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Statistical physics of DNA hybridization
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Deoxyribonucleic acid (DNA) hybridization is at the heart of countless biological and biotechnological
processes. Its theoretical modeling played a crucial role, since it has enabled extracting the relevant ther-
modynamic parameters from systematic measurements of DNA melting curves. In this article, we propose a
framework based on statistical physics to describe DNA hybridization and melting in an arbitrary mixture of
DNA strands. In particular, we are able to analytically derive closed expressions of the system partition functions
for any number N of strings and explicitly calculate them in two paradigmatic situations: (i) a system made of
self-complementary sequences and (ii) a system comprising two mutually complementary sequences. We derive
the melting curve in the thermodynamic limit (N → ∞) of our description, which provides a full justification
for the extra entropic contribution that in classic hybridization modeling was required to correctly describe within
the same framework the melting of sequences either self-complementary or not. We thus provide a thorough
study comprising limit cases and alternative approaches showing how our framework can give a comprehensive
view of hybridization and melting phenomena.

DOI: 10.1103/PhysRevE.103.042503

I. INTRODUCTION

The selective interaction and pair formation of nucleic acid
polymers and oligomers is the basic mechanism enabling gene
coding and replication. It also at the core of a wealth of other
biological processes, such as gene regulation and secondary
structuring of Ribonucleic acid (RNA), of biotechnologies,
such as Polymerase chain reaction and Systematic evolution
of ligands by exponential enrichment, and of Deoxyribonu-
cleic acid (DNA)-based nanotechnologies and DNA origami.
These interactions are based, for the largest part, on the
Watson-Crick pairing of complementary bases [1]. DNA and
RNA pairing has a limited interval of stability. When submit-
ted to enough stress, either physical (temperature, competing
forces) or chemical (solvent composition) the double helix
denaturates. In particular, thermal denaturation, leading to the
unfolding of a single strand or to the splitting of a duplex,
is of paramount importance in technologies, including am-
plification, screening, and sequencing [2–6]. Therein, tailored
nucleic acids sequences usually work as probes unveiling bio-
logical information of a sample or mediating for amplification
during polymerase chain reaction.

Thermal denaturation of duplexes provides an easy but
crucial access into DNA and RNA thermodynamics. Melting
curves, typically represented as plots of the fraction of paired
DNA oligomers vs. temperature (T ), can be experimentally
accessed either via UV absorbance, based on the so-called
hypochromicity effect [7–11], or by measuring the fluorescent
emission of environment-sensitive DNA or RNA-binding flu-
orophores. In both cases, measurements directly yield, after
suitable normalization, the melting curve. Melting curves are
mainly characterized by their characteristic temperature, the

so-called melting temperature Tm, and by the sharpness of the
bound-unbound transition, both depending on the energetics
of pair interactions. Many statistical physics models [12–21],
based for instance on the Ising model or Haminoltonian me-
chanics, have aimed at the calculation of partition function
of the system to describe such interactions. Nevertheless, the
most accepted and used model describing the interaction of
nucleic acid duplexes is essentially different in its approach.
This is the nearest-neighbor (NN) model, which is a macro-
scopic the NN model based on reaction equilibrium.

Originally introduced by Tinoco et al. in order to study
the thermostability of RNA [22,23], the NN model has de-
veloped into a detailed protocol enabling to predict Tm of
strands of arbitrary length and sequence. The model has
been recently applied even under circumstances of molec-
ular crowding [24]. According to the NN model, the free
energy involved in the pairing of two strands depends on
the specific nucleotide sequence and can be obtained as a
sum of contributions stemming not just from individual base
pairs, but from couples of nearest base pairs. Such a splitting
incorporates the notion that the duplex stability is largely
depending on stacking forces, acting between neighboring
molecular planes of paired bases. The computation of melting
temperature Tm in the NN model requires knowing the specific
contributions to the free energy conveyed by each couple of
nearest-neighbor paired bases, which depends on the identity
and location of the four nucleobases involved in such a seg-
ment of double helical structure. Conversely, the knowledge
of the Tm of a wide number duplexes of variable length and
sequence enables the determination of the thermodynamic pa-
rameters associated with each type of couples of nearest base
pairs [25–34].
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The extraction of such thermodynamic parameters nec-
essarily involves a comparison between experimental and
theoretical melting curves. The latter is typically based on
a two-state transition model, which neglects any state in-
termediate between the intact duplex and the fully melted
strands [35–37]. The theoretical derivation of the melting
curve stands on the calculation of either the system parti-
tion function or of the equilibrium constant in the balance
equation of the two-state model. The functional shape of
the melting curve slightly varies when considering com-
plementary or self-complementary sequences. However, in
order to use the same model for describing both kind of
sequences, an extra symmetric correction is introduced in self-
complementary sequences [27,29,30,33,34,36]. Specifically,
the resulting symmetric correction is such that �Ssym = −1.4
cal K−1 mol−1 � −R ln 2 [33]. This entropic contribution
can be thought of the twofold rotational symmetry in self-
complementary duplexes [38]. Nevertheless, in the traditional
approach, this is obtained as an a posteriori explanation after
fitting a set of mixed data including both kind of sequences.

In this work we provide an alternative modeling frame-
work to describe DNA hybridization. Specifically, our aim is
twofold. On the one hand, we want to exploit the parallelism
between the problem of DNA melting and the process of dis-
association and recombination of diatomic molecules. From
the physical perspective, they are equivalent problems and the
latter has been very well studied in the past [39,40]. Specifi-
cally, solutions for the problem involving diatomic molecules
have been obtained with exact mathematical treatment even
for systems with a low number of components, away from
the thermodynamic limit. On the other hand, we want to
shed some light on the origin of the symmetric correction
for self-complementary sequences, which is normally used in
NN model computations. As we will show, in our approach
there is no need for such extra entropic contribution, it will
spontaneously emerge due to the degeneracy of the system,
when one focus on the entropic contribution coming solely
from the interaction between the strands. In other words, our
work actually provides a full justification for the origin of the
symmetry factor.

To achieve our goals, we put forward a clear formulation of
the melting curve based on the partition function calculation.
We present exact results for arbitrary DNA mixtures that,
afterwards, are thoroughly analyzed in the thermodynamic
limit for systems with experimental relevance.

II. MODEL

A. Partition function for a self-complementary mixture

We consider a system made by N identical self-
complementary oligomers enclosed in a total volume V at
temperature T . The system is characterized thus by a con-
centration c = N/V . Oligomers can be either free or paired,
resulting in a duplex. Free oligomers give a contribution G f to
the global Gibbs free energy, whereas each duplex contributes
with Gp. Henceforth, the free-energy difference due to the
inner degrees of freedom is �G̃ = �H̃ − T �S̃ = Gp − 2G f .
There is an extra entropic cost of the pairing, since paired
oligomers cannot explore freely the full phase space. Specif-

ically, we consider that pairing interaction has a finite range
characterized by a volume Ṽ , which formally means that
if oligomers i and j are paired, and then the relative posi-
tion vector �ri − �r j of their centers of mass is enclosed in a
volume Ṽ .

Since the system is in contact with a thermal bath at tem-
perature T , the canonical distribution provides us with the
probability p(n) of having n duplexes formed in the system,

p(n) ∝ f (n) exp{−β[(N − 2n)G f + nGp]}

×
∫
D

d�r1 · · · d�rN d �p1 · · · d �pN exp

(
−β

N∑
i=1

�pi · �pi

2m

)
,

(1)

where β = (kBT )−1, kB is the Boltzmann constant (which has
to be substituted by the gas constant R when the free energy
is expressed in molar quantities), D is the domain of the
6N-dimensional available phase space, and f (n) is the number
of possible different configurations with exactly n duplexes
formed in our system (with a total number of oligomers equal
to N). Note that the thermodynamic potential of interest is the
Gibbs free energy, which has been previously defined, since
we consider that the number of oligomers, the pressure, and
the temperature is kept constant. Moreover, in this expression,
we take into account the degeneracy of the state through f (n),
whereas the integral and the first exponential account for the
phase space explored by the centers of mass of the oligomers
and the inner degrees of freedom, respectively. In the integral
of Eq. (1), there are N − 2n free oligomers and 2n paired
oligomers. Therefore,∫

D
d�r1 · · · d�rN d �p1 · · · d �pN exp

(
−β

N∑
i=1

�pi · �pi

2m

)

=
(

2πm

β

) 3N
2

V N

(
Ṽ

V

)n

. (2)

We thus get that the probability of having n couples of paired
oligomers is

p(n) = 1

Z
f (n)

[
Ṽ

V
exp(−β�G̃)

]n

, (3)

where we have absorbed conveniently some constant factors
with respect to n in the partition function Z . It comes in handy
to get rid the appearance of Ṽ from our expressions. To do
that, we write it as an additive entropic contribution, defining
the weighted Boltzmann factor

ζ = [c] exp (−β�G), (4)

where [c] is the number concentration measured in mol/l
and �G = �H − T �S is the global free energy, which in-
cludes the effect of Ṽ , with �H = �H̃ and �S = �S̃ +
kB ln (NA[Ṽ ]) with NA being Avogadro’s number (the square
brackets in Ṽ just indicates that it is consistently measured in
liters). Note that, usually, experimental measurements of the
entropy of a duplex hardly distinguishes between the different
contributions to the total entropy change, which makes our
choice especially convenient. Importantly, the choice of units
for the concentration and the volume has to be consistent. We
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have chosen the liter since this is the unit traditionally used
in literature and consequently it leads to the values of �S
reported in literature. We have freedom to redefine a different
factor before the exponential in Eq. (4) introducing an extra
correcting contributions in �S, or changing its initialization
value, but we keep our formalism consistent with the conven-
tional approach.

Using the Boltzmann factor introduced above, we obtain
finally that the probability of observing n duplexes, or, equiv-
alently, the probability of being in the hybridization state n, is

p(n) = 1

Z
f (n)

(
ζ

N

)n

, (5)

where the partition function guarantees the correct normaliza-
tion, that is,

Z =
∑

n

f (n)

(
ζ

N

)n

. (6)

The sum above is defined over all possible values of n, which
are the integers such that 0 � 2n � N .

At last, we need to write the degeneracy f (n) of an hy-
bridization state. There are several ways to carry out this
combinatorics calculation. We reach the result

f (n) = N!

2n(N − 2n)!n!
, (7)

where we have taken into account directly the different ways
of relabelling equivalent states. The numerator stands by the
number of ways of ordering all the strands. The factors in the
denominator takes into account the different symmetries of
a hybridization state under exchanging equivalent oligomers
(relabelling). One can exchange oligomers within each du-
plex, all the free oligomers, and all the duplexes, which
correspond to the factors 2n, (N − 2n)! and n! in the denomi-
nator. The factor 2n in the denominator takes into account the
symmetry of the pairing between homologous sequences. We
highlight that our �S does not take into account any reduction
due to the symmetry, carrying just information of the entropy
difference because of the interaction between the strands. It is
indeed this 1/2 factor appearing explicitly in the degeneracy
which reflects the aforementioned symmetry reduction.

The partition function contains all the relevant statistical
information which is useful to derive the expected values for
the hybridization state. Specifically one can find straightfor-
ward that the average number of duplexes equals

〈n〉 = ζ
∂ ln Z

∂ζ
. (8)

Later, we will perform explicit computation of both the
partition function and the average number of duplexes. Nev-
ertheless, we focus first on studying a general formalism for
analyzing arbitrary mixtures of oligomers.

B. Partition function for an arbitrary mixture

In this subsection, we consider the most general system
made by hybridizing oligomers. Specifically, we consider S
different sequences labeled from 1 to S. We call the num-
ber of oligomers with the sequence i present in our system

Ni. Therefore, N = ∑S
i=1 Ni is the total number of oligomers

in the mixture. Hence, the number concentration of the ith
sequence is ci = Ni/V , whereas again the total concentration
of oligomers is c = N/V .

We consider that, in principle, any duplex formation (com-
plementary or not) may occur. In particular, we call the global
free-energy change �Gi j , including the entropic contribution
stemming from the corresponding Ṽ , in a duplex formation
comprising oligomers with sequences i and j. Consistently,
we can define the Boltzmann factors

ζi j = [c] exp(−β�Gi j ), (9)

analogous to Eq. (4). Of course, in a real mixture, some attach-
ments may be very unlikely, which means that such duplex
has a very high value of �G or, equivalently, a very low value
of ζ .

In this general case, the hybridization state is not character-
ized just by one number. On the contrary, we need a vector �n
containing the number of all formed duplexes ni j comprising
oligomers with sequences i and j in our system. Note that
ni j = n ji by definition. In spite of this dimensional difference,
the probability of having a certain hybridization state p(�n) is
provided by the canonical distribution

p(�n) = 1

Z
f (�n)

S∏
i=1

S∏
j=i

(
ζi j

N

)ni j

, (10)

with the partition function

Z =
∑

�n
f (�n)

S∏
i=1

S∏
j=i

(
ζi j

N

)ni j

. (11)

On this occasion, the sum over �n is defined over all pos-
sible values of ni j that are integers and holding the set of
inequalities 0 � 2nii + ∑

j 	=i ni j � Ni, ∀i. Following the same
reasoning that leaded to Eq. (7), the degeneracy f (�n) can be
explicitly written as

f (�n) =
S∏

i=1

Ni!

2nii (Ni − 2nii − ∑
j 	=i ni j )!

S∏
j=i

1

ni j!
. (12)

Again, the partition function contains all the relevant statis-
tical information from which we can profit to derive expected
values. In particular, the average number of duplexes compris-
ing oligomers with sequences i and j is given by

〈ni j〉 = ζi j
∂ ln Z

∂ζi j
. (13)

Note that all the theory converges consistently to the one
developed in the previous subsection for self-complementary
mixtures, when considering S = 1 and with the identification
n11 = n.

We expect that a high level of hetereogenity in the mix-
ture will lead to greater difficulties in the computation of the
partition function and the successive physical quantities of
interest. Remarkably, beside the self-complementary situation
with S = 1, there is another case of particular interest that
can be calculated for S = 2: when two sequences are com-
plementary. In this instance, in fact, the chances of having
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an energetically convenient hybridization between two iden-
tical oligomers is very unlikely and thus we can consider
ζ11 = ζ22 = 0. Therefore, the only possible attachment occurs
between complementary oligomers and the hybridization vec-
tor becomes a scalar n12 ≡ n. In this case, we thus re-obtain
the one-dimensional theory given by Eq. (6), but with the
degeneracy being

f (n) = N1!N2!

(N1 − n)!(N2 − n)!n!
. (14)

Of course, here we do not find any symmetric factor 2n,
implying an entropy reduction.

III. RESULTS

From now on, we will focus on the two cases introduced
above. Namely, the self-complementary (SC) system and the
complementary couple (CC), neglecting self-hybridization in
the latter. First, let us define the melting curve as the frac-
tion of free oligomers corresponding to the less populated
sequence. Therefore, the melting curve is normalized with the
maximum number of duplexes. Taking into account that the
maximum number of duplexes for the SC or CC cases are N/2
(we assume an even N for simplicity) or Nm = min(N1, N2),
respectively, we get

M (SC)
c = 1 − 2〈n〉

N
, M (CC)

c = 1 − 〈n〉
Nm

, (15)

where we have introduced explicitly in the notation if we are
referring to SC or to CC. Hence, once the system is defined,
that is, the oligomer concentration c and the enthalpic �H
and entropic �S changes of duplex formation are known, the
melting curve Mc is just a function of the temperature. On the
one hand, for very low temperatures the state with minimum
enthalpy, which corresponds with the maximum number of
duplexes and then Mc ∼ 0, is promoted. On the other hand,
entropy is favored for high temperatures and high values of
the melting curve Mc ∼ 1 are expected.

In the following, we compute the melting curve for our two
SC and CC mixtures of oligomers. We provide the results both
exactly (for finite systems) and in the thermodynamic limit.

A. Exact results for finite systems

Herein, we compute exactly the partition function and the
melting curve for SC and CC systems. In order to obtain the
partition function, we just need to carry out the sum in Eq. (6)
with the corresponding degeneracy [either Eq. (7) for the SC
case or Eq. (14) for the CC case]. Taking into account that
the upper bounds of the sum are, respectively N/2 and Nm =
min(N1, N2), and defining conveniently NM = max(N1, N2),
we get

Z (SC) =
(

−2ζ

N

) N
2

U

(
−N

2
,

1

2
,− N

2ζ

)
, (16a)

Z (CC) =
(

− ζ

Nm + NM

)Nm

×U

(
−Nm, 1 − Nm + NM,−Nm + NM

ζ

)
, (16b)

where U (a, b, x) is the confluent hypergeometric function
of the second kind also known as Tricomi’s function [41].
Performing the derivative in Eq. (8) and introducing it in
Eq. (15) yields

M (SC)
c = −

NU
(
1 − N

2 , 3
2 ,− N

2ζ

)
2ζU

( − N
2 , 1

2 ,− N
2ζ

) , (17a)

M (CC)
c = − (Nm + NM )

ζ

×
U

(
1 − Nm, 2 − Nm + NM,−Nm+NM

ζ

)
U

( − Nm, 1 − Nm + NM ,−Nm+NM
ζ

) . (17b)

Remarkably, the expressions above are exact. The predic-
tion should be valid even when the mixture has very few
component. Of course, real experimental conditions imply
N  1. Moreover, we expect from the physical point of view
that in such a limit, at fixed number concentration c = N/V ,
N does not play any significant role as shown in the first three
panels of Fig. 1.

B. Thermodynamic limit

Since reasonable experimental conditions assure that N 
1, we focus herein on studying in detail this limit. Further-
more, depending on the arguments, hypergeometric functions
are not always easy to compute, which makes even more
evident the appropriateness of a more illuminating approach.
We consider the thermodynamic limit, which entails the
limit N → ∞ but with the concentration c = N/V remaining
fixed.

Since performing asymptotic study of the ratios of hy-
pergeometric functions in Eq. (17) is not an easy task, we
approach the limit in an alternative way. Specifically, we use
Grassmann variables [42] that allow us to derive the parti-
tion function in the thermodynamic limit through saddle-point
integration [43] after a Hubbard-Stratonovich transformation
[44]. Doing so, we are able to compute the melting curve in
the thermodynamic limit for both systems of interest, resulting
in

M (SC)
c = 2

1 + √
1 + 4ζ

, (18a)

M (CC)
c = 2

1 + (1 − 2φm)ζ +
√

1 + 2ζ + (1 − 2φm)2ζ 2
,

(18b)

where we have introduced the fraction of the less concentrated
sequence φm = Nm/N . The details of the calculations are pro-
vided in the Appendix. The convergence of the melting curve
to the predicted thermodynamic limit is shown in the three
first panels of Fig. 1.

C. Melting temperature

In the context of DNA hybridization and melting, the most
analyzed quantity is the melting temperature Tm. The melting
temperature is simply defined as the temperature in which
half of duplexes are formed. According to our definition of
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FIG. 1. Melting curve for different DNA mixtures. The convergence of the melting curves for finite systems to the predicted thermodynamic
limit when the number of constituents is increased is shown in a SC system (top left), a balanced CC system with φm = 0.5 (top right), and
an unbalanced CC system with φm = 0.1 (bottom left). Bottom right panel presents a comparison of thermodynamic melting curves for
CC systems with different values of φm and a SC system. For the numeric evaluation, we have assumed �H = −45 kcal mol−1, �S =
−120 cal mol−1 K−1, and a concentration of c = 0.4 mmol/l.

melting curve, the melting temperature is obtained when we
equal Mc = 0.5, resulting in

T (SC)
m = �H

kB ln
( [c]

2

) + �S
, (19a)

T (CC)
m = �H

kB ln
( 2−3φm

2 [c]
) + �S

. (19b)

IV. DISCUSSION

Now we highlight the most significant facts that stem from
the results derived in the previous section. In Fig. 1, we have
illustrated several melting curves for both, SC and CC, cases
either in systems with finite size or in the thermodynamic
limit. Specifically, we can observe how the convergence to
the thermodynamic limit, when increasing the number of con-
stituents, is perfect in the first three panels. Remarkably, as
seen in the bottom left panel of Fig. 1, the effect of the finite
size almost disappears for very unbalanced CC systems, that
is, with low values of φm. This is in fact intuitive since, in
this limit, the less concentrated sequence can be considered
as in contact with a bath of strands of the more concentrated
sequence. Therefore, the finite size becomes irrelevant since
the population of the more concentrated sequence takes rel-
atively high values, legitimating the thermodynamic result,

even for low values of Nm. In other words, if we consider a
very unbalanced case, that is, φ � 0.5, although Nm could be
low, N will take high values. Finally, in the bottom right panel,
we have plotted several melting curves in the thermodynamic
limit of CC systems for different fractions of the less con-
centrated sequence φm, as well as the thermodynamic limit of
an equivalent SC system. For all the numerical evaluations of
the melting curves, we have assumed �H = −45 kcal mol−1,
�S = −120 cal mol−1 K−1 and a total concentration of c =
0.4 mmol/l. The thermodynamic parameters considered are
consistent with the order of magnitude of complementary
sequences around a length of six bases at a reference salt
concentration of 1 M [34].

A. Exact results for finite systems

Our exact theory culminating in Eq. (17) provides an ana-
lytical prediction for the melting curve in systems with finite
size either SC or CC. Considering equivalent free energies and
concentrations, the SC system will be more stable than the
balanced CC case. In a SC system, all components are avail-
able for hybridization, whereas the identity of the oligomer in
the CC system is important. Nevertheless, there is a curious
unique situation where both of them converge to the same
phenomenology. This is when we compare a SC system with
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N = 2 and a CC system with N1 = N2 = 1. Under this as-
sumption, the partition function in both cases becomes simply

Z = 1 + ζ , (20)

thus obtaining the melting curve

Mc = 1

1 + ζ
. (21)

Our theory, as it must be, reflects this consistency. In partic-
ular, the melting curves plotted with black circles in the top
panels of Fig. 1 are completely identical.

For the best of our knowledge, exact results beyond the
thermodynamic limit—i.e., for low number of components—
derived in the context of DNA melting are quite scarce
[45,46], and usually in the context of molecular simulations,
since typical real experiments belongs to the thermodynamic
limit. Nevertheless, as stated in the Introduction, the problem
of DNA hybridization resembles the (dis)association problem
in the field of chemical reactions. Specifically, the SC and
CC case analyzed in this work have a direct parallelism with
the formation of diatomic molecules either homonuclear or
heteronuclear respectively. In spite of a different approach,
based on computing the stationary solution of the master
equation describing the dynamics of the reaction, the results
derived by McQuarry [39] in the context of chemical reac-
tions are fully consistent with ours. The reason behind this
consistency is that, therein, they also use our ζ , which only
contains information about the interaction pairing and not the
possible symmetry of the pairing objects, as the input variable
characterizing the interaction.

B. Thermodynamic limit

The convergence of the exact result for increasing values
of N to the derived thermodynamic limit shown in the first
three panels of Fig. 1 represents a direct validation of our
asymptotic calculations. On the one hand, the result for the
melting curve in the case of CC systems matches with those
provided in the literature. Specifically, most of the time, one
finds the results derived in the particular case of a balanced
CC system, with φm = 0.5. Our result goes beyond the bal-
ance case of CC mixtures, explaining the role of the relative
concentration through the fraction φm. This is especially clear
in the bottom right panel of Fig. 1, where we have displayed
the melting curves for the CC system using different values
of φm as well as we compare with the melting curve for the
SC system. Therein, we observe, as stated above, that the SC
system is more stable than the balanced CC case, that is, the
melting curve for the first remains below the one for the latter.
Furthermore, we can see how the melting curve for φm = 0
acts as a lower bound for the SC case. Note that when we
write φm = 0, we are considering the limit of φm → 0 after
taking the thermodynamic limit. Indeed, in this extremely
unbalanced case there is a bath of available strands to be
paired. On the other hand, our result for the melting curve
for the SC case differs at first glance from those tradition-
ally found in the literature, for instance in Eq. (15 b) from
Ref. [36]. Therein, one finds a factor 8 accompanying ζ in the
denominator instead of the factor 4 written in Eq. (18).

Such apparent mismatch is quite curious. On the one hand,
our approach (with the 4) has shown to be correct in the
asymptotic limit of the exact results, which are consistent
with the theory developed for chemical reactions. On the other
hand, the traditional melting curve in the literature (with the
8) has been used intensively explaining and fitting data from
real experiments. This leads to the question: Why such a
difference?

The answer is that this mismatch is not real, but the prob-
lem is into the notation. In particular in the definition of
�S. For us �S carries information of the pairing interaction,
whereas in the traditional approach, for self-complementary
sequences, it additionally includes the entropy reduction com-
ing from the symmetry. We may write �S(SC)

trad = �S + �Ssym.
In our view, it is more illuminating using equivalent defini-
tions of entropy for pairing strands, either SC or CC. Doing
so, we carry the information just from the pure interaction
between the two paired objects, without looking into the detail
of possible symmetries between these two objects.

Therefore the two approaches are eventually fully com-
patible, and our derivation helps to point out clearly the
origin of the symmetry correction systematically applied to
self-complementary sequences [27,29,30,33,34,36]. As high-
lighted in the introduction, this correction �Ssym is such that
exp(�Ssym/kB) � 0.5. Therefore, if one takes out the correc-
tion separately and simplifies the expression, the conventional
factor 8 becomes the factor 4 that we have derived and that
stems directly from the Boltzmann entropy. Note that, in the
conventional approach, this �Ssym is actually an ad hoc fit
parameter that does not need to meet any specific value, po-
tentially affected by other influences. In fact, this has been
recently recalculated for DNA [47,48]. Nevertheless, these
other influences could be always codified in different values
for the initialization entropy for either CC or SC duplex,
without any significant change in our approach.

C. Reaction equations approach

The traditional result for the SC case has been usually
derived from equilibrium constant arguments. Herein, we give
a brief alternative approach which highlight where the mis-
match emerges when using the two possible definitions of �S.
Specifically, we consider the reaction

2A
k f

�
kb

A2, (22)

which represents the (dis)association of homonuclear di-
atomic molecules, which also describes the hybridization of
self-complementary systems. We write down the macroscopic
evolution equation, that is, neglecting fluctuations, for the
number of free atoms Na,

dNa

dt
= −k f

Na(Na − 1)

V
+ kb(N − Na). (23)

In the equation above, accompanying the forward rate k f , we
find the number of possible couples in the system normalized
by the volume which is Na(Na − 1)/2V that multiplies the
number of atoms that disappear, that is, 2. In turn, along
with the backward rate kb, we have the number of duplexes
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(N − Na)/2 that multiplies the number of appearing atoms,
which is again 2.

The equilibrium constant, defined as the ratio of the for-
ward rate, yields K = k f /kb = exp(−β�G). In this approach,
we recall that �G has no symmetric consideration. Introduc-
ing this relation, the definition of the melting curve Mc =
Na/N and the stationary solution of Eq. (23), then the relation
ζ = (1 − Mc)/M2

c is obtained, where we have made use of the
definition of ζ in Eq. (4) and neglected terms of order N−1.
Solving this equation for Mc leads straightforwardly to our
result for the SC melting curve in Eq. (18).

On the contrary, in the traditional derivation, the equilib-
rium constant is directly computed as the fraction between
the concentration of duplexes and the squared concentration
of the single strands. Therein, when writing exp(−β�G), the
�S included in �G contains the symmetric correction, thus
again leading to the same quantitative result obtained through
our approach.

An exploitable advantage of the proposed statistical me-
chanics formulation is that the free energy has full physical
meaning, measuring the interaction between the strands.
Therefore one could think to actually measures such term
from single molecule experiments [49,50], with independence
on the CC or SC character of the duplex. This allows a direct
comparison between equivalent CC and SC couples. In other
words, a finite system containing only two strands with a given
free-energy difference behaves in the same way, no matter if
we assumed they are CC or SC, whereas this comparison is
not so straightforward in the conventional approach because
of the offset introduced by the symmetric contribution.

V. CONCLUSION

In this work, we have put forward the fundamentals of sta-
tistical physics to the service of the problem of DNA melting.
We have provided an equilibrium description of hybridization
and melting for nucleic acids, deriving the partition function
in any arbitrary mixture made by DNA.

We have then focused on two experimentally relevant sys-
tems, made by either SC sequences or different CC of strands.
In such cases, the exact melting curves have been derived and
we have shown that our results agree with the known expres-
sions in the context of chemical reactions. Remarkably, the
proposed statistical mechanics formulation also provides a mi-
croscopic justification for the extra entropic contribution that
in classic hybridization modeling was required to correctly
describe within the same framework the melting of sequences
either self-complementary or not. In our view, dealing explic-
itly with the symmetric correction through the degeneracy of
the system, extracting then this contribution from the �S that,
in our convention, only carries information about the pairing
interaction regardless the nature of the pairing objects, allows
to compare easier the physics in equivalent duplexes of CC or
SC. Of course, both pathways, the conventional one or the one
presented here lead to the same quantitative results.

Beyond our exact result, we have derived the melting curve
of the systems of interest in the thermodynamic limit, which
is the meaningful situation in real experimental conditions.
As expected, the convergence to the thermodynamic limit

when considering the exact result with increasing number of
constituents is excellent.

Although the computation of the melting curve for the
SC and CC cases has been made by considering only com-
plementary sequences (and thus just one single way for the
attachment between pairs of DNA strands), our model can
be generalized to describe pairs with a preferential ways
of attachment, even if not complementary. The lack of full
complementarity would lead to lower values of ζ , resulting
in a system with lower stability and a melting curve shifted
to lower temperatures. The exact calculations for such more
heterogeneous cases is left for future investigations. Gener-
alization to formation of multimeric complexes of duplexes
[45,51,52] is also an appealing field to apply our approach.

ACKNOWLEDGMENTS

S.S. and C.A.P. acknowledge UNIPD STARS grant BioRe-
act 2018. C.A.P. acknowledges the support provided by
Grant No. ANR-18-CE30-0013 from the Agence Nationale
de la Recherche. T.B. acknowledges support by PRIN2017
project from Ministero Istruzione, Università e Ricerca [ID
2017Z55KCW]. A.M. acknowledges the support from Uni-
versity of Padova through “Excellence Project 2018” of the
Cariparo foundation. S.S. and A.M. acknowledges INFN Lin-
coln grant.

APPENDIX: THERMODYNAMIC LIMIT

We have relegated to this Appendix the mathematical
derivation of the melting curve in the thermodynamic limit in
order to preserve the clearance in the presentation of the main
text. A possible course of action is applying Stirling’s ap-
proximation for the factorials appearing within the degeneracy
of hybridization states f (n). We present instead an approach
that is based on the application of auxiliary variables that
verify Grassmann algebra, which are commonly used in the
context of path integral representation of fermionic fields [42].
Herein, avoiding further technicalities, it suffices to introduce
an auxiliary set of independent random variables θi which
satisfies the following properties:

〈1〉 = 〈θi〉 = 1,
〈
θ

k�2
i

〉 = 0,

〈 f1(θi ) f2 f (θ j )〉 = 〈 f1(θi )〉〈 f2 f (θ j )〉 (for j 	= i), (A1)

where 〈·〉 stands for a trace operation.

1. Melting curve for the SC system

We start by writing down the partition function of a system
of N self-complementary oligomers, in a smart way, using the
properties defined in Eq. (A1) of the set of auxiliary variables
θi, i = 1, . . . , N ,

Z =
〈

N∏
i=1

∏
j<i

(
1 + θiθ j

ζ

N

)〉
. (A2)

Note that, using the auxiliary variables, we have avoided the
explicit writing of the degeneracies of hybridization states
f (n) as in Eq. (6) of the main text. Manipulating Eq. (A2)
and taking into account the properties of the algebra defined
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in Eq. (A1), we can reach the expression

Z =
〈

exp

⎡
⎣ ζ

2N

(
N∑

i=1

θi

)2
⎤
⎦〉

. (A3)

We apply now the Hubbard-Stratonovich transformation [44]

Z =
〈√

N

2πζ

∫ ∞

−∞
dy exp

(
−N

y2

2ζ
+ y

N∑
i=1

θi

)〉
. (A4)

Then, it is possible to carry out explicitly the trace operation,
yielding

Z =
√

N

2πζ

∫ ∞

−∞
dy exp [Nϕ(y)], (A5)

with

ϕ(y) = − y2

2ζ
+ ln(1 + y). (A6)

Importantly, the way in which Eq. (A5) is written allows for a
direct application of the method of steepest descent or saddle-
point method for approximating the integral [43] which yields,
in the asymptotic limit N → ∞,

ln Z

N
= ϕ(y∗), with

∂ϕ(y)

∂y

∣∣∣∣
y=y∗

= 0, (A7)

where the problem reduces to find the stationary value of the
function in the exponent of the integral. Once the maximum is
found we can substitute the partition function in Eq. (8), and
subsequently in (15), of the main text in order to finally obtain
the melting curve

M (SC)
c = 1 − 2ζ

∂ϕ(y∗)

∂ζ
= 2

1 + √
1 + 4ζ

, (A8)

which is the one presented in Eq. (18) of the main text.

2. Melting curve for the CC system

When we consider a system made by two (different)
complementary sequences, the calculations to derive the
thermodynamic limit become a little bit more involved. Nev-
ertheless, the line of reasoning and techniques, as seen below,
are pretty similar to those used in the previous case. We
recall that the total number of oligomers N = Nm + NM is the
sum of the number Nm of of strands of the less concentrated
sequence and the number NM of strands of the more con-
centrated sequence. Therefore, it is handy to define two sets
of auxiliary independent random variables θi, i = 1, . . . , Nm

and η j , j = 1, . . . , NM . Remarkably, all of them fulfill the
properties of the algebra defined in Eq. (A1), the question of
labeling with different letters is just a matter of convenience
for the notation. We start again by making use of the auxiliary
variables to write down the partition function

Z =
〈

Nm∏
i=1

NM∏
j=0

(
1 + θiη j

ζ

N

)〉
. (A9)

Again, we have avoided the explicit writing of the degenera-
cies of hybridization states f (n). Manipulating Eq. (A9) and
taking into account the properties of the algebra defined in

Eq. (A1), we reach the expression

Z =
〈

exp

⎡
⎣ ζ

2N

(
Nm∑
i=1

θi +
NM∑
j=1

ηi

)2

− ζ

2N

(
Nm∑
i=1

θi

)2

− ζ

2N

(
NM∑
j=1

ηi

)2
⎤
⎦〉

. (A10)

The application of the Hubbard-Stratonovich transformation
leads us to the integral form

Z =
〈(

N

2πζ

)3/2 ∫ ∞

−∞
dy1

∫ ∞

−∞
dy2

∫ ∞

−∞
dy3

× exp

[
−N

y2
1

2ζ
+ y1

(
Nm∑
i=1

θi +
NM∑
j=1

η j

)
− N

y2
2

2ζ

+y2i
Nm∑
i=1

θi − N
y2

3

2ζ
+ y3i

NM∑
j=1

η j

]〉
. (A11)

The trace can be carry out then and we get

Z =
(

N

2πζ

)3/2

×
∫ ∞

−∞
dy1

∫ ∞

−∞
dy2

∫ ∞

−∞
dy3 exp [Nmϕ(y1, y2, y3)] (A12)

with

ϕ(y1, y2, y3) = − y2
1 + y2

2 + y2
3

2φmζ
+ ln(1 + y1 + iy2)

+
(

1

φm
− 1

)
ln(1 + y1 + iy3). (A13)

We have introduced in the notation the fraction of the less con-
centrated sequence φm = Nm/N ∈ [0, 0.5]. Note that, when
we take the thermodynamic limit, both Nm and NM go to
infinity but the ratios φm and φM = 1 − φm remain exactly the
same. In this occasion, since we have a complex function, it
is convenient to deform the contour integration in such a way
that the stationary value of ϕ occurs along the contour. The
saddle-point integration has to be performed carefully, taking
into account that the search of the stationary value is over the
three complex variables. Therefore, we obtain

ln Z

Nm
= ϕ(y∗

1, y∗
2, y∗

3 ). (A14)

In order to look for the maximum one enforces the vanishing
of the derivatives of ϕ(y1, y2, y3) with respect to the real and
imaginary parts of the three variables. There is more than one
solution, but only one gives a physical (real and positive) melt-
ing curve, which corresponds to the solution with a Hessian
matrix negative definite,

M (CC)
c = 1 − ζ

∂ϕ(y∗
1, y∗

2, y∗
3 )

∂ζ

= 2

1 + (1 − 2φm)ζ +
√

1 + 2ζ + (1 − 2φm)2ζ 2
,

(A15)

which is the final result provided in Eq. (18) of the main text.
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