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Magnetic induction inspires a schematic theory for crosstalk-driven relaxation dynamics in cells
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Establishing formal mathematical analogies between disparate physical systems can be a powerful tool,
allowing for the well studied behavior of one system to be directly translated into predictions about the behavior
of another that may be harder to probe. In this paper we lay the foundation for such an analogy between the
macroscale electrodynamics of simple magnetic circuits and the microscale chemical kinetics of transcriptional
regulation in cells. By artificially allowing the inductor coils of the former to elastically expand under the action
of their Lorentz pressure, we introduce nonlinearities into the system that we interpret through the lens of our
analogy as a schematic model for the impact of crosstalk on the rates of gene expression near steady state.
Synthetic plasmids introduced into a cell must compete for a finite pool of metabolic and enzymatic resources
against a maelstrom of crisscrossing biological processes, and our theory makes sensible predictions about how
this noisy background might impact the expression profiles of synthetic constructs without explicitly modeling
the kinetics of numerous interconnected regulatory interactions. We conclude the paper with a discussion of how
our theory might be expanded to a broader class of plasmid circuits and how our predictions might be tested
experimentally.
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I. INTRODUCTION

Just as the functional state of a computer processor is
determined by the individual on-off states of its billions of
transistors, the biochemical state of a cell is defined by the
number of active copies of thousands of different proteins that
regulate the cell’s basic biological functions and control its
response to environmental changes. And just as a computer
hacker can install malicious code onto a computer to redirect
its processor’s functionality towards the surreptitious mining
of cryptocurrency, biologists can insert custom DNA “code”
in the form of synthetic plasmids into bacterial cells to repur-
pose their metabolic resources towards the mass production
of non-native proteins, among other functions [1,2]. There is
a limit to how much processor power a computer hacker can
siphon away before the computer becomes unable to main-
tain its basic functions and crashes; and there is similarly a
metabolic limit [3] to the number of synthetic plasmids that
can be inoculated into a bacterial population before the finite
metabolic resources of the cells are stretched so thin that they
become unable to maintain life-essential functions and die.

The mutual reliance of cellular processes on a shared
and limited pool of biochemical resources is one form of
biological crosstalk [4,5]. Because this crosstalk formally
interconnects all of the numerous regulatory processes con-
trolling the cell’s internal state, its impact on any particular
process or set of processes can be difficult to model. Even
an especially simple bacterium like Escherichia coli has over
3000 processes in its transcriptional network alone [6], and
proteins like RNA polymerase—the principal enzyme re-
sponsible for the transcription of a gene into a strand of
mRNA—must be shared across all of them. This complexity

is problematic, because synthetic biologists often want a way
to predict a priori how efficiently a recombinant plasmid will
execute its function inside a bacterial population and to what
extent the overall growth and resilience of the population will
be impacted in return. The traditional modeling approach used
to address these concerns is the flux-balance model, in which
a large set of rate laws governing the usage, production, and
uptake of metabolic resources by various cellular processes
are taken into account and simultaneously solved numerically
[7]. Modern computational resources have enabled some of
these models to exhaustively account for most or all relevant
processes (genome-scale models) [8], whereas older itera-
tions were forced to rely upon a coarse-grained approach that
empirically modeled the fluxes of a limited number of key
resource pools, such as amino acids, nucleotides, etc. [9,10].

Chemical kinetics has also been employed to model the
effects of shared cellular resources [11,12], typically by using
a more granular model of gene transcription that accounts for
limited concentrations of RNA polymerase, ribosomes, and
DNA-binding sites. Both kinetics and flux-balance modeling
paradigms have typically focused on making estimates of
steady-state gene expression levels or cellular growth rates,
but synthetic biology has increasingly focused on developing
plasmid circuits with dynamic expression signatures, such as
oscillators [13–15], which express a desired gene in periodic
pulses, or logic gates [16–18], which get expressed only under
specific conditions. To understand how crosstalk impacts the
responsiveness or reliability of these more sophisticated cir-
cuits, a good starting point is to characterize how it changes
their dynamic response to small fluctuations that push the cell
away from homeostasis. Even with the simplifications of ex-
isting models, robustly characterizing this response would still
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require probing the topology of a rather high-dimensional dy-
namical manifold. It would be ideal if the impact of crosstalk
on the proteins of interest could be treated in a manner that
did not require modeling fluctuations in a large number of
extraneous chemical species.

Physics is replete with examples of disparate physical
processes that can be characterized by structurally similar
mathematical models. The assumption that a rate of flow
is driven by a linear dependence on a spatial gradient, for
example, results in Fourier’s law of heat transfer, Ohm’s law
of current flow, Fick’s law of diffusion, and Poiseuille’s law
of fluid flow. Similarly, the Ising spin model can be used
analogously to model the alignment of magnetic domains in
a ferromagnet, the thermodynamic states of a binary alloy, or
the dynamics of a lattice gas. Inspired by these examples, we
attempt to characterize a much simpler, schematic description
of the dynamic response to cellular crosstalk by first pursuing
a mathematical formalization of the vague analogy often made
between plasmid circuits and their electronic counterparts.

Both electronic and genetic circuits involve closed loops of
specialized, interacting components, but making any sort of
generalized comparison has proven to be elusive [19–21]. We
make progress in resolving this difficulty by drawing an anal-
ogy between chemical concentrations and electric currents.
In chemical kinetics, the time rate of change in one chemi-
cal population is a function of the concentrations of one or
more others; in magnetic induction, an inverted mathematical
structure holds wherein the strength of an induced electric
current is a function of the time rates of change of one or more
other currents. We demonstrate that, so long as we restrict our
attention to a linear regime and satisfy a couple additional
caveats, there is a one-to-one mapping between the differential
equations governing these two phenomena that enables us to
directly relate the linear response of protein concentrations
near steady state to the dynamic loop currents of a certain class
of magnetic circuits.

Competition for resources in gene circuits has previously
been modeled analogously to multiple resistors in series
[22,23], but this formalism does not avoid the problem of
needing to know the dynamic concentrations of a poten-
tially prohibitive number of chemical species in order to
describe the response of a protein of interest to a fluctua-
tion in its concentration. We attempt to sidestep this issue
within our magnetic analogy by allowing for inductor coils
that elastically expand under their own Lorentz pressure. This
construction, though physically unrealistic in the electronics
context, results in current relaxation profiles that match our
experimentally informed intuition [24] for how limited cellu-
lar resources should impact the relaxation kinetics of a protein
near steady state. In two specific cases, we then show how
to qualitatively reproduce the resultant nonlinear current dy-
namics with the kinetics of a sequence of elementary chemical
reactions, and we discuss how those reactions can be meaning-
fully interpreted as schematic models of cellular crosstalk that
involve only a small number of “virtual” chemical species.
While these simplified kinetic models succeed in capturing
the phenomonology of crosstalk, it remains to be seen to
what extent this framework can be leveraged to make novel
predictions about the dynamical behavior of real biological
circuits of interest; so, with that in mind, we conclude by

discussing how some of our more restrictive assumptions
might be relaxed to extend our analogy to more complex
dynamical circuits, and we summarize the sort of experiments
that would be required to validate the predictive power of our
models.

II. METHODS

The basic analogy that we propose can be derived in
general terms rather straightforwardly. Let {[Xi]t } be a set
of relevant, time-dependent biomolecular concentrations, in-
dexed 1, . . . , N , that are related to one another by the
following set of coupled differential equations:

d[Xi]t

dt
= fi({[Xi]t }), (1)

where each fi({[Xi]t }) is some generally nonlinear function of
the various concentrations in the set. For dynamics consisting
of sufficiently small fluctuations near steady state, we can
linearize Eq. (1) into a matrix equation of the following form:

d

dt
δ[X]t = Kδ[X]t , (2)

where the ith component of the vector δ[X]t is the deviation
of concentration [Xi]t from its steady-state average and K is a
matrix of linearized kinetic rate constants.

For a set of independent loop currents coupled to each
other only through magnetic induction, we can write a similar
matrix equation, assuming we restrict our attention to linear
circuits:

δI(t ) = L d

dt
δI(t ). (3)

In the above, δI(t ) is now the vector of current fluctuations
from steady state, and L is the matrix whose diagonal ele-
ments are proportional to the linear inductances Li and whose
off-diagonal elements are proportional to the mutual induc-
tances Mi j . So long as det L �= 0, this matrix will be invertible,
and we can express Eq. (3) in a form analogous to that of
Eq. (2):

d

dt
δI(t ) = L−1δI(t ), (4)

and we can map one set of equations to the other by iden-
tifying δ[Xi]t = δIi(t ) and requiring that Ki j = L−1

i j for all
i, j = 1, . . . , N .

In the sections that follow, we apply this formalism to
two simple plasmid circuits and their proposed magnetic
analogs, explicitly deriving the parameter mappings necessary
for equivalence in each case. We then proceed to introduce
our conception of what we term an “elastic” inductor and
discuss how its nonlinear behavior is representative of a kind
of magnetic crosstalk that is phenomenologically similar to
what we expect to see from genetic crosstalk in cells.

A. The simplest plasmid circuit

The first gene circuit we consider consists of a plasmid ring
containing only a single gene encoding some protein X and a
promoter site. We assume that X is regulated constitutively
at a constant rate kX and degraded at a rate proportional to
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its concentration [X ]. The time-dependent concentration [X ]t

consequently obeys the following linear, ordinary differential
equation:

d[X ]t

dt
= kX − kD[X ]t , (5)

where kD is the degradation frequency. Recognizing that the
steady-state concentration 〈[X ]〉 must equal kX /kD, we can
recast this equation in terms of the concentration fluctuation
δ[X ]t ≡ [X ]t − 〈[X ]〉:

dδ[X ]t

dt
= −kDδ[X ]t . (6)

Given an initial fluctuation away from steady state, δ[X ]0,
this equation is trivial to solve, yielding a simple exponential
decay back towards steady state over a characteristic timescale
1/kD:

δ[X ]t = δ[X ]0e−kDt . (7)

We now proceed to demonstrate that the above kinetics
are completely analogous to the current dynamics of a simple
RL circuit consisting of a voltage source V , a resistor with
resistance R, and an inductor with inductance L connected in
series. According to Kirchhoff’s voltage law, the total voltage
V must equal the sum of the voltage drops across the resistor
and the inductor, leading to the following equation:

V = RI (t ) + L
dI (t )

dt
, (8)

where I (t ) is the dynamic current of the circuit loop. The
above can be immediately manipulated into the form of
Eq. (6) by defining δI (t ) ≡ I (t ) − V/R:

dδI (t )

dt
= −R

L
δI (t ), (9)

and an equivalence can be established by setting δI (t ) = δ[X ]t

and R/L = kD. See Fig. 1 for a pictorial comparison of these
two circuit analogs.

B. A mutually regulating plasmid circuit

The next plasmid we consider consists of two genes that
encode proteins called X and Y , along with their correspond-
ing promoter sites. We assume that protein X can bind to the
promoter site of the Y gene to regulate its transcription, and we
likewise assume that protein Y can regulate protein X in a sim-
ilar fashion. Assuming that proteins X and Y have respective
basal transcription rates kX and kY and respective degradation
frequencies kD and k′

D, their concentrations should each obey
a pair of coupled differential equations with the following
general form:

d[X ]t

dt
= GXY ([Y ]t ) + kX − kD[X ]t ,

d[Y ]t

dt
= GY X ([X ]t ) + kY − k′

D[Y ]t . (10)

In the above, GXY ([Y ]) and GY X ([X ]) are general functions
representing the typically nonlinear binding kinetics of the
transcription factors X and Y to their respective promoter
sites. Oftentimes, these functions are well approximated as
Hill functions [25], but we will only be concerned with the

FIG. 1. Analogous circuits. (a) A schematic representation of a
simple plasmid circuit consisting of a single, constitutively regu-
lated gene and (b) a schematic diagram of its equivalent magnetic
circuit, drawn using standard linear circuit notation for its various
components.

dynamics of this system near steady state, in which case we
can linearize the kinetics of Eqs. (10) to obtain the following
matrix equation:

d

dt

(
δ[X ]t

δ[Y ]t

)
=

( −kD ±kXY

±kY X −k′
D

)(
δ[X ]t

δ[Y ]t

)
. (11)

The linearized rate constant for the transcriptional regulation
of protein X by protein Y is kXY ≡ |G′

XY (〈[Y ]〉)|, i.e., the
absolute value of the derivative of the function GXY evaluated
at 〈[Y ]〉. The other linearized rate constant, kY X , is defined
analogously. For each of these rate constants, the plus sign
is chosen in Eq. (11) if the regulation is promoting, and the
negative sign is chosen if it is inhibiting.

For simplicity, we have assumed that this chemical system
has only a single, stable fixed point, about which the concen-
trations of X and Y will fluctuate during homeostasis, and this
imposes restrictions on the parameters of the model. First, the
steady state is defined by the following pair of equations:

〈[X ]〉 = 1

kD
[GXY (〈[Y ]〉) + kX ],

(12)

〈[Y ]〉 = 1

k′
D

[GY X (〈[X ]〉) + kY ],

which, by assumption, must have a unique, nontrivial so-
lution. Furthermore, in the case where both transcriptional
regulations are either promoting or inhibiting, the condition
kDk′

D > kXY kY X must hold; otherwise, the fixed point at steady
state will become unstable, and any small fluctuation will
rapidly grow without bound. There are of course some two-
component kinetic systems whose nonlinearities give rise to
multiple stable fixed points [26], and we shall discuss briefly
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FIG. 2. Mutually regulating circuits. (a) A schematic representa-
tion of a plasmid circuit in which two genes act as transcriptional
regulators for each other. The arrows indicate regulatory interac-
tions, with the pointed arrowhead representing positive, promotional
regulation, and the flat arrowhead representing negative, repressive
regulation. (b) A schematic diagram of the equivalent magnetic cir-
cuit, which is a simple transformer. As drawn, the circuit is analogous
to the case of mutual repression; the case of mutual promotion can
be obtained by reversing the transformer polarity.

in the Conclusions section how our analogy might be extended
to consider a more complex case like this.

In order to have a consistent analogy, the magnetic analog
circuit corresponding to this mutually regulating plasmid must
decouple into a pair of independent RL-circuit loops, like that
shown in Fig. 1(b). The coupling between these two circuits
will be achieved by connecting their inductors with a loop
of ferromagnetic material, resulting in a simple transformer
circuit. A diagram of this circuit can be found alongside a
schematic of its plasmid analog in Fig. 2. Once again invoking
Kirchhoff’s voltage law, we can express the coupled current
dynamics of this circuit by the following pair of equations:

V1 = R1I1(t ) + L1
dI1(t )

dt
± M

dI2(t )

dt
,

(13)

V2 = R2I2(t ) + L2
dI2(t )

dt
± M

dI1(t )

dt
,

where indices 1 and 2 differentiate the components of the
two RL circuits and M is the mutual inductance between
them. Noting once more that 〈Ii〉 = Vi/Ri, these differential
equations can be rewritten in the matrix form of Eq. (3):

(
δI1(t )

δI2(t )

)
=

(−L1/R1 ∓M/R1

∓M/R2 −L2/R2

)
d

dt

(
δI1(t )

δI2(t )

)
. (14)

This equation can be in turn converted to the form of Eq. (11)
by inverting the 2 × 2 induction matrix:

d

dt

(
δI1(t )

δI2(t )

)
=

( − R1
L1(1−k2 ) ± kR2

(1−k2 )
√

L1L2

± kR1

(1−k2 )
√

L1L2
− R2

L2(1−k2 )

)(
δI1(t )

δI2(t )

)
.

(15)

In the above, we have made use of the standard definition
that M ≡ k

√
L1L2, where 0 � k < 1 is a coupling parameter

gauging the strength of the inductive interactions between the
circuits.

Although it is now clear how to relate the kinetic rate
constants of the mutually regulating plasmid circuit to the
parameters of the simple transformer circuit, there are a few
irreconcilable differences between Eq. (11) and (15) that must
be addressed. Perhaps most distressing is the fact that the
matrix elements of the inverted induction matrix are all pro-
portional to a factor of (1 − k2)−1, which will cause them to
diverge as k → 1. This limit corresponds to a perfectly cou-
pled transformer for which a fluctuation in the current of one
circuit loop can cause an instantaneous adjustment in the cur-
rent of the other. There is no meaning to Eq. (15) in this case
because such a transformer has no dynamics. Although no
such divergence is possible in Eq. (11), there is an analogous
regime in the chemical kinetics case. Oftentimes short-lived
chemical intermediates like enzyme-substrate complexes are
approximated as existing always at steady state, even when
the overall chemical system is not. This so-called quasi-
steady-state assumption (QSSA) results in the concentrations
of enzyme and free substrate instantaneously determining at
all times the concentration of bound substrate.

A second important difference between the genetic and
magnetic systems is that the “±” signs in Eq. (15) are
determined by the polarity of the transformer, i.e., whether
the two loop currents flow in the same or opposite directions.
Because the magnetic induction between two current loops
is always symmetric, these two signs cannot be chosen
independently and must instead always be the same (both
positive or both negative). In the genetic case, one could
certainly construct a mutually regulating plasmid in which
protein X positively regulates protein Y , but protein Y
negatively regulates X . This places an important restriction
on the regulatory topology of plasmid circuits to which our
inductive analogy can be applied.

One final observation is that the stability condition kDk′
D >

kXY kY X can be shown to reduce in the magnetic case to the
condition k2 < 1, which is, for real materials, always true. The
fact that a transformer circuit cannot be dynamically unstable
seems to suggest that we must also restrict our analogy to
plasmid circuits whose dynamics consist of stable fluctua-
tions about a single steady state; but, since our analogy is
ultimately a mathematical and not a physical one, we are free
to artificially choose k > 1, which converts the fixed point of
the transformer circuit into a saddle-point instability. In the
Conclusions section we will briefly outline how this can be
used to extend our analogy to chemical systems with multi-
ple steady states. As the next section will demonstrate, this
kind of physically implausible but mathematically permissible
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manipulation will also be our means for introducing crosstalk
into the magnetic system.

C. The elastic inductor

Our basic intuition for the impact crosstalk will have on
relaxation kinetics is that an excess of protein will place a
greater strain on the shared pool of cellular resources, result-
ing in a slower transition back to the homeostatic steady state.
This effect has been observed experimentally, and it has been
found that, far from a detriment, this slowdown is actually
leveraged by some bacteria in beneficial ways. In the stress
response network of E. coli, for example, a stress-induced
increase in protein misfoldings places a strain on the limited
supply of the clean-up protease enzyme ClpXP. This strain
results in a depressed degradation rate of the sigma cofactor
σ S , which then accumulates and enhances the transcription
rate of stress-reducing proteins [24].

We shall build this phenomonology into our magnetic
circuits by exaggerating the magnitude of a second-order,
nonlinear feedback mechanism that is peculiar to inductor
coils. We begin by assuming that each inductor element in our
circuits consists of a solenoid of length � with N turns; but, as
is standard in linear-circuit theory, we shall approximate the
magnitude of the magnetic field B within this coil as if the
inductor were an infinite solenoid with fixed turn density N/�:

B = μ0NI

�
. (16)

In the above, μ0 is the permeability of free space and I is the
current running through the coil. This current will cause each
infinitesimal length element of the coil, ds, to experience a
Lorentz force, dF, from the magnetic field generated by the
rest of the inductor:

dF = Ids × B, (17)

which points in the outward direction everywhere along the
coil. The magnetic field in the above expression must be
evaluated at the boundary between the inside and outside of
the coil, where its strength, under our assumptions, discontin-
uously drops from the expression given in Eq. (16) to zero.
For simplicity, we shall treat the strength of the field right at
the boundary as the average of its values just inside the coil
and just outside, which will make it equal to half the value of
Eq. (16). Formally we must also subtract out the contribution
of the B field generated by the element ds itself, but this will
make a negligible difference, since we have assumed that the
element is infinitesimal in length.

Assuming the turns of the inductor coil are circular with
radius r, we find that the total Lorentz pressure, PB, exerted
on each turn is

PB = μ0NI2

2�
. (18)

The elastic deformation caused by this pressure is negligibly
small for most known conductive materials under sustainable
current loads; but, for the purpose of introducing crosstalk into
our magnetic circuit analogs, we shall perform a gedanken
experiment in which we conceive of an inductor that is both
metallically conductive and sufficiently elastic to expand un-

FIG. 3. Conceptual illustration of the elastic inductor. As current
flows through the solenoid, a magnetic field is produced that exerts
an outward Lorentz pressure on the coil. This causes it to expand
radially, increasing the cross-sectional area of its turns and the total
magnetic flux passing through the coil. This additional flux induces
an even larger electromotive force to oppose any changes to the
current, making the elastic inductor more slowly relaxing than a
normal, rigid inductor—especially for larger currents.

der its own Lorentz pressure (see the schematic in Fig. 3). For
small deformations, we assume a linear stress-strain relation
of the form

PB = E

(
r − r0

r0

)
, (19)

where E is the elastic modulus of the uniform expansion and
r0 is the radius of each coil loop in the absence of current.
Solving this relation for r and substituting it into the expres-
sion for the total magnetic flux passing through the inductor,
φ = πr2NB, we ultimately find

φ = LI

(
1 + L

ε
I2

)2

. (20)

In the above, the linear self-inductance is defined as L ≡
πr2

0μ0N2/�, and ε ≡ 2πr2
0NE is an elastic energy scale.

As conceptualized, the elastic inductor houses two linear
processes: the induced current flowing through the coil grows
linearly with the magnetic flux passing through its cross sec-
tion (Faraday’s law), and the extent of the coil deformation
varies linearly with the Lorentz pressure. These processes
are clearly not independent of one another, as the magnetic
flux is a function of the square of the coil radius, and the
Lorentz pressure depends upon the square of the current. The
result of this nonlinear interdependence is a slowdown in the
relaxation of the current back to its steady value: a reduction
in current results in a larger change in magnetic flux, due
to the larger cross-sectional area of the elastically expanded
coil, and this drives a larger electromotive force to oppose the
change in current. This effect will be exacerbated for larger
currents, consistent with our expectation that larger protein
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concentrations will cause a greater resource strain in the cel-
lular context.

Thus far we have restricted our considerations to how cel-
lular crosstalk will impact the relaxation of protein expression
levels back towards steady state after a perturbation, but the
sharing of limited resources will also shift the position of
the steady state itself [12,23]. However, since our kinetics
model is derived from a linear order expansion about steady
state, the actual values of the steady protein concentrations
are irrelevant and can always be set at experimentally verified
levels through appropriate choices of the model parameters.

III. RESULTS AND DISCUSSION

We proceed to examine how elastifying the inductor coils
in the magnetic circuits of the previous section [see Figs. 1(b)
and 2(b)] modifies their dynamic current profiles. In each
case we relate the dynamics to what one would anticipate
from the analogous plasmid system, and we then complete
the analogy by devising sets of coupled elementary reactions
whose kinetics schematically reproduce this behavior.

A. Schematic model for protease-mediated catabolism

To assess the impact of placing our hypothetical elastic
inductor into the RL-circuit loop of Fig. 1(b), we must de-
termine how the circuit voltage will drop across it. Faraday’s
law should still hold, so the voltage drop should equal the time
derivative of the flux. The difference is that instead of the flux
depending linearly on the current as φ = LI , the flux through
the elastic inductor will be related nonlinearly to the current
through Eq. (20). Differentiating that equation with respect to
time, we can then proceed to use the Kirchhoff voltage law to
derive a differential equation for the dynamic current profile
of the circuit:

dI (t )

dt
= V − RI (t )

L
[
1 + L

ε
I (t )2

][
1 + 5L

ε
I (t )2

] . (21)

The numerator of the right-hand side ensures that I = V/R is
still a stable fixed point of the system, but the denominator will
cause the relaxation time of the circuit to grow monotonically
with the current. This assessment is borne out in Fig. 4, where
we have solved Eq. (21) numerically and plotted its current
profile for two different initial conditions. The corresponding
dashed lines of each color represent the relaxation of the
standard RL-circuit loop. As surmised, the feedback of the
elastic inductor retards the relaxation for all currents, but
the relaxation is asymmetric about steady state, relaxing far
more slowly from above than from below. We now argue that
this behavior is precisely what we would anticipate as the
leading order impact of cellular crosstalk on the analogous
gene circuit in Fig. 1(a).

In our assessment of the kinetics of this plasmid circuit
[see Eq. (5)], we treated the degradation of the protein con-
centration as a Poisson process, with every protein behaving
like an unstable radioactive isotope, modeled to spontaneously
decay at any moment with frequency kD. In reality, the degra-
dation or catabolism of each protein molecule is facilitated
by an enzyme called a protease. Because the variety of pro-
teins in a cell far exceeds the number of different protease
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FIG. 4. The time-dependent current profile of the elastified RL
circuit for two different initial conditions, one above the steady-state
current V/R (in red) and one below it (in blue). All parameter values
(V , R, L, etc.) were set to unity for simplicity. Dashed lines indicate
the behavior of the standard RL circuit initialized from the same
two initial conditions (in matching colors). The inset plots the same
curves over a shorter timescale to better illustrate the exponential
decay of the standard circuit.

enzymes, each type of protease is responsible for catabo-
lizing many different proteins. This resource sharing of a
finite protease pool across multiple protein populations will
universally depress the relaxation of [X ]t back to steady
state, and this kinetic slowdown will be more acute when
there are more X molecules to strain the protease population.
This is, of course, precisely the dynamic behavior described
by Eq. (21).

Crosstalk should also have an effect on the transcription
rate of protein X , which we assumed to be constant in our
previous analysis. In fact, we expect that this rate should fluc-
tuate as a function of the availability of RNA polyermase and
other shared transcription initiation factors. As we shall see
shortly, reproducing the nonlinear dynamics of Eq. (21) will
require us to account for variability in both the transcription
and degradation rates of protein X .

While it is possible to construct a sequence of elemen-
tary reactions that exactly reproduce the functional form of
Eq. (21), the result is not terribly illuminating. Since we only
really wish to schematically reproduce the phenomenology
of asymmetric relaxation, we will instead aim for a simpler
functional target:

d[X ]t

dt
= Vmax(kX − kD[X ]t )

1 + KA[X ]n
t

, (22)

where n � 2 and Vmax and KA are constants (with appropriate
units to make the above dimensionally correct). Aside from
the factor in the numerator that stabilizes the system at the
desired steady-state concentration of kX /kD, the above is es-
sentially a Hill function [25], which is frequently employed in
modeling enzyme kinetics.

A set of elementary chemical reactions whose overall ki-
netics can be described by Eq. (22) is straightforward to
construct:

X + S
kX
↼−−⇁
kD

S,

nX + S
k−
↼−−⇁
k+

SXn (QSSA). (23)
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Note that the latter pair of reactions is assumed to equilibrate
so rapidly that it can be treated as always being at a quasis-
teady state. It then follows that Vmax = [S]tot, where [S]tot ≡
[S]t + [SXn]t is presumed to be a constant independent of
time, and KA = k+/k−.

Our desire to reproduce the behavior of Eq. (21) in the
schematic form of Eq. (22) forced us to introduce a vir-
tual chemical species S into the kinetics. This species can
be identified as a protease enzyme by the forward reaction
X + S −→ S, but the reverse reaction simultaneously identi-
fies it as RNA polymerase or some other transcription initiator
that constituitively controls the transcription of X . This dual
identification is not problematic, since S is ultimately a mathe-
matical construct used to phenomenologically account for the
impact of crosstalk on the kinetics of X . The remaining pair of
reactions uses the formation of a virtual complex SXn to model
S as a limited resource. There will always be some fraction
of S that is busy degrading other proteins, and we represent
this fraction as [SXn]. Note that this concentration will tend to
grow with [X ], thereby modeling the strain the X population
places upon the protease pool.

While introducing a virtual molecular population might
seem troubling at first blush, it must be emphasized that by
doing so we have succeeded in phenomonologically capturing
the impacts of two different types of crosstalk on the kinet-
ics of the protein of interest with only a marginal increase
in mathematical complexity. It remains to be seen how ac-
curately this schematic model can be fit to data from real
biological systems, and the experiments required to make that
assessment will be discussed in the Conclusions section.

B. Schematic model for crosstalk-driven tristability

We next consider the effect of elastifying the inductors in
the simple transformer circuit of Fig. 2(b). In addition to the
flux-current relation of Eq. (20), we also need to know how
the magnetic flux through one inductor coil will be affected
by the current running through the other. In the standard trans-
former circuit, this relation would be linear: φ12 = MI2, where
φ12 is the contribution to the flux through inductor 1 as a result
of the current in inductor 2. In the elastic transformer, the flux
through one coil depends on the magnetic field generated by
the other coil as usual, but now it also depends upon the first
coil’s cross-sectional area. The result is that the magnetic flux
through one coil depends linearly on the other coil’s current
but nonlinearly upon its own current:

φ12 = MI2

(
1 + L1

ε1
I2
1

)2

. (24)

Note that quantities like L1 are now formally defined in terms
of the permeability μ of the ferromagnetic material around
which each solenoid is wrapped rather than the permeability
of free space μ0, and we have further assumed that the en-
wrapped ferromagnetic material expands and contracts so as
to always fill the interior of each solenoid, without impacting
the material’s magnetic properties.

Applying the Kirchhoff voltage law to the elastic trans-
former circuit thus yields the following coupled pair of

equations:

V1 =
(

1 + L1

ε1
I2
1

){[
L1

(
1 + 5L1

ε1
I2
1

)
± M

4L1

ε1
I1I2

]
dI1

dt

± M

(
1 + L1

ε1
I2
1

)
dI2

dt

}
+ R1I1,

V2 =
(

1 + L2

ε2
I2
2

){[
L2

(
1 + 5L2

ε2
I2
2

)
± M

4L2

ε2
I1I2

]
dI2

dt

± M

(
1 + L2

ε2
I2
2

)
dI1

dt

}
+ R2I2. (25)

In the above, the time argument of the currents has been
suppressed for compactness. As with Eq. (13), the “±” signs
must all be either plus or minus. This sign choice results in
only minor differences to the phase portrait of the standard
transformer circuit, due to its guaranteed dynamic stability,
but polarity has a much more pronounced effect on the behav-
ior of the elastic transformer.

In the case where the plus signs are chosen in Eqs. (25),
corresponding to the two RL circuits of the transformer having
their currents rotating in the same direction, the pair of equa-
tions can be algebraically solved for the time derivatives of the
currents, and a representative phase portrait of this system is
plotted in Fig. 5(a). This portrait exhibits a single, stationary
fixed point at the steady state (I1, I2) = (V1/R1,V2/R2); how-
ever, just as with the single, elastic RL circuit, relaxation back
to this steady state is dramatically slower from above than
from below. This leads to four distinct dynamical regimes.

When both currents fluctuate below their steady values
(lower-left quadrant of the phase plot), the relaxation trajec-
tories curve inwards, decaying in an exponential-like fashion
back towards the fixed point. When one current fluctuates
below and the other above (upper-left and lower-right quad-
rants), the return trajectories bend into L shapes, relaxing
completely in one direction before having substantially re-
laxed in the other. Finally, when both currents fluctuate above
their steady-state values (upper-right quadrant), the phase
curves bow outwards, and inductive feedback greatly frus-
trates the return to equilibrium for both loop currents.

If the minus signs are instead chosen in Eqs. (25), solving
for the current derivatives is complicated by the fact that the
quantity in the square brackets in each equation can now be
zero. The bracketed term in the first equation, for example, is
a quadratic polynomial in the current I1 that will be zero under
the following conditions:

I1(t ) = 2M

5L1
I2(t ) ±

√
4M2

25L2
1

I2(t )2 − ε1

5L1

≡ I1±(t ),

I2(t ) >
1

2

(
5L1ε1

M2

)1/2

. (26)

The inequality in the above is required to make I1±(t ) a
real-valued current. Substituting I1 = I1± back into the first
equation of Eqs. (25), we get the following differential
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FIG. 5. Phase portraits of the elastic transformer. (a) A dynami-
cal phase portrait for the elastic transformer circuit in the case where
the two loop currents rotate in the same direction. All parameters
were set equal to unity for convenience, except for the coupling pa-
rameter k, which was set equal to 1/2. The red dot at (I1, I2) = (1, 1)
marks the single, stable fixed point of the system. (b) For the same set
of parameter values, the phase portrait for the oppositely polarized
elastic transformer is plotted. The same stable fixed point exists, but
now there are two additional saddle points that lie along the curves
defined by the sets of current values that reduce one or the other of
the bracketed terms in Eqs. (25) to zero. Two phase trajectories that
illustrate the behavior of the dynamics near these curves are plotted
in green and blue, illustrating, respectively, how these saddle points
either deflect the currents away towards a trivial fixed point at infinity
or back towards the stable fixed point at (1,1).

equation:

dI2(t )

dt
= R1I1±(t ) − V1

M
(
1 + L1

ε1
I1±(t )2

)2 . (27)

Note that since I1± is a function of I2 alone, this differential
equation is uncoupled from the dynamics of I1 and can be
solved independently. The resultant dynamics of I2(t ) then

define those of I1(t ) through Eq. (26). The functional form
of Eq. (27) also makes it clear that this system has an addi-
tional fixed point when I1± = V1/R1. A similar analysis can
be performed if instead it is the square-bracketed term in the
expression for V2 that is zero, and analogs, to Eqs. (26) and
(27) that swap the indices 1 and 2 are the result. It is not
possible for both bracketed terms to be zero simultaneously.

The corresponding phase portrait for this choice of polar-
ization is plotted in Fig. 5(b) for the same parameter values
as in panel (a). For most values of the currents, the vector
field (dI1/dt, dI2/dt ) is determined by algebraically inverting
Eqs. (25). For values that fulfill either Eq. (26) or its index-
swapped analog, however, the dynamics are constrained to
one of two convex curves, each of which contains a hyperbolic
fixed point. These special curves actually serve as attractors
for large swaths of the phase portrait, with trajectories along
one side of the fixed point ultimately being funneled back
towards the stable fixed point at (I1, I2) = (V1/R1,V2/R2) and
those along the other getting shunted off towards infinity.
Representative trajectories illustrating these two dynamical
outcomes are highlighted in the figure. They were computed
by numerically integrating Eqs. (25) with a time step of 
t =
0.1, taking care to switch to using Eqs. (26) and (27) for time
intervals where the trajectory follows the convex curve they
define.

When the loop currents of the elastic transformer rotate
in the same direction, the negative feedback mechanism of
each elastic inductor synergizes with the other to frustrate the
relaxation dynamics even further; when the currents flow in
opposite directions, the individually negative feedback mech-
anisms actually provide positive feedback to one another,
making it possible for the entire system to become destabi-
lized when I1 > V1/R1 and I2 
 V2/R2 (or vice versa). This
destabilization drives both currents towards infinity, leading to
circuit failure or overload. Even for arbitrarily large currents,
however, stability will be maintained so long as (V2/R2)I1 ≈
(V1/R1)I2, although the competition between stabilizing neg-
ative and destabilizing positive feedback results in the already
slow relaxation dynamics of each elastic inductor becoming
even slower.

The divergent behavior of the elastic transformer seems
to disqualify it as a model for cellular crosstalk, since it is
hard to imagine mutual transcriptional regulation driving un-
bounded growth; but recall that our analogy between genetic
and magnetic circuits was predicated upon an assumption of
linearized chemical kinetics near steady state. Concentrations
that diverge away from their steady-state values violate that
assumption of linear stability, invalidating our analogy in
the problematic region of the phase portrait of Fig. 5(b). Of
course, if our analogy between magnetic and genetic crosstalk
is to have any value, this breakdown in linearity must at
least be assigned some plausible physical significance in our
biochemical system.

The oppositely polarized transformer configuration is
equivalent to mutual transcriptional repression in our anal-
ogy, and the genetic circuit consisting of two genes whose
encoded proteins X and Y repress each other’s transcription
can be shown to behave as a so-called “genetic toggle switch”
when the kinetics of repression are sufficiently nonlinear [26].
Essentially, when the maximal rate of repression is weak, the
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system exhibits a single stable fixed point for 〈[X ]〉 = 〈[Y ]〉
(assuming symmetric repression rates); but when the repres-
sion rate passes a critical threshold, the original stable fixed
point becomes unstable, pushing the concentrations towards
one of two new stable fixed points—one for which 〈[X ]〉 >

〈[Y ]〉 and the other for which 〈[Y ]〉 > 〈[X ]〉. Appropriate in-
ducers can then be used to push the system from one of these
fixed points to the other, hence the reason for calling this gene
circuit a toggle switch.

Phenomenologically, the two phase portraits in Fig. 5
resemble this kind of switch from a unimodal to a multi-
modal system, where the true nonlinear kinetics would have
to move the two attractors at infinity in Fig. 5(b) to finite
positions within the phase portrait. Since the original fixed
point remains stable in both cases and merely has its basin
of attraction circumscribed in the latter, this system would be
a tristable switch. A more crucial difference here is that the
transition between the number of fixed points is not achieved
by smoothly tuning the coupling strength between the two
circuits, but rather by flipping their relative polarity. The
character of transcriptional regulation, i.e., promoting versus
inhibiting interactions, is set by the biology of the system
and cannot be toggled freely. Consequently, the tristability
of the repressive circuit should be understood instead as a
fundamental consequence of the nonlinearities imposed on the
kinetics by crosstalk.

We emphasize that at this point we are merely speculating
that tristability is the most plausible biochemical interpre-
tation of the divergences observed in Fig. 5(b), but this
speculation is supported by the findings of more biologically
detailed models of transcriptional circuits that have previ-
ously identified crosstalk as a potential source of multistability
[27,28]. Experimental evidence that crosstalk can specifically
cause a unimodal system to become trimodal has even been
found for a synthetic gene circuit inoculated into the bac-
terium E. coli [29].

In order to devise a set of elementary chemical reactions
that schematically reproduce the behavior of Eqs. (25), we
once again make some helpful simplifications. By neglecting
cross terms proportional to I1I2 as well as any terms of order
M2, we can invert Eqs. (25) into the following form:

dI1

dt
= V1 − R1I1

L1
(
1 + L1

ε1
I2
1

)(
1 + 5L1

ε1
I2
1

)
︸ ︷︷ ︸

Circuit 1

∓ M
(
1 + L1

ε1
I2
1

)
L1

(
1 + 5L1

ε1
I2
1

) V2 − R2I2

L2
(
1 + L2

ε2
I2
2

)(
1 + 5L2

ε2
I2
2

)
︸ ︷︷ ︸

Circuit 2

. (28)

In the above, the time dependence of the currents has been
suppressed for compactness and the rate law for I2 has exactly
the same form but with the indices 1 and 2 swapped. This
simplified form is appealing because it explicitly contains the
contributions of the two individual elastified RL circuits [as
given by Eq. (21)].

In the mutually repressive case, we can recover some of the
divergent character of the exact phase portrait by creatively
reducing Eq. (28) to the following schematic rate law, now

0

2

4

6

0 2 4 6
[X]

[Y ]

FIG. 6. Phase portrait of the mutually regulating plasmid circuit
with crosstalk. The dynamical phase portrait defined by Eqs. (29)
and (30) is plotted for Umax = U ′

max = 1/2 and all other parameters
equal to unity (an equivalent parameter set to that used for the phase
portraits in Fig. 5). Once again, the red dot marks the fixed point at
(1,1).

expressed in chemical kinetics terms:

d[X ]t

dt
= Vmax(kX − kD[X ]t )

1 + KA[X ]n
t

+ Umax
(
1 + KA[X ]n

t

)
(kY − kD[Y ]t )

1 + QA[Y ]m
t

. (29)

The corresponding differential equation for [Y ]t is

d[Y ]t

dt
= V ′

max(kY − kD[Y ]t )

1 + QA[Y ]m
t

+ U ′
max

(
1 + QA[Y ]m

t

)
(kX − kD[X ]t )

1 + KA[X ]n
t

. (30)

A representative phase portrait for this system of equations
is plotted in Fig. 6, demonstrating that this schematic model
retains the phenomenology of a centrally stable region where
[X ] ≈ [Y ] is flanked by two unstable regions for [X ] 
 [Y ]
and [Y ] 
 [X ].

We sensibly expect the kinetics of this system to reduce,
in the absence of coupling, to the rate law given by Eq. (22),
meaning that the elementary reactions that lead to Eq. (29)
must, at bare minimum, include

X + S
kX
↼−−⇁
kD

S

nX + S
k−
↼−−⇁
k+

SXn (QSSA)

Y + Q
kY

↼−−⇁
kD

Q

mY + Q
q−
↼−−⇁
q+

QYm (QSSA). (31)

042417-9



KEVIN R. PILKIEWICZ AND MICHAEL L. MAYO PHYSICAL REVIEW E 103, 042417 (2021)

In addition to the above, the coupling between proteins X and
Y will be mediated through the additional set of reactions

(QSSA)

{
Q

qA−→ Q + A

SXn + A
kA−→ SXn,

(QSSA)

{
S

qB−→ S + B

QYm + B
kB−→ QYm,

nX + A
kY−→ (n + 1)X + A,

nX + Y + A
kD−→ (n − 1)X + Y + A,

mY + B
kX−→ (m + 1)Y + B,

mY + X + B
kD−→ (m − 1)Y + X + B. (32)

Though not immediately obvious, the above collection of
elementary reactions does indeed produce the rate laws
of Eqs. (29) and (30), with KA ≡ k+/k−, QA ≡ q+/q−,
Vmax ≡ [S]tot, V ′

max ≡ [Q]tot, Umax ≡ (qA/kA)([Q]tot/[S]tot ),
and U ′

max ≡ (qB/kB)([S]tot/[Q]tot ). This looks rather compli-
cated and arbitrary, but the four virtual species we have
introduced all have reasonable interpretations.

The proteins S and Q may still be interpreted dually as
both transcription initiators and protein degraders, and the first
set of bracketed reactions in Eqs. (32) indicate that species
A represents one of the other proteins transcribed by Q that
S also degrades. Note that it is SXn that degrades A because
SXn is the fraction of S not occupied with the degradation or
transcription of X . The species B is, analogously, a virtual
species transcribed by S and degraded by Q (in the form
QYm). Both virtual species A and B are assumed to exist in
a quasisteady state.

The remaining two reactions involving A describe its role
as an intermediary for the regulation of X by Y . The species A
is assumed to be a transcription factor for X , and Y is modeled
as repressing the transcription of X principally by interfering
with the binding of A. The virtual species S is still the principal
promoter of X transcription, so the promoter site for protein X
will only be vacant for A or Y to bind if the concentration of
X is large, in which case S will be tied up acting in its role as
protease. This restriction is enforced by including nX on the
left-hand side of both reactions. The species B promotes Y in
an analogous manner and this process is similarly frustrated
by X .

IV. CONCLUSIONS

In this paper, we have established a mathematical analogy
between the linearized kinetics of mutually regulating plas-
mid circuits near homeostasis and the current dynamics of
inductively interacting magnetic circuits. Within this analogy,
a protein concentration near steady state is represented as
a simple RL-circuit loop, and the transcriptional regulation
of two such proteins by each other is represented by induc-
tively coupling two RL circuits by a loop of ferromagnetic
material, as in a transformer. By itself, this analogy is not
terribly remarkable, as nearly all physical systems exhibit
similar phenomenology when linearized about a stable fixed
point in their dynamics. What is noteworthy, however, is the
manner by which we meaningfully translate a nonlinear feed-

back mechanism introduced into the magnetic system into a
schematic kinetic theory for the influence of crosstalk on the
stability of a cell’s biochemical state that does not explicitly
depend upon knowing the dynamic concentrations of shared
biomolecular resources. Instead, our model introduces virtual
chemical species whose presumed quasisteady total concen-
trations serve as free parameters that modulate the strength of
the crosstalk interactions.

For a plasmid circuit with a single, constitutively regulated
gene, we predict that its steady-state concentration should
relax at vastly different rates depending upon whether the
relaxation is driven by further transcription of the gene or by
protein catabolism. This is consistent with the fact that most
transcription factors, which regulate the rate of the former pro-
cess, typically only influence the production rates of a small
number of different genes, whereas protease enzymes, respon-
sible for the latter process, degrade a large number of different
gene products. As a result, we expect the protease supply of
a cell to be more susceptible to crosstalk and, consequently,
the degradation of a protein excess to be much slower than the
recovery from a protein deficiency. Our analogy suggests that
we can model this asymmetry by introducing a single virtual
molecular species into the model, which acts simultaneously
as a transcriptional promoter and a protease enzyme, the pre-
cise stoichiometry of which can be used to tune the sensitivity
of the kinetics to fit experimental measurements.

For a plasmid circuit consisting of two mutually repressive
genes, we predict that crosstalk can prevent the system from
relaxing back to steady state at all if the concentration of
one gene product becomes too much larger than the other.
Because the nonlinear contributions to the model in this case
violate our initial assumption of linear stability, we cannot
predict precisely what becomes of the diverging trajectories,
but it is reasonable to assume they eventually reach new steady
states. This implies that resource limitations can render cells
more adaptable, able to switch between different biochemi-
cal states depending upon how metabolic constraints impact
transcriptional rates. For this system, our analogy requires we
introduce two virtual species for each gene product (four in
total), with one species of each pair governing the crosstalk
experienced from constitutive regulation and catabolism (as
in the previous case) and the other characterizing the crosstalk
associated with mutual regulation.

Although our analogy between genetic and magnetic cir-
cuits succeeds in reproducing much of our intuition about how
crosstalk should modulate gene regulation, there are some
fundamental incompatibilities between the biochemistry of
the former and the physics of the latter that still need to be
addressed. For starters, the inherent symmetry of inductively
coupled circuits seems to preclude the extension of the anal-
ogy to a broad class of plasmid circuits that are not mutually
regulating or that have mutual but asymmetric regulation, e.g.,
when protein X promotes transcription of protein Y , but Y
represses transcription of X . Since the elastic inductor formal-
ism we devised was merely a mathematical construct used to
incorporate crosstalk into our magnetic circuits, with no re-
gard for whether such a component was physically realizable,
we could conceivably address this limitation by introducing
another fictitious component, such as a ferromagnetic loop
that only permits magnetic flux to flow in one direction. While
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physically unreasonable, such a construct might mathemati-
cally allow for asymmetrically coupled RL-circuit loops that
could then map, through our analogy, to gene circuits with
unidirectional regulation.

A second issue is the fact that linear circuit theory has
constrained our analogy to focus on dynamics close to steady
state, even though many plasmid circuits of interest have dy-
namic behavior that switches or oscillates between multiple
stable fixed points. While one solution might be to account
for the higher order nonlinearities in the electromagnetic cir-
cuit components, there is no guarantee that our analogy with
chemical kinetics will hold up beyond linear order. A better
solution is to do what one often does with complex, nonlinear
systems and simply perform a separate linearization about
each fixed point. Once the dynamic behavior near each fixed
point is characterized, one can typically predict, at least quali-
tatively, how the system will behave in the regions in between.
The fundamental stability of transformer circuits would seem
to make the characterization of the dynamics near an unstable
fixed point untenable, but this can be resolved, as described
earlier, by artificially choosing an inductive coupling parame-
ter k > 1.

A final drawback of note derives from the fact that chem-
ical kinetics is really only valid for descriptions of large
systems where discrete numbers of proteins can be ap-
proximated as continuous concentrations. The transcriptional
regulation within a single cell is often better modeled by
discrete, stochastic master equations, which only map to the
continuous, deterministic rate laws of chemical kinetics under
certain circumstances (such as when averaged over a large
cellular population). While it is straightforward to use the
same set of elementary reactions to build either a discrete or
a continuous chemical model, the same cannot be said for a
magnetic circuit. While it is true that the continuous currents
we have identified as being analogous to protein concentra-
tions do in fact arise from the stochastic transport of discrete
charge carriers, there is a vast difference in scale between
a microscopic electron and a macroscopic circuit that is not
present in the biological context, where both discrete and
continuous models describe microscopic processes. There is
no obvious solution to this particular weakness of our analogy,
other than to be grateful that most experimental measurements
of protein expression are done at the population level, where
chemical kinetics provides a reasonable description of expres-
sion profiles.

While the schematic kinetic models of resource-limited
crosstalk that we have derived make seemingly reasonable
predictions, their true sensibility must be validated experimen-
tally. Ideally, what we want to analyze is a bacterial population
in homeostasis, i.e., steady state, that has been inoculated
with a plasmid circuit with several important characteristics.
First, we want the principal gene product of the plasmid to
be a fluorescent protein whose concentration can be measured
at different times with optical microscopy. Second, we want
the transcription rate of the plasmid to be dependent upon
the external concentration of an inducer or inhibitor, so that
the experimentor has a means of pushing the protein con-
centration away from its stable equilibrium value. Pulsing
this system with an inducer, for example, and subsequently
measuring the amount of fluorescence in the population at

several later times would provide relaxation data that could be
directly compared with the predictions of our model [specifi-
cally Eq. (22)].

The second constraint is easily met. The well-known pro-
moter pBAD, for example, can be leveraged to produce green
fluorescent protein at a rate that can be manipulated by varying
the concentration of the sugar arabinose present in the bacte-
rial medium [30,31]. Maintaining a cellular population in a
homeostatic steady state, on the other hand, presents a much
greater obstacle. When grown withinin a Petri dish or some
other finite volume of nutrient-rich medium, for example, a
bacterial population will eventually saturate at a stationary
level as its food source dwindles [32], but this so-called “sta-
tionary” phase is a resource-starved survival state, and is not
representative of truly homeostatic behavior [33,34], preced-
ing a precipitous population crash once the pool of nutrients
is fully depleted.

A long-lived steady state can be achieved within a cellu-
lar population, however, by using the microfluidic chemostat
known colloquially as a mother machine [35]. In this de-
vice, cells are grown within channels so narrow that they are
roughly constrained to lie in single file. Once a channel is
full, the addition of a new cell through mitosis will force the
topmost cell out of the channel into a wider, perpendicular
channel where it will be whisked away by a constant flow of
fresh medium. This medium, meanwhile, can diffuse through
the side channels to provide a continuous source of nutrients
to the cells. Only the “mother” cell at the very bottom of
each channel will be in a true state of homeostasis, since its
proximity to the feeding channel will never change; but, so
long as the mother machine has a large number of growth
channels, the set of mother cells can be treated as the homeo-
static population whose time-resolved fluorescent expression
can be measured.

If the basic phenomenology of our crosstalk model can
be validated in the laboratory, then our framework can be
extended to predict the resource-limited dynamics of more
complex plasmid circuits. For any such circuit, our approach
requires a reasonable model of its isolated chemical kinetics
as input. After identifying the fixed points of the presumably
nonlinear kinetics, one would then linearize the dynamics
about each fixed point and determine the topology of the
analogous magnetic circuit. After elasitifying the inductors
in this circuit, one would then analyze the nonlinear current
dynamics near each fixed point and map those behaviors
schematically to sets of elementary chemical reactions. Note
that while in reality crosstalk would also shift the positions of
the fixed points, that is something we would account for when
fitting the parameters of the model to experimental data. For
simply predicting the overall performance of the gene circuit,
however, we would merely need to combine the nonlinear
phase portraits near each fixed point to predict the possible
phase trajectories of the entire system for various initial con-
ditions.
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