csch [L−1(γ )]

4π

)
,

F̃e = γ κ

L−1(γ )
− κ⊥

+ (1 − γ 2)

[
−κ

3
+ ln

(
2
√

κ√
πerf (

√
κ )

)]
,

F̃o = κ

(
1 − 3γ

L−1(γ )

)
(Ê · r̂)2 (19)

are the (dimensionless) mechanical, electromechanical, and
orientational contributions to the free energy, respectively,
where κ⊥ = ε0E2χ⊥/2kT , and where L−1 is the inverse
Langevin function. Note that, by construction, (18) recovers
the exact solution when κ = 0 [43] and is exact in the limits
of zero stretch and full stretch. This approximation has been
shown to agree well with numerical solutions in general [47].

Given the free energy, one can obtain the net chain dipole,
p, by differentiating with respect to the electric field,

p = −∂F
∂E

=
∫
S2

dA μ(v̂)ρ(v̂), (20)

which, as can be seen from (18), will depend on r. This
dependence of the net chain dipole on the end-to-end vec-
tor is necessary to achieve a continuum-scale theory with a
deformation-dependent and anisotropic susceptibility.

Another feature of the free energy-stretch relationship of
DE chains worth noting is that regardless of the sign or
magnitude of κ , or the direction of chain stretch, numerical
experiments suggest that the F/kT versus γ curve is convex
and its minimum is at zero stretch [47]. This feature—namely
the convexity and free energy minimum at zero stretch—has
important physical implications. It means that an individual
chain will not stretch due to electrical excitation alone, or,
equivalently, chains cannot support loads in compression.
Physically, this can be understood as a consequence of (1)
the symmetry of (14) and (2) the neglect of excluded vol-
ume effects. Indeed, if a monomer’s direction is reversed, its
electrostatic energy does not change. Since there is no energy

penalty associated with large or small bond angles between
neighboring monomers, and excluded volume effects are not
taken into account, the chain is free to fold back on itself.
So in terms of the Boltzmann factor, a longer end-to-end
vector is never any more favorable than a shorter end-to-
end vector. However, in terms of entropy, the shorter end-
to-end vector is more favorable because there are a larger
number of microstates that make up a shorter end-to-end
vector than a longer end-to-end vector. For these reasons,
it can be argued, the free energy versus stretch relationship
for a DE chain should be convex with its minimum at zero
stretch. In instances where this model is a good approxima-
tion of the physical system of interest, we should not expect
that electrically induced deformations occur as a result of
individual chains stretching under electrical excitation alone.
Instead, as outlined previously and to be elaborated on further
in Secs. V–VII, intrinsic electrically induced deformations are
phenomena which can only be understood in the context of a
cross-linked polymer network.

It is likely, however, that when the bending stiffness (i.e.,
energy of rotating monomers about neighboring bonds) or
excluded volume effects are non-negligible, the polymer chain
has a free energy (local) minimum at finite stretch (and per-
haps has multiple minima). Similarly, chains consisting of
monomers with fixed magnitude dipoles (i.e., “frozen in”
dipoles) have an electrically induced compressive stiffness
[52]. These cases could give rise to interesting behavior such
as microbuckling [53], bistability, and phase transitions when
loaded in compression [54,55]. While not relevant to the cur-
rent study, the implications of these effects on electroactive
polymer networks and electromechanical actuation present an
interesting opportunity for future research.

IV. SHORTCOMINGS OF LINEAR APPROXIMATIONS:
GAUSSIAN-CHAIN AND LINEARIZED CONSTRAINT

Before moving on to the next section in which we explore
the continuum-scale implications of the chain-scale results,
we show that neither (1) a Gaussian-chain approximation
[36]—that is, modeling the chain as a random walk biased
by the electric field—nor (2) enforcing the end-to-end vector
constraint to linear order properly captures the strong coupling
between the chain end-to-end vector and net dipole of the
chain.

A. Gaussian chain

The Gaussian-chain approximation is as follows: The prob-
ability of a chain having an end-to-end vector r is taken to be
proportional to the anisotropic Gaussian distribution,

p(r) ∝ (det �)−1/2 exp

(
− 3

2nb
r · �−1r

)
, (21)

where, in the context of liquid crystal elastomers, � is re-
ferred to as the step length tensor [36]. Equation (21) is the
probability of a biased random walk of n steps with step
length b starting at the origin and ending at r, where the
information about the biasing is encoded in �. For dielectric
elastomers, we would base the biasing of the random walk
on the Boltzmann factor for a monomer with orientation n̂.
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Specifically, let e3 = Ê. Then

� = I + diag( f (κ⊥), f (κ⊥), f (κ‖)), (22)

where κ‖ := E2χ‖/2kT , κ⊥ := E2χ⊥/2kT , and f is a mono-
tonically increasing function of its argument that satisfies
f (0) = 0. Note that this is the most general definition of � for
dielectric elastomers which recovers the isotropic nature of
the chain statistics when E = 0 and which is also consistent
with the Boltzmann factor. The next thing that one typically
does is to say that the free energy of a chain is given by [36]

F (r; E ) = −kT log p(r; E ). (23)

From here, however, it is not clear how to obtain the correct
net chain dipole. Consider (20), for example. In this model,
it is no longer the case that −∂F/∂E = ∫

S2 dA μ(v̂)ρ(v̂).
If we wanted to be perfectly consistent with the notion of a
biased random walk, then we would model the probability of
a monomer being oriented in direction v̂ as being given by
ρ(v̂) ∝ exp [−κ (Ê · v̂)

2
] and let p = ∫

S2 dA μ(v̂)ρ(v̂). How-
ever, this would lead to p being completely independent of
r. If instead we choose to model the net chain dipole as p =
−∂F/∂E, then p depends on r, but, it is easy to see from (21),
(22), and (23) that the net chain dipole cannot be misaligned
with the electric field. Hence, there can be no torque at the
chain scale nor volumetric torque at the continuum scale, so
not only is it unclear as to which expression would be more
thermodynamically consistent (and less ad hoc), but regard-
less of which choice one makes, the strong coupling between
the end-to-end vector and net chain dipole cannot be captured
through the Gaussian-chain approximation.

B. Linearized constraint

The linearized constraint approximation is a good approx-
imation as γ → 0 and is exact in this limit (see Sec. 6 of
Ref. [47]). We can obtain an approximate solution to the
unknown multipliers, C and τ, by a Taylor expansion of ρ

about |τ| = 0 to obtain

ρ(v̂) ≈ (1 + τ · v̂) exp[−κ (Ê · v̂)2]. (24)

Substituting (24) into the constraint equations, namely (16),
and integrating gives [56]

n = 2π3/2Cerf (
√

κ )/
√

κ, (25)

r3

b
= πCλ

(√
πerf (

√
κ )

κ3/2
− 2e−κ

κ

)
, (26)

r1

b
= πCα

(√
π (2κ − 1)erf (

√
κ )

2κ3/2
+ e−κ

κ

)
, (27)

where τ = {α, 0, λ}T . Notice that (25)–(27) are linear in the
unknowns and can be readily solved to obtain

C = n
√

κ

2π3/2erf (
√

κ )
, (28)

λ = 2
√

πγ3κeκerf (
√

κ )√
πeκerf (

√
κ ) − 2

√
κ

, (29)

α = 4
√

πγ1κeκerf (
√

κ )√
π (2κ − 1)eκerf (

√
κ ) + 2

√
κ

, (30)

where γ3 = r3/nb and γ1 = r1/nb. Substituting (28), (29), and
(30) into (24) and, subsequently, (20) leads to a p which is
independent of r. Hence, this approximation cannot capture
either the extra stress contribution or an anisotropic polariza-
tion response.

V. ORIENTATIONAL CHAIN AVERAGING AND
CONTINUUM-SCALE ELECTROELASTICITY

In order to relate the continuum mechanics of a DE to
its chain-scale mechanics, we use the affine deformation as-
sumption [19] and chain averaging. At each material point
in the stress-free, E-free state, it is assumed that (1) chains
have their most probable length, b

√
n, and (2) since we expect

isotropy in the absence of stress, the chain orientations are
uniformly distributed. By the affine deformation assumption,
each chain gets mapped from the reference configuration to
the current configuration by the deformation gradient, F, i.e.,
r = F r̃. (A brief discussion of other polymer network models,
their associated kinematic assumptions, and important physi-
cal considerations is given in Appendix A 2.) Finally, the free
energy density is taken to be the product of the average chain
free energy and the number of chains per unit volume, N :

W∗(F, E ) = N〈F (F r̃, E )〉r̃

= N
∫

d r̃
(

δ(|r̃| − b
√

n)

4π

)
F (F r̃, E ), (31)

where N is the number of chains per unit volume and 〈·〉r̃
denotes an average over the distribution of chains [57]. Simi-
larly, the polarization is given by

P(F, E ) = N〈p(F r̃, E )〉r̃ = −∂W∗

∂E
, (32)

i.e., the product of the average net chain dipole and the number
of chains per unit volume.

VI. INTRINSIC ELECTROSTRICTION

Given the non-Gaussian model described above, we now
turn to finding the electrostriction predicted by the model. In
order to isolate the phenomena of interest, we consider a typ-
ical DEA, but with the pressure from the electrodes removed.
This could be done by applying a traction, t0, to the outside
surfaces of the electrodes that is equal and opposite to the
Coulomb attraction and by ensuring the voltage difference is
adjusted to keep the electric field constant when the distance
between the electrodes changes (see Appendix A 3). This is
shown in Fig. 2 [58].

In this case, the change in energy stored in the electric
field (or equivalently, the work of the battery) and the work
of the applied traction will cancel each other out; as a result,
the equilibrium configuration will be the one that minimizes
the (const T, const E) free energy of the DE film. To a good
approximation, E = const × ê3 because t � �. By symmetry,
we assume the DE body undergoes homogeneous deformation
of the form F = diag(1/

√
λE , 1/

√
λE , λE ). Since the defor-

mation and electric field are homogeneous, the free energy
minimization reduces to a local problem, i.e., a (nonlinear)
algebraic equation rather than a differential equation. We use
an adaptive Gauss-Kronrod quadrature for the integration and
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FIG. 2. Electrostriction of a DEA with a fixed bottom surface
and an applied traction, t0, to the top surface of the actuator that is
equal and opposite to the Coulomb attraction (inset). Stretch across
the thickness, λE , as a function of κ = E 2�χ/2kT .

Newton’s method for numerical optimization [59]. The λE

which minimizes the free energy density for various κ is
shown in Fig. 2. The model predicts an electrically induced
deformation of the DE film, even in the absence of pressure
from the top and bottom electrodes. When κ > 0, that is, when
the chain is made up of field-disaligning (FD) monomers,
the film is compressed in the direction of Ê (i.e., λE < 1).
Alternatively, when κ < 0 [chain consists of field-aligning
(FA) monomers], the film actually elongates in the Ê direction
(λE > 1).

We can obtain a closed-form approximation to the elec-
trostrictive deformation by taking a Taylor expansion of the
inverse Langevin function about zero stretch and find

γ /L−1(γ ) = 1

3
− 1

5

γ 2
r

n
+ O(γ 4), (33)

where γr := r/b
√

n is the relative chain stretch [60]. This
provides an approximation for the free energy density:

W∗(F, E )

= NkT

(
n
[
w∗

f (κ ) − κ⊥
] +

[
3

2
+ 2κ

15
− w∗

f (κ )

]〈
γ 2

r

〉
r̃

+ 3κ

5

〈
γ 2

r (Ê · r̂)2〉
r̃ + 〈O(γ 4n)〉r̃

)
, (34)

where

w∗
f (κ ) = ln

(
2
√

κ√
πerf (

√
κ )

)
.

Importantly, although using a linear approach for the statis-
tical mechanics (e.g., Gaussian chain) misses the coupling
between the chain end-to-end vector and net dipole, from
(34) one can see that using a nonlinear statistical mechan-
ics approach and then linearizing the nonliner result do still
capture this coupling; in other words, there are important
differences between linearizing before ensemble averaging
and linearizing after ensemble averaging. Next, the polymer

network orientational averages in (34) can be obtained for any
diagonal F. Indeed, let F = diag(a1, a2, 1/(a1a2)). Then:〈

γ 2
r

〉
r̃ = 1

3

(
a2

1 + a2
2 + a−2

1 a−2
2

)
,〈

γ 2
r (Ê · r̂)2〉

r̃ = 1
3 a−2

1 a−2
2 . (35)

For the intrinsic electrostriction outlined above, a1 = a2 =
1/

√
λE . Substituting (35) into (34) and setting ∂W∗/∂λE = 0,

we arrive at

λ
approx
E =

⎛
⎝ 4κ + 15(3 + ln π ) − 30 ln

( 2
√

κ

erf
√

κ

)
22κ + 15

(
3 + ln π

4

) − 30 ln
( √

κ

erf
√

κ

)
⎞
⎠

1/3

, (36)

which agrees well with Fig. 2. The above approximation sug-
gests that the electrostrictive deformation plateaus as |κ| →
∞. Indeed,

lim
κ→∞ λ

approx
E = (2/11)1/3, lim

κ→−∞ = (13/2)1/3.

Although explained at the continuum scale by a
deformation-dependent susceptibility [31–34], the nature of
this electrostriction at the macromolecular scale has yet to
be illustrated. The physical reasoning is as follows: (1) the
tangent stiffness of a chain depends on its direction of stretch,
(2) chains experience an electrostatic torque (analogous to
a dipole in an applied field) [47], and (3) elastomers are
nearly incompressible [61]. Regardless of its net dipole or
the local electric field, every chain in the network has a min-
imum free energy length of zero, since we have neglected
excluded volume effects for individual chains, and entropy is
maximized in this configuration. Therefore, there is a positive
stretching force in every chain, in all configurations, due to
the incompressibility preventing the material collapsing to a
point. In the absence of electrical loading, all of the chains
in the network have a similar stiffness and tension. Further,
due to incompressibility, shortening chains in one direction
would force elongation of chains in other directions: This
has a net energy increase. However, under electrical stimulus,
the isotropic symmetry of chain stiffnesses is broken such
that a deformation which contracts some chains and stretches
others leads to a net decrease in energy. Specifically, FA
chains are less stiff when aligned with the field direction and
more stiff when orthogonal to the field [47]. This, in part,
explains the observed elongation in the field direction and
contraction orthogonal to it when κ < 0 (vice versa for κ > 0).
The electrostatic torque on each DE chain in the network
is a similar and related contribution. For a chain consisting
of FA monomers, for instance, some of its polarization is in
the direction of its end-to-end vector (i.e., p · r �= 0). As a
result, there is a torque that is forcing the chain to align with
span Ê. It is clear that such rotations of the chains would
lead to an elongation in the Ê direction, which agrees with
Fig. 2. The reasoning is similar for chains consisting of FD
monomers, but instead the torque forces these chains into the
plane orthogonal to Ê causing the film to compress in the Ê
direction.

Although the torque is nonzero for each individual chain,
the average over the distribution vanishes (i.e., 〈p × E〉r̃ = 0).
However, in the next example, we will consider a case in
which the average torque does not vanish and a volumetric
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FIG. 3. Shear-mode actuation of a DEA constrained to only un-
dergo shear deformation (inset). The film is prestressed, with t̃0 =
0.1, 0.5, and 1.0, and then an electric field is applied. Misalign-
ment of the polarization with the field causes an electrostatic shear
stress which increases the deformation for DEs with FD chains (i.e.,
E 2�χ/2kT = κ > 0) and decreases the deformation for elastomers
with FA chains (i.e., κ < 0). The efficiency of the electrically in-
duced deformation increases with t̃0.

torque is present, which gives rise to a shear-mode electrome-
chanical coupling.

VII. SHEAR-MODE ACTUATION

Again, a thin DE film is considered with compliant
electrodes on its top and bottom surfaces [e.g., Fig. 1(a)].
However, here we assume the film is constrained such that
it can only undergo homogeneous simple shear deformation
[62]. We also assume that the electric field is fixed and across
the thickness of the film, which, neglecting fringe effects,
would be realized by applying a voltage difference across the
electrodes. A schematic is shown in Fig. 3 (inset).

For simple shear, the deformation is of the form F =
I + sê1 ⊗ ê3. Let a traction, t0 = {t0 0 0}T , be applied to
the top surface of the film. The energy density of the electric
field is neglected because it does not do work on the DE. By
homogeneity, the free energy is V (W∗ − t0s), where V is the
volume of the body.

Let t̃0 := t0/NkT be the nondimensional applied traction.
Now consider the following experiment: (1) the traction is ap-
plied and is held constant; (2) the traction causes initial shear
deformation, s0; (3) a voltage difference is applied across the
electrodes such that there is electric field, E, in the DE; and (4)
for each E, a shear strain s is observed. The result, as predicted
by the theory, is shown in Fig. 3.

As before with the electrostriction, we can obtain a closed-
form approximation for the shear-mode deformation. For
simple shear,

〈
γ 2

r

〉
r̃ = 1

3 (3 + s2),〈
γ 2

r (Ê · r̂)2
〉
r̃ = 1

3 . (37)

Using (37) in (34) and solving for ∂W∗/∂s − t0 = 0 results in

s ≈ t̃0
4
45κ + 1

3 ln π
4 − 2

3 ln
( √

κ

erf
√

κ

) (38)

and agrees well with Fig. 3.
Figure 3 and (38) show a shear electromechanical cou-

pling. It can be seen that DEs with chains consisting of
FD monomers (�χ > 0) spontaneously increase deforma-
tion with respect to an increasing electric field while DEs
with FA (�χ < 0) chains stiffen with increasing electric field
such that the shear deformation decreases. This can be un-
derstood through the affine deformation assumption. Since
chain end-to-end vectors are mapped under F, the simple
shear deformation serves to reduce average alignment with
the field direction. For chains with FD monomers, this causes
their dipoles to align with the field, which is energentically
favorable, whereas for chains with FA monomers, this reduces
average dipole alignment with the field, which is not energet-
ically favorable.

More precisely, we can explain the shear-mode actuation
in terms of volumeric torques, at the continuum scale, and
chain torque, at the macromolecular scale. Beginning with
the former, consider again the total stress decomposition into
mechanical and electrical parts. While balance of angular
momentum requires that the total stress tensor be symmetric,
the individual contributions need not be. To formulate the
Maxwell stress, we approximate the polarization using the
linearized form of W∗ and (32). The polarization, P, is not
aligned with Ê; indeed, P1 = −2sε0�χE/5, such that the
Maxwell stress is asymmetric for all finite s and E . This asym-
metry causes an electrostatic volumetric torque within the
material—which causes the top surface of the DE film to shear
relative to the bottom. While the Maxwell stress is asymmet-
ric, the balance of angular momentum is satisfied by an equal
and opposite asymmetry of the remaining contributions to the
total stress. Although here the volumetric torque leads to a
shear-mode coupling, we mention that similar field-induced
volumetric torques can also be used for bending couplings and
shape morphing [10,63,64].

In regards to the macromolecular scale, just as in the case
of electrostriction, there is an electrostatic torque on each of
the individual chains in the network. However, in the present
case, the average torque does not vanish, and further, it is
equivalent to the skew part of the Maxwell stress tensor. Since
the Maxwell stress is the sum of a rank 1 tensor and a sym-
metric tensor, we can obtain its skew part by the Levi-Civita
tensor, εi jk :

εi jk

(
PiEj + ε0

2
EmEmδi j

)
êk = 〈p〉r̃ × E

= 〈p × E〉r̃. (39)

The average torque in the ê2 direction is 2sε0�χE2/5, which
is nonvanishing for all finite s and κ and corresponds to �13.

A notable feature of this shear-mode coupling is that it
appears to scale (nearly exactly) linearly with the initial shear
deformation, s0. Indeed, when normalizing the curves of s
in Fig. 3 by s0, the curves collapse onto each other (Fig. 4).
Similarly, the approximate solution given in (38) shows an
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FIG. 4. Shear-mode actuation of a DEA constrained to only
undergo shear deformation. The electromechanical actuation (nor-
malized by the initial deformation) is shown for applied tractions
of t̃0 = 0.1, 0.5, and 1.0. The curves collapse onto each other after
normalization. Thus, the deformation appears to be proportional to
the initial deformation, s0.

exact linear scaling as s ∝ t̃0. This indicates that, for a broad
range of applied tractions, the strength of the electromechan-
ical coupling can be tuned by adjusting the prestress in a
straightforward way. It should be noted, however, that beyond
a certain shear deformation the assumption that the electric
field is constant throughout the body and in the ê3 direction
will no longer be valid (i.e., geometric and fringe effects
become non-negligible).

What we have shown is that the symmetry of DEs is
broken when deformed. The reason is that, while chain
end-to-end vectors are isotropically distributed in the stress
free network, they will, in general, not be isotropically
distributed after deformation. This breaking of symmetry
means that the polarization is no longer restricted to be
aligned with the local electric field and a broader class
of electromechanical couplings are possible (e.g., bending,
shape-morphing, etc.).

VIII. CONCLUSION

In summary, we have presented a molecular-to-continuum-
scale model of dielectric elastomers and used it to discover
new electromechanical mechanisms and types of couplings:
(1) intrinsic electrostriction, that is, a biaxial electromechani-
cal coupling of a thin film DE actuator, despite the Coulomb
attraction between the electrodes being counteracted, and (2)
a shear electromechanical coupling where the electric field is
orthogonal to the plane of shear. Each of these is a macroscale
manifestation of a strong electromechanical coupling at the
chain scale that cannot be captured through Gaussian chain
approximations in statistical mechanics.

The Gaussian chain approximation is ubiquitous in the
modeling of shape-responsive functional elastomers of var-
ious kinds, e.g., liquid crystal elastomers [36]. Therefore, a
natural direction for future exploration is to identify other

material systems and regimes in which one might expect to
observe analogous unexpected couplings.
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APPENDIX

1. Statistical mechanics of a dielectric elastomer chain
in the fully stretched limit

To satisfy the kinematic constraint when the chain is near
the fully stretched state (i.e., in the limit of γ → 1), we re-
quire that ρ → δ(r̂ − v̂) as γ → 1, which implies that τ →
∞r̂. This is a consequence the symmetry of the monomer
electrostatic energy [see (14)]. In this case, the Boltzmann
factor can be neglected and the solution for ρ is well known
[43,47]:

ρKG(v̂) := nL−1(γ )

4π sinh (L−1(γ ))
exp[L−1(γ )r̂ · v̂]. (A1)

Substituting ρKG into (17) results in a free-energy approx-
imation that is exact in the limit γ → 1:

FKG = nkT

[
κ3 − κ⊥ + γ

L−1(γ )
(κ1 − 2κ3) − γL−1(γ )

− ln

( L−1(γ )

4π sinh (L−1(γ ))

)]
(A2)

where κ1 := E2
1 �χ/2kT and κ3 := E2

3 �χ/2kT .

2. Polymer network averaging approaches
and kinematic assumptions

Besides the affine deformation assumption, other polymer
network models and associated kinematic assumptions exist
in the literature. The two most common kinematic assump-
tions in polymer network modeling are the affine deformation
assumption and what we refer to as the cooperative network
assumption. The cooperative network assumption is typically
used when a unit cell (i.e., representative volume element)
consists of a finite number of chains. In order to satisfy ma-
terial frame indifference, the unit cell is rotated such that its
axes are aligned with the principal frame and then the cell
is stretched via the principal stretches [65,66]. It is justified
physically by Refs. [65,66] as a way to model the cooper-
ative behavior of the network. While this polymer network
model and associated kinematic assumption have produced
constitutive models that have been shown to agree well with
experiments in standard rubber elasticity, it can produce seem-
ingly nonphysical results in the context of field-responsive
polymers. We refer the reader to Ref. [67] and Chapters 1 and
3 of Ref. [68]; in fact, in Chap. 3 of Ref. [68], one can see that
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the direction of the shear electromechanical actuation investi-
gated in Sec. VII of this work is reversed (relative to the affine
deformation assumption results) when the cooperative net-
work assumption is used. As a result, the experiment outlined
in Sec. VII, or similar experiments, could be used as a means
to indirectly probe the relationship between macroscopic-
scale deformations and chain-scale deformations for various
multifunctional elastomers of interest.

While there are also polymer network models which at-
tempt to capture (nonaffine) excluded volume effects [69],
these models generally include more fitting parameters and
distract from the physics of interest. We use the affine defor-
mation assumption here because it relates the continuum-scale
deformation to the alignment and directionality of chains in
the network in physically intuitive way.

3. Boundary conditions for intrinsic
electrostriction experiment

Let ∂�u denote the upper electrode, ∂�b denote the bottom
electrode, and ∂�s denote the four remaining sides of the
DEA in the current configuration. Then the precise boundary
conditions for the intrinsic electrostriction experiment can be
written as follows:

ϕ(y) = �ϕ, ∀y ∈ ∂�u;

t (y) = t0 = ε0

2
[1 + χ(λE )]

�ϕ

λEt
ê3, ∀y ∈ ∂�u;

t (y) = 0, ∀y ∈ ∂�s;

ϕ(y) = 0, u(y) = 0, ∀y ∈ ∂�b.
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