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Deterministic and stochastic evolutionary processes drive adaptation in natural populations. The strength of
each component process is determined by the population size: deterministic components prevail in very large
populations, while stochastic components are the driving mechanisms in small ones. Many natural populations,
however, experience intermittent periods of growth, moving through states in which either stochastic or determin-
istic processes prevail. This growth is often countered by population bottlenecks, which abound in both natural
and laboratory populations. Here we investigate how population bottlenecks shape the process of adaptation. We
demonstrate that adaptive trajectories in populations experiencing regular bottlenecks can be naturally scaled
in time units of generations; with this scaling the time courses of adaptation, fitness variance, and genetic
diversity all become relatively insensitive to the timing of population bottlenecks, provided the bottleneck size
exceeds a few thousand individuals. We also include analyses at the genotype level to investigate the impact
of population bottlenecks on the predictability and distribution of evolutionary pathways. Irrespective of the
timing of population bottlenecks, we find that predictability increases with population size. We also find that
predictability of the adaptive pathways increases in increasingly rugged fitness landscapes. Overall, our work
reveals that both the adaptation rate and the predictability of evolutionary trajectories are relatively robust to
population bottlenecks.
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I. INTRODUCTION

As we face the evolutionary emergence of novel pathogens
on a global scale, the need for predictive models of micro-
bial evolution has never been more apparent. In microbial
adaptation, both deterministic processes such as selection, and
stochastic processes such as mutation and drift, drive the adap-
tive process. Nonetheless, predictability may be an attainable
goal, at least partially, because deterministic evolutionary pro-
cesses prevail in the large population sizes that characterize
many microbial communities [1–3].

These large population sizes, however, may not be constant
across time. Microbial populations can experience periods
of rapid growth, when resources are plentiful, and popula-
tion bottlenecks are often the necessary consequence of these
rapid expansions. Thus, population bottlenecks are repeat-
edly observed in seasonality, predator-prey dynamics, and
pathogen-host dynamics, as well as being a key feature of
many experimental protocols for the study of adaptation [4].
While deterministic processes dominate the period of popula-
tion expansion before the bottleneck, bottlenecks themselves
can increase the stochasticity of the evolutionary trajectory.
How do these conflicting forces play out in the adaptive tra-
jectory? Do bottlenecks reduce or enhance adaptation, and do
they reduce or enhance predictability?

We will address these questions using a computational
model of an adapting population, in which we can manipulate
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the population size, the length of the growth phase, and the
severity of the bottleneck. Central to any such model is the
fitness landscape, that is, the mapping between genotype (or
phenotype) and the expected growth rate of that type; fitness
landscapes have been the the focus of both theoretical and
experimental investigations stretching back over decades (for
review, see Refs. [1,2,5–8]). In the absence of epistasis, the
genotype-to-fitness landscape can be described as “smooth”
(equivalently: single-peaked, correlated). In this case, each
beneficial allele makes a fixed contribution to fitness—fixed
in the sense that the benefit does not change depending on
the genetic background in which the allele occurs. Maximum
fitness is realized by a genotype that carries all possible bene-
ficial alleles, and thus the landscape has a single fitness peak.
In contrast, a “rugged,” multipeaked or uncorrelated landscape
may have multiple fitness peaks, and the fitness contribution
of particular alleles depends on the genetic background, that
is, on alleles at other loci in the genome. For an adapting pop-
ulation, the end-points of adaptation may be less predictable
on rugged landscapes, however, the evolutionary trajectories
through sequence space may also be more constrained by sign
epistasis [3,9].

Multiple lines of experimental evidence, largely from mi-
crobial populations, suggest that fitness effects in fitness
landscapes are not fully correlated, that is, epistasis is preva-
lent ([10–12], see Ref. [13] for review). However, measures
of predictability and parallel evolution in several experi-
ments strongly suggest that fitness landscapes are not fully
uncorrelated either; many mutations retain their beneficial
effect across a range of genetic backgrounds [14–16]. Thus,
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microbial adaptation seems to occur on fitness landscapes that
lie somewhere between completely smooth and maximally
rugged landscapes [16].

In the modeling literature, single-peaked fitness landscapes
are far more tractable mathematically, and have been widely
used [17–21]. Both the Block model [22,23] and the NK
model [24,25] offer fitness landscapes that are tunably rugged,
that is, they are partially correlated and parameter values can
be used to manipulate the extent of this correlation. Several
examples of empirically derived fitness landscapes are also
now available, demonstrating varying degrees of epistasis
([2,7,8], for review see Ref. [1]). Recent statistical analyses,
however, have demonstrated that any single realization of a
fitness landscape is likely to incorporate idiosyncratic features
or misleading correlations that disappear on examination of
an ensemble of landscapes [26]. Thus, while empirical fitness
landscapes are clearly the gold standard for examining any
particular evolutionary trajectory, the use of any single empir-
ical landscape to draw general conclusions about adaptation
may be misleading.

Here, we investigate a well-established model of a partially
correlated fitness landscape, the NK model [24], and simulate
adapting asexual populations with changing population sizes.
Using the NK model allows us to generate a large number
of replicate fitness landscapes, and draw general conclusions
over this ensemble. This approach also allows us to indepen-
dently manipulate the overall degree of epistasis, population
size, and mutation rate.

Population bottlenecks are a standard protocol in many
microbial evolution experiments, and their effects on evo-
lutionary trajectories have been a topic of renewed interest
recently [27,28]. Previous work has suggested that the adapta-
tion rate of large asexual populations will be maximized at an
intermediate bottleneck ratio [29]. Because of the stochastic-
ity inherent in bottlenecks, another natural hypothesis is that
bottlenecks should reduce the predictability of evolution. In
the sections to follow, we examine each of these hypotheses,
demonstrating that both adaptation and predictability are sur-
prisingly robust to population bottlenecks.

II. METHODS

The simulation tracks a population of asexual individuals
whose fitness values are determined by their genotype �S.
Each individual is represented as a genome of L loci, �S =
(s1, s2, . . . , sL ), where sα = {0, 1}. The L-dimensional geno-
type space consists of all M = 2L possible sequences.

A fitness landscape is a mapping from a set of genotypes,
equipped with some notion of adjacency, nearness, distance
or accessibility, into fitness values [30]. In the NK fitness
landscape model considered here, there exist interdependen-
cies (epistatic interactions) between the loci comprising the
genome: If an allele at a given locus changes, then it af-
fects both the fitness contribution of the focal locus and the
contributions of any loci that are epistatically coupled to the
focal locus. In particular, the degree of epistasis is tuned by
the parameter K . Thus, the contribution of locus j to the
overall fitness, ω j , is a function given by ω j = g[s j,�( j)],
that depends on state of locus j, s j , and on the state of a set
of K neighbors, �( j). In our formulation, the K neighbors are

randomly chosen among the remaining L − 1 loci. Therefore,
for each locus j, a lookup table consisting of 2K+1 entries is
built, whose values, ω j , are drawn from an uniform distribu-
tion (0,1]. Finally, the overall fitness of the genotype is taken
as the arithmetic mean of the contributions of all loci, i.e.,

f = 1

L

∑
j

ω j . (1)

In the limit K = 0, the NK-fitness landscape is said to
be additive, as the fitness contribution of each element of
�S is independent of all others. This means that the allele
at each locus can be optimized independently. The resulting
fitness landscape is smooth and single-peaked. At the other
extreme, K = L − 1, the change of a single locus adjusts the
contribution of all elements to the overall fitness. In this case,
the fitness landscape is maximally uncorrelated, and typically
contains a large number of fitness peaks.

A. Simulation protocol

In our simulation protocol, initially the population is iso-
genic and all sequences are set to the antipode of Smax, the
global optimum of the fitness landscape. Accordingly, the
Hamming distance from the initial genome to the global op-
timum of the fitness landscape is always equal to L. The
population size is variable: we simulate a population of initial
size N0 that experiences a growth phase for τ discrete genera-
tions (doublings), reaching size Nf , where Nf = 2τ N0. At the
end of the growth phase, the population of size Nf is subject to
a bottleneck protocol; in particular, N0 individuals are chosen
uniformly at random to form the next founding population.

During the growth phase, the population doubles its size at
every time step. Following the standard Wright-Fisher model
with nonoverlapping generations, the individuals replicate
proportionally to their fitness values. In particular: for each of
the Ng newborn individuals in generation g, a uniform random
number is generated and compared to the normalized sum of
fitnesses in generation g − 1 to determine the parent of that
newborn. Newborn individuals inherit the parental genotype,
but mutations occur randomly with a fixed probability U per
generation. During evolution, we keep track of the evolution-
ary pathway, and unless stated otherwise, the process is only
stopped when the population reaches the global optimum,
Smax, of the fitness landscape.

B. Characterization of the evolutionary pathways

We note that in many previous theoretical and especially in
computational studies of adaptive walks, the population is as-
sumed to remain isogenic during the adaptive process [31,32].
Departures from this assumption are negligible in the strong-
selection weak-mutation regime, i.e. when U � (N log N )−1.
For the mutation rates and population sizes studied here, how-
ever, the population is more accurately described as a cloud of
mutants around a given sequence. If mutation rates are not too
large the cloud of mutants will cluster around the sequence of
maximum fitness value.

As mentioned, we track the entire array of sequences
visited (�S0, �S1, . . . , �Sn) in a given evolutionary pathway. Par-
ticularly, we are concerned with the most fit genotype along
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the evolutionary trajectory. When the most fit sequence in
the population changes, it is added to the list. We note that
alternative methods to build the evolutionary pathway can be
used, such as following lines of descent, as implemented by
Szendro et al. [3]. While our approach characterizes aspects of
the evolutionary trajectory of the population, lines of descent
trace the evolutionary pathway of a single genotype. Whether
the qualitative results we present here are robust to such dif-
ferences in pathway definition remains an interesting question
for future work.

After many independent trials, an ensemble of trajectories
is then considered to produce the statistical analysis. The start-
ing and ending points of these evolutionary trajectories are
always the same (unless stated otherwise): Sn = Smax, and S0

is the antipode of Smax. However, the number of steps, n, in the
evolutionary pathway is variable and dictated by the dynamics
themselves. Before analysis, the trajectories are purged of
loops (if a sequence appears more than once in an evolutionary
pathway, which characterizes a loop structure, the pathway is
redefined with the loop removed). This is to avoid situations
in which a fitter genotype is generated and then lost (does not
increase in frequency), not truly characterizing a displacement
of the population to a new fitter sequence.

Among the quantities of interest are the predictability
and the mean path divergence [1,33–35]. Predictability with
respect to the paths is a measure of the repeatability of the evo-
lutionary pathway, and its inverse can be seen as the number of
effective pathways exploited by the dynamics. Predictability
is defined as

P2 =
∑

qα

φ2(qα ), (2)

where φ(qα ) is the observed frequency of trajectory qα in the
ensemble, and the sum is taken over all trajectories in that
ensemble. Alternatively, the mean path divergence is used
to assess the similarity between evolutionary pathways, and
relies on the estimate of the pairwise divergence d (qα, qβ )
between paths qα and qβ . For each sequence Sα comprising
pathway qα , we estimate the Hamming distance from that se-
quence to every sequence in qβ , h(Sα, qβ ). The lowest distance
is then stored, and the process is repeated until all sequences
in qα are rated. The process is then repeated in reverse, from
qβ to qα . The divergence d (qα, qβ ) is taken as the mean value
of those shortest Hamming distances [33,36]:

d (qα, qβ ) = 1

nqα
+ nqβ

⎛
⎝ ∑

Sα∈qα

h(Sα, qβ ) +
∑

Sβ∈qβ

h(Sβ, qα )

⎞
⎠,

(3)

and the mean path divergence is then estimated as

d̄ =
∑

qα

φ(qα )
∑
qβ

φ(qβ )d (qα, qβ ), (4)

where the sum is carried out over the ensemble of evolutionary
pathways. A previous study has shown that the two quantities,
P2 and d̄ , are negatively correlated, although such a claim
may not be generalizable, as such correlations may strongly
depend on the topological properties of the underlying fitness
landscape [26].

III. ANALYTICAL RESULTS
1. Expected fitness values

The expected fitness value of the global optimum (GO)
of the NK fitness landscape can be predicted analytically for
any sequence length L, for the two asymptotic cases K = 0
(a smooth landscape) and K = L − 1 (a maximally rugged
landscape). These expectations are not only of theoretical
interest, but, importantly, allow us to independently validate
the computational implementation of the fitness landscape
described above.

We use an additive fitness function in which the contri-
bution of locus i, ωi, is drawn from a uniform distribution,
U (0, 1]. When K = 0, the contribution of locus i to the GO
fitness, fmax, is the maximum of the two possible fitness
values at locus i. It is straightforward to demonstrate that the
expected value of the maximum of two draws from U (0, 1] is
2/3. Thus, the GO fitness fmax is given by 1/L times the sum
of L independent, identically distributed random variables,
each of which has expected value 2/3. The expected value
of the GO, E [ fmax], is thus 2/3.

When K = L − 1, each of 2L possible sequences is inde-
pendently assigned a fitness value. Each of these fitness values
is computed as 1/L times the sum of L draws from U (0, 1].
The cumulative density function (cdf) for the sum of L draws
from U (0, 1] is given by the Irwin-Hall distribution [37,38]:

HL(x) = 1

L!

�x�∑
i=0

(−1)i

(
L

i

)
(x − i)L.

Let F denote the random variable for the fitness of a sequence.
To determine the expected value of the GO, we first compute
the cdf of the GO, M(x). This gives the probability that the
maximum of 2L independently drawn values of F is less than
or equal to x:

M(x) = Prob(maximum of 2L values of F � x) (5)

= Prob(maximum of 2L draws from HL � Lx) (6)

= Prob(each of 2L draws from HL � Lx) (7)

=
2L∏

k=1

HL(Lx) (8)

=
2L∏

k=1

1

L!

�Lx�∑
i=0

(−1)i

(
L

i

)
(Lx − i)L. (9)

The expected value of the GO is then given by integrating
the product of x with the probability density function associ-
ated with M(x):

E [ fmax] =
∫ ∞

0
x

d

dx
M(x)dx. (10)

In Fig. 1, we illustrate these analytical predictions of
E [ fmax], for K = 0 and K = L − 1, along with results for
the observed value of fmax, averaged over 100 000 simulated
landscapes. As expected, the analytical predictions agree with
simulation results when K = 0 or K = L − 1, and in all other
cases give upper and lower bounds on E [ fmax]. We further
observe that for the relatively short sequences we investigate,
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FIG. 1. Global optimum, antipode of global optimum and global
minimum fitness values, versus sequence length, L. The analytical
prediction [Eq. (10), evaluated numerically] for the global optimum
fitness, E [ fmax], is shown for K = L − 1 (magenta solid line), along
with the analytical prediction of E [ fmax] = 2/3 for K = 0 (magenta
dotted line). Analogous analytical predictions for the global min-
imum fitness are shown for comparison (black lines). Simulation
results are shown for comparison for K = 1, 2, 3 and 4 (magenta
and black symbols as indicated). Simulation results for the expected
fitness of the antipode of the global optimum are shown in blue,
along with the asympotic expectation (0.5 for large L and K = L − 1,
dashed line). Simulation results show the mean across 100,000 ran-
domly generated fitness landscapes in each case. Error bars for
simulation results are similar to symbol heights and omitted for
clarity.

the GO fitness depends strongly on the ruggedness of the
landscape (K) and weakly on sequence length (L).

For comparison, we also plot the global minimum fitness
(black) and the fitness of the antipode of the GO (blue) in
Fig. 1. By analogous arguments, is straightforward to demon-
strate that the expected value of the global minimum is simply
1 − E [ fmax]. When K = 0, the global minimum corresponds
to the antipode of the GO, and thus the expected value of the
global minimum and the antipode of the GO is 1/3 (black
dotted line). When K = L − 1, the fitness of the GO antipode
is given by a randomly chosen fitness from the landscape,
conditioned by the fact that the chosen fitness is not the GO.
Thus, the GO antipode fitness approaches the mean landscape
fitness, 1/2, as L increases. For smaller values of L, the ex-

pected fitness of the GO antipode is less than 0.5, because this
conditioning has a more pronounced effect when L is small.

2. Wright-Fisher comparison

To assess the impact of population bottlenecks on pre-
dictability, we would like to compare results with constant-
sized populations. In this subsection we demonstrate that our
simulation protocol, when τ = 1, is formally equivalent to a
Wright-Fisher population maintained at a constant size.

Consider a discrete time Wright-Fisher model with con-
stant population size N , in which the ith individual in the
population has absolute fitness Wi. This parent individual i has
a Poisson-distributed number of offspring with expected value
Wi, and these offspring are sampled to form the next gener-
ation. It is standard to assume that the number of offspring
is large, such that offspring can be sampled with replace-
ment, that is, each offspring is selected independently with
a fixed probability. To maintain a constant population size, the
sampling probability must be 1/W̄ , where W̄ is the mean pop-
ulation fitness. The probability generating function (pgf) for
the descendants of individual i in the next generation, Fi(x),
is then given by the composition of the Poisson offspring pgf,
exp[Wi(x − 1)] and the binomial sampling pgf, (1 − p) + px
(where p = 1/W̄ is the sampling probability):

Fi(x) = exp

[
Wi

((
1 − 1

W̄

)
+ 1

W̄
x − 1

)]
(11)

= exp

[
Wi

W̄
(x − 1)

]
. (12)

Thus, the net effect of this process—a large, Poisson-
distributed number of offspring, followed by independent
sampling with a constant probability—is the same as a Pois-
son distribution of descendants with mean Wi

W̄ .
In the simulations to follow, the population size doubles for

τ generations, with each individual contributing offspring to
the next generation in proportion to their relative fitness. The
population is then sampled with sampling probability 2−τ .
When τ = 1, the contribution of the ith member of the initial
population (of size N0) to the next population of size N0 (after
one cycle of growth and one bottleneck) is therefore given by

fi(x) = exp

{
2Wi

W̄

[(
1 − 1

2

)
+ 1

2
x − 1

]}
(13)

= exp

[
Wi

W̄
(x − 1)

]
= Fi(x). (14)

Thus, in the results to follow, cases illustrated for τ = 1 (often
the extreme or asymptotic cases) are equivalent to a standard
discrete time Wright-Fisher model at fixed population size
N0. In other words, the case τ = 1 reveals the behavior of a
Wright-Fisher population in the absence of population bottle-
necks.

IV. SIMULATION RESULTS

We will first investigate the role of population bottlenecks
in adaptation in Sec. IV A. In particular, we are interested
in the conditions that optimize the rate of adaptation. In
Sec. IV B, we turn our attention to the characterization of
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FIG. 2. Fitness trajectories, that is, mean population fitness versus time for different bottleneck ratios (upper panels) and fitness versus
bottleneck size at different times (lower panels). Time is measured in units of bottlenecks (left panels) and doublings (right panels). The
parameter values are mutation rate U = 1 × 10−4, sequence size L = 8, epistasis parameter K = 2, and Nf is set at Nf = 215 = 32 768. The
bottleneck sizes are indicated in the legends. In the bottom panels the curves correspond to fixed numbers of bottlenecks (or doublings) as
indicated in the legends.

evolutionary pathways and how their statistical properties are
affected by the bottlenecks.

A. Optimal adaptation rate

When investigating which bottleneck protocol optimizes
the adaptation rate, we must consider both the underlying
demographics that will be deemed “comparable,” and the
“rate” we seek to optimize [4]. Here, we consider the rate at
which the mean population fitness increases, that is, the rate
of at which de novo beneficial mutations occur, survive, and
increase mean fitness. It is also necessary to define the time
unit in this rate: as will become apparent in the figures to
follow, the optimal adaptation rate differs if we consider the
adaptation rate per “birth” event in the population, per gener-
ation (doubling), or per bottleneck. Since τ doublings occur
per bottleneck, it is clear that tdoubling = τ tbottleneck. Similarly,
the population begins at size N0 and doubles τ times, such that
the total number of births between bottlenecks is 2N0(2τ − 1),
and thus the total number of births after several bottlenecks
is tbirth = 2N0(2τ − 1)tbottleneck. The factor 2N0(2τ − 1) corre-
sponds to the sum of a finite geometric series of first term 2N0

and common ratio 2. Once more, we highlight that nonover-
lapping generations are considered. Each of these rates may
have practical relevance: If the population is resource-limited,
then a limited total number of new births may be possible, and
thus the adaptation rate per birth might be the critical factor
in an evolutionary rescue scenario; if we are concerned with
environmental change that occurs at a pace set by calendar

time, then the adaptation rate per generation time may be
relevant; if we consider an experimental population for which
the bottleneck process itself is labor-intensive, then adaptation
per bottleneck will be the appropriate rate to compare across
cases. Demographically, bottleneck ratios will be compared
across populations that have either the same initial population
size, or the same final population size.

B. Fitness trajectories

Figure 2 shows average fitness trajectories for different
bottleneck ratios. The data correspond to an average of 1000
replicates each for over 50 distinct randomly drawn fitness
landscapes. Here, the population size after the growth phase
is fixed, Nf = 215 = 32768. The fitness trajectories are shown
in time units of bottlenecks (left panels) and in time units of
doublings (right panels).

Figure S11 [39] displays how the mean selective effect
of the beneficial and the proportion of beneficial mutations
evolve over time. The rapid drop of both quantities is a clear
signature of the pattern of diminishing returns [40], and ex-
plains why the rate of increase of fitness slows down with
time.

We do not expect the bottleneck ratio to produce any con-
siderable discrepancy in the long-term fitness attained by the
populations; however bottlenecks do play a clear role at earlier
stages of adaptation. These findings are better summarized in
the lower panels of Fig. 2. Here, curves correspond to dis-
tinct times at which fitness was reported. The existence of an
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optimal bottleneck ratio seems to be inherent to the dynamics
when time is given in units of bottlenecks, being observed at
different times and across landscape structures; Fig. S2 [39]
shows analogous results for varying degrees of epistasis in
the landscape. Moreover, these results predict that sampling
about 10–20% of the population will maximize the speed of
adaptation per bottleneck; this agrees with previous studies
addressing the impact of bottleneck ratios on the fixation
probability of single mutations, predicting that the optimum
ratio occurs around 1/e2 [29,41].

In contrast with this result, when time is measured in units
of doublings we observe that fitness becomes monotonic in
bottleneck size (right panels in Figs. 2 and S2 [39]). In other
words, larger effective population sizes lead to a higher rate of
adaptation, although this increase begins to saturate for very
large population sizes. Finally, when time is measured in units
of births (see Fig. S1 [39]), one recovers the scenario shown
on the left in Figs. 2 and S2 [39], and once again the highest
adaptation rates are found at intermediate bottleneck sizes.
These qualitative results hold regardless of the mutation rate,
sequence size and the topography of the fitness landscape, as
demonstrated in Figs. S3–S7 [39].

In the results above we changed the bottleneck ratio by
varying N0, while holding Nf fixed. Analogous results, with
N0 constant while Nf varies, are shown in Fig. S8 [39].
Whether time is measured in units of bottlenecks and dou-
blings, the mean population fitness displays a monotonic
increase with Nf in this case. In contrast, the mean population
fitness is reduced as Nf grows when time is expressed in units
of births (see Fig. S9 [39]). Overall, we conclude that the when
time is measured in population doublings, the adaptation rate
increases monotonically in larger populations, irrespective of
population bottlenecks.

C. Understanding the optimal adaptation rate at intermediate
bottleneck sizes: Genetic diversity and fitness variance

As we know, the fundamental theorem of natural selection
states that the rate of increase in fitness is proportional to
the genetic variance in fitness [42]. Therefore, it is crucial
to understand how bottleneck sizes affect the lineage genetic
diversity and fitness variation. Several measures of genetic
variation can be used to assess the amount of genetic variation
among individuals within as well as between populations. The
simplest and most commonly used are the genotypic richness
(number of different genotypes in the population) n, heterozy-
gosity H , and various related measures of entropy, such as the
Shannon entropy [43]. These measures can be unified through
the use of Hill numbers, which capture essential properties of
genetic diversity in a population [44].

The Hill diversity number of order a is defined as

Da =
(∑

i

pa
i

) 1
1−a

, (15)

where pi is the frequency of genotype i in the population.
These diversity numbers can be understood as the weighted
sum of each pi to the power a − 1, where the weights are
themselves the pi. We then take the (a − 1)th root of that sum,
thus Da is simply a weighted (a − 1)-Norm of the vector of

FIG. 3. Mean population fitness, fitness variance and change in
fitness � f as a function of time. Time is expressed in units of
doublings. The parameter values are Nf = 215 = 32 768, mutation
rate U = 1 × 10−4, sequence size L = 8 and epistasis and K = 2.
The bottleneck sizes are N0 = 32 (blue dashed-lines), N0 = 4096
(orange dashed-lines) and N0 = 16 384 (green dashed-lines). � f is
simply the mean population fitness at time t + 1 minus the mean
population fitness at time t , for t in the units indicated.

genotype frequencies. The Hill diversity numbers can be easily
related to the three commonly used measures of diversity:

(1) D0 = number of different genotypes = n;
(2) D1 = exp(S) [44], where S is the Shannon entropy;
(3) D2 = 1

1−H , where H = 1 − ∑
i p2

i is the heterozygos-
ity.

Thus, while diversity is commonly measured by several
measures with differing units (species richness, Shannon or
related entropies, heterozygosity), the Hill numbers provide a
unified understanding and consistent units across which these
measures can be compared. In particular, we note that Da of
any order measures diversity in units of genotypes, and can
be interpreted as an effective number of genotypes or number
of lineages in the population. While D0 simply counts the
number of distinct genotypes in the population, as the order
a increases the contribution of rare types to the corresponding
diversity Da is reduced.

Figure 3 shows the time evolution of the mean population
fitness, the fitness variance as well the fitness increase at
each time step. Three different bottleneck sizes are compared:
N0 = 25 = 32, N0 = 212 = 4096 and N0 = 214 = 16 384. In
all cases the population size at the end of the growth phase is
Nf = 215, and mean fitness and fitness variance are compared
(in this figure) just after each population bottleneck, for a
population of size N0.

First and as expected, in the earlier stages of adaptation,
while adaptation occurs at a faster pace, the fitness variance
is considerably enhanced. As expected, in each population the
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FIG. 4. Hill diversity numbers D0, D1, and D2 versus time. Time
is expressed in units of bottlenecks (doublings) on the left (right) pan-
els. The measures of diversity are presented at the end of the growth
phase (solid lines) and just after the bottleneck protocol (dashed
lines). The parameter values are Nf = 215 = 32 768, mutation rate
U = 1 × 10−4, sequence size L = 8 and epistasis parameter K = 2.
The bottleneck sizes are N0 = 32 (blue lines), N0 = 4096 (orange
lines) and N0 = 16 384 (green lines) as indicated in the legends. The
symbol a in the legend means just after bottlenecks, whereas b means
just before bottlenecks.

adaptation rate (slope in top panel) is greatest when the fitness
variance is maximized; we can confirm this by comparing
the fitness variance with the change in fitness per timestep
(bottom panel). We also note in the center panels that the
peak fitness variance is reduced for the smallest population
N0 = 32, but is not sensitive to the bottleneck for less severe
bottleneck ratios. As the fitness variance is measured just after
a bottleneck, this loss in fitness variance is attributed to the
loss of lineages through the bottleneck; severe bottlenecks
retard the adaptation rate through the loss of fitness variance.
We will return to this effect in Fig. 4 to follow.

As can be corroborated from Fig. 3, measuring time in
doublings reconciles the time courses of mean fitness and
fitness variance, and isolates the effects of the bottlenecks.
We see clearly here that only the most severe bottleneck ra-
tio in this example (2−10) reduces fitness variance and thus
retards the adaptation rate. Importantly, we note that when
N0 = 214 and Nf = 215 (green lines), the simulated population
dynamics are mathematically equivalent to a discrete time
Wright-Fisher process, in a population of fixed size 214 (see
Analytical Results, above). Thus, the green lines plot the time
course of adaptation that would be obtained in the absence of
population bottlenecks. We see that when time is measured in
units of population doublings, the rate of adaptation is almost
insensitive to bottlenecks, once the bottleneck size exceeds
several thousand individuals (also illustrated in top right panel
of Fig. 2).

In Fig. 4, the Hill numbers D0, D1, and D2 are plotted
over time for the same populations (N0 = 25, N0 = 212, and
N0 = 214, with Nf = 215). Values computed just before the
population bottleneck (solid lines), and immediately after the
bottleneck protocol (dashed lines) are shown. Recall that the

zeroth order Hill number, corresponding to the number of dis-
tinct lineages, is very sensitive to low frequency components,
whereas both D1 and D2 put less emphasis on rare genotypes.
Taking time in units of doublings allows us to isolate the
effect of the bottlenecks on genetic diversity. We see that the
first and second order Hill numbers, D1 and D2, change only
negligibly over the course of a single bottleneck (solid versus
dashed lines). In contrast, the zeroth order Hill number D0 is
greatly reduced, especially when the dilution ratio N0/Nf is
small (blue lines correspond to a ratio of 2−10 ≈ 1 × 10−3).
This loss of rare lineages, revealed by D0, has long term
consequences for the population; although a single bottleneck
has little effect on D1 or D2, we see that both of these diversity
measures are greatly reduced in the N0 = 32 population. Thus,
the loss of rare lineages through the bottleneck feeds forward,
resulting in overall reduced diversity at later times, even as
measured by higher order metrics that are less sensitive to rare
lineages.

D. The effect of bottlenecks on predictability

At this point, it is our aim to carry out a more detailed
analysis of the evolutionary pathways at the genotypic level.
As mentioned previously, two quantities, predictability and
mean path divergence, may elucidate the dynamics. Compu-
tationally, simulations which quantify predictability and mean
path divergence are costly, as they require that the starting
and ending points of the trajectories are the same. We first
investigate adaptive trajectories assuming that the population
starts from the antipode of Smax, the global optimum of the
fitness landscape. In this case, the Hamming distance from
the starting point to the global optimum takes its maximum
value, being equal to the sequence size L, dGO = L. While the
route is smooth for an additive landscape (K = 0), it becomes
increasingly tortuous as the landscape becomes more rugged.
For low mutation rates the population is easily trapped by
local optima of the landscape, and so the time needed to
reach the global optimum rises substantially. Our estimates
for the predictability and mean path divergence are taken over
a sample of 50 randomly generated fitness landscapes, and for
each landscape 1000 replicates are simulated.

Figure 5 displays the predictability, P2, and mean path
divergence, d̄ , for two distinct scenarios: in the first case
(upper panels), the bottleneck size N0 is kept constant while
the population size at the end of the growth phase, Nf , varies.
Here, the predictability grows steadily with Nf , whereas the
mean path divergence drops off. As previously argued, by
augmenting Nf while N0 is fixed, there is an increased sup-
ply of beneficial mutations between bottlenecks, as well as
increased interference among those mutations, which in turn
increases the selection coefficients of those mutations that
fix [17,45,46]. As an overall result, the adaptation dynam-
ics approach a more deterministic regime. These results also
corroborate the existence of a negative correlation between
predictability and mean path divergence [26]. In the second
case (Nf fixed, N0 varied), we observe a monotonic increase
of predictability with N0, along with the expected decline in
mean path divergence. We note further that predictability rises
steeply with N0 when N0 is small, but saturates at larger N0

values. In both panels, we therefore find that irrespective of
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FIG. 5. Predictability and mean path divergence. In the upper panels both quantities are shown as a function of the population size at the
end of the growth phase Nf . In these panels the population size after the bottleneck is set at N0 = 32. In the lower panels both quantities are
shown as a function of the population size after the bottleneck N0. In these panels the population size Nf is set at Nf = 4096, whereas the
mutation rate is set at U = 5 × 10−2 and sequence size at L = 8. The epistasis parameter K is displayed in the legends.

the timing of population bottlenecks, predictability increases
and saturates with an increasing mutational supply.

Figure 5 also demonstrates that predictability increases
with the ruggedness of the fitness landscape (increasing K).
Since these simulation results involve trajectories that are con-
strained to start at the antipode and end at the GO, pathways
between this starting and ending point become ever more con-
strained as epistasis increases. We also note that predictability
is more responsive to the ruggedness of the fitness landscape
than the mean path divergence. While the predictability rises
monotonically with K , the mean path divergence seems to be
bounded already at intermediate ruggedness, and the curves
for K = 2, 3, and 4 nearly collapse. Overall, when considering
adaptive trajectories that are constrained to start at the an-
tipode and end at the GO, any increase in epistasis (landscape
ruggedness) very quickly reduces the divergence of pathways,
and more gradually increases predictability.

To understand the role of sequence size L on the distri-
bution of evolutionary pathways, a more general simulation
protocol is necessary. The main limitation of the previous pro-
tocol is that the study cannot be generalized to larger sequence
sizes or to less restrictive ranges of correlation in the fitness
landscape, because the population tends to become trapped at
local maxima, making the global optimum essentially inacces-
sible. To address this issue, instead of initiating the dynamics
from the antipode of Smax, the evolutionary process is now
initiated from genotypes that are placed at a given Hamming
distance, dGO < L, from the global optimum [3]. Results are
shown in Fig. S12 [39] for dGO = 5, where the sequence
size as well as the epistasis parameter K are varied such that
the degree of correlation among fitness effects of mutations,
γ = 1 − (K + 1)/L, remains unchanged [47,48]. In the plot,
this correlation is set at γ = 0.75 (upper panels) and γ = 0.5

(lower panels). It is clear from these results that predictability
decreases while the mean path divergence increases with the
sequence size L. Note that here both quantities are measured
with respect to the paths, i.e., the starting and ending points for
each ensemble of trajectories are the same. The data refer to an
average over 10 distinct starting points, all chosen at the same
distance dGO from the global optimum. Although we were
unable to identify an explicit dependence of the predictability
on the sequence size L, we observe empirically, at least for
high level of correlation γ , that the mean path divergence
scales roughly with L, d̄ ∝ L (see Fig. S10 [39]). As the
landscape becomes more rugged, the accuracy of this scaling
approximation is reduced.

In Fig. 6, the predictability with respect to the ending
points, denoted by P2,ending, is shown as a function of N0.
The quantity P2,ending gives the probability that two ran-
domly chosen paths terminate at the same genotype. Here,
the evolutionary trajectories begin at a fixed distance from
the global optimum, and are simulated up to a fixed time,
tbottleneck = 2000. In the left panel, the dependence on the
sequence size L is shown as the correlation γ is fixed. We
observe that in spite of the Hamming distance from the start-
ing points to the global optimum being the same, dGO = 5,
the predictability decreases with L. Note that for L = 8 and
K = 3 the predictability is very close to one, meaning that
the global optimum is easily accessible. As L increases, the
accessibility of the global optimum decreases and so does
the predictability. In the right panel we investigate the role
of the mutation rate. Higher mutation rates lead to higher
predictability with respect to the ending points as they also
allow the population to more easily escape from local maxima
of the landscape and ultimately reach the global optimum.
When the mutation rate U and bottleneck size are sufficiently
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FIG. 6. Predictability with respect to the ending points, P2,ending. In all plots, the population size at the end of the growth phase is Nf =
32 768. In the left panel, the mutation rate is U = 0.005 whereas the sequence size L and epistasis parameter K are both varied such that
the correlation is γ = 0.5. In the right panel, the sequence size is L = 8 and the epistasis parameter is set at K = 3. The Hamming distance
from starting points to the global optimum is five, dGO = 5. The simulation data refers to an everage over 10 distinct fitness landscapes, and
10 random starting points for each landscape. The dashed-lines correspond to the predictability with respect to ending points for random
adaptation walks (RAW) and for S-weighted walks (SWW).

small, predictability becomes independent of the mutation
rate. To understand this effect, we additionally simulated two
versions of adaptive walks: random adaptation walks (RAW)
and the S-weighted walks (SWW) [26,49]. In the former, the
walker randomly chooses one of its fitter neighbors, whereas
in the SWW version the next step is chosen with probability
proportional to the fitness advantage of its fitter neighbors.
From these results, we find that in the limit N0/Nf � 1 the
predictability P2,ending lies between the two adaptive walk
variants. We hypothesize that when the population size and
mutation rate are sufficiently small, the simulated populations
exist in the strong-selection-weak-mutation regime [50], and
thus the dynamics are well-approximated by adaptive walk
dynamics. In particular, the predictability with respect to the
ending points, P2,ending at low mutation rates is sensitive to
the earliest stages of adaptation, in which the selective effects
of mutations are expected to be larger. This explains why the
dynamics in those limits are well captured by adaptive walk
dynamics.

In all of the scenarios illustrated here, predictability ex-
hibits a monotonic dependence on the bottleneck size N0,
meaning that the underlying dynamics become increasingly
deterministic for larger populations, not only with respect to
the paths but also with respect to the ending points. We return
to this result in the Discussion.

E. Multidimensional scaling

Information visualization techniques allow for diverse
displays of multidimensional data sets, and offer powerful ap-
proaches for visualizing patterns that are otherwise obscured
in the data [51]. The visualization of multidimensional data
requires a reduction of dimensionality and clustering meth-

ods, thus providing two- or three-dimensional representations
[52,53]. Multidimensional scaling is one such technique in
which multidimensional objects are positioned relative to each
other in a lower dimensional space by interpreting the dissim-
ilarities between objects as distances [54].

Recall that d (qα, qβ ) denotes the divergence (a measure
of dissimilarity) between evolutionary paths qα and qβ . We
can therefore apply multidimensional scaling to the matrix
of distances, D = [d (qα, qβ )], over a bundle of evolutionary
paths, where α, β = 1, . . . , N .

Figure 7 provides two-dimensional representations of the
ensemble of distinct evolutionary pathways collected in one
thousand replicates, each starting with an isogenic population
at the antipode of Smax, and ending at the global optimum
Smax of the fitness landscape. It is important to emphasize
that the x1 and x2 coordinates have no physical meaning as
the positions in the plot are defined by the eigenvectors and
eigenvalues of the reference matrix D (for more details about
classical multidimensional scaling, please see Ref. [54]). In
the upper panels of Fig. 7, Nf is set at Nf = 4096, whereas
N0 = 64 (left panel) and N0 = 2048 (right panel). When the
bottleneck size, N0, is increased, the bundle of evolutionary
paths becomes less widespread over genotype space, and
some paths are more frequently used (paths that are used with
frequency of 5% or higher are highlighted). These two facts—
that the paths are less scattered over genotype space, and that
the frequency of the most-used paths increases—explain both
the increase in predictability and decrease in the mean path
divergence seen in the lower panels of Fig. 5.

The lower panels of Fig. 7 show analogous results if the
bottleneck size N0 = 32 is fixed while Nf is increased. On
the left, Nf = 128, and the effective population size is corre-
spondingly small. In this case the distribution of evolutionary
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FIG. 7. Multidimensional scaling plot of the evolutionary pathways. In the upper panels Nf is set at Nf = 4096, whereas N0 = 64 (left
upper panel) and N0 = 2048 (right upper panel). In the lower panels, N0 is set at N0 = 32, whereas Nf = 128 (left lower panel) and Nf = 4096
(right lower panel). The data correspond to a fixed fitness landscape with epistasis parameter K = 2. Those evolutionary pathways that achieve
a frequency higher than 0.05 are highlighted in the plot (dark circles, with numbers indicating path frequency).

paths is quite diffuse. Moreover, none of the paths reach a
frequency of 5%. In contrast, when Nf is large (Nf = 4096,
right panel), the distribution of trajectories becomes substan-
tially more compact. We note that three paths achieve high
frequencies; in particular, the most frequent path is used in
nearly 33% of the independent runs. This robust change is
likewise captured by the measure of predictability in the upper
panels of Fig. 5. Note that the predictability for Nf = 4096 is
over ten-fold larger than that estimated for Nf = 128.

V. DISCUSSION

An understanding of population bottlenecks is critical to
evolutionary biology, owing to their powerful influence on
genetic diversity and the evolution of species [55,56]. There
is also compelling evidence that bottleneck events shaped the
distribution of modern human diversity [57–59]. Mathemati-
cal modeling of population bottlenecks, in particular, can be
valuable in the development of optimal strategies to curb the
adaptive evolution of pathogens [60,61]. In this contribution,
we used an epistatic fitness landscape to explore two hypothe-
ses: whether the adaptation rate is maximized by population
bottlenecks at an intermediate bottleneck ratio, and whether
population bottlenecks reduce the predictability of adaptation.

One of the most compelling results we obtain here is that
adaptive trajectories in populations experiencing regular bot-
tlenecks can be reconciled when time is scaled in units of
generations (in our case, population doublings). We demon-
strate that the time course of fitness increase, fitness variance
and genetic diversity are all insensitive to population bottle-
necks, provided the bottleneck size exceeds a few thousand

individuals, when time is expressed in population doublings
(Figs. 3 and 4). Thus, in contrast with previous predictions that
adaptation per bottleneck is fastest at intermediate bottleneck
ratios, we demonstrate that the adaptation rate per generation
is simply maximized by experimental protocols that maximize
the supply of beneficial mutations, that is, by the largest effec-
tive population size (Fig. 2, right panels).

Overall these results imply that the “natural” time unit for
adaptation is generations, irrespective of the number of gener-
ations that elapse between population bottlenecks, as long as
the bottleneck size is not too small. We demonstrate that small
bottleneck sizes can retard adaptation through the elimination
of rare lineages, but this effect disappears when N0 is several
thousand, rather than tens of individuals. Thus, for most mi-
crobial populations, the adaptation rate per generation will be
largely insensitive to the bottleneck ratio, and maximized by
maximizing the supply rate of beneficial mutations.

As well as investigating the role of population bottlenecks
at the macroscopic level by examining the rate of adapta-
tion, we also investigated their role at a microscopic level
by tracking the predictability and divergence of evolution-
ary trajectories. From this perspective, we observe a higher
level of determinism when either the bottleneck size N0 or
the population size at the end of the growth phase Nf is in-
creased. In other words, predictability is maximized in larger
populations, irrespective of population bottlenecks. Similar
to the adaptation process, we observe a pronounced increase
in predictability, P2, with the bottleneck size N0 when N0 is
small, while predictability saturates as N0 increases.

More generally, the increases in predictability that we ob-
serve in larger populations can be ascribed to an increased
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determinism in the underlying process due to the combined ef-
fects of three factors: more beneficial mutations are generated,
these mutations have longer times to increase in frequency,
and there is greater interference among mutant lineages, thus
promoting those that confer larger selective advantage.

Although it is quite difficult to estimate the effective pop-
ulation size for complex fitness landscapes, previous studies
relying on stairway to heaven landscapes provide some hints
on the dependence of the effective population size on the pa-
rameters of the model [45]. Those previous results, however,
are limited by the assumptions of a constant beneficial muta-
tion rate and an invariant distribution of selective effects over
the adaptation process–assumptions that are violated in the
pattern of diminishing returns we observe here. Nonetheless,
this previous work supports our natural expectation that the
effective population size is directly proportional to both N0

and τ , and thus increases with Nf . Therefore, increasing either
N0 or Nf , in fact, increases the effective population size, and
thus makes the evolutionary process more deterministic [62].

In all the scenarios investigated here, we observed a
monotonic dependence of predictability on both N0 and Nf .
In contrast, a nonmonotonic dependence of predictability
measures on population size has been observed in both an
empirical and simulated fitness landscape [3]. We note that
the increase in predictability with population size observed

in Ref. [3] was due to increased clonal interference among
beneficial mutations, while the reduction in predictability at
higher population sizes was due to the appearance of second-
step mutations, increasing when the value of NU 2 was in
the range 10−6–10−7. For computational efficiency in the
very large fitness landscapes simulated here, we have studied
comparatively large mutation rates, in which the value of
NU 2 is typically several orders of magnitude larger than this
threshold, and thus the appearance of second-step mutations
is practically assured [with the mutation-limited dynamics
described for some cases in Fig. 6(B) as an exception]. We
hypothesize that in principle, as the mutation rate increases,
alternating regimes in which predictability increases or de-
creases with population size may be possible, as higher-order
mutational neighbourhoods become newly accessible. This
would be a clear avenue for future work.
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