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We study the efficiency of sliding locomotion for three-link bodies with prescribed joint angle motions.
The bodies move with no inertia, under dry (Coulomb) friction that is anisotropic (different in the directions
normal and tangent to the links) and directional (different in the forward and backward tangent directions).
Friction coefficient space can be partitioned into several regions, each with distinct types of efficient kinematics.
These include kinematics resembling lateral undulation with very anisotropic friction, small-amplitude reciprocal
kinematics, very large-amplitude kinematics near isotropic friction, and kinematics that are very asymmetric
about the flat state. In the two-parameter shape space, zero net rotation for elliptical trajectories occurs mainly
with bilateral or antipodal symmetry. These symmetric subspaces have about the same peak efficiency as
the full space but with much smaller dimension. Adding the second or third harmonics greatly increases the
numbers of local optimal for efficiency, but only modestly increases the peak efficiency. Random ensembles
with higher harmonics have efficiency distributions that peak near a certain nonzero value and decay rapidly
up to the maximum efficiency. A stochastic optimization algorithm is developed to compute optima with higher
harmonics. These are simple closed curves, sharpened versions of the elliptical optima in most cases, and achieve
much higher efficiencies mainly for small normal friction. With a linear (viscous) resistance law, the optimal
trajectories are similar in much of the friction coefficient space, and relative efficiencies are much lower except
with very large normal friction.
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I. INTRODUCTION

In this work, we investigate sliding locomotion by three-
link bodies. Such bodies are a benchmark system for studying
the basic physics of locomotion for swimming micro-
organisms [1–13] and other locomoting bodies [14–16]. With
only three links (and thus only two internal degrees of free-
dom, the interlink angles), it is easier to consider the full
range of possible motions. The low-dimensional configura-
tion space also facilitates optimization studies by limiting
the space of possible motions, and therefore perhaps the
number of local minima in the optimized quantity (typically
efficiency—defined here as the average speed divided by the
average input power). Three links are enough to approximate
perhaps the most common swimming and crawling motions:
undulatory traveling-wave motions [1,17]. With two links,
time-periodic motions are limited to reciprocal, scallop-type
motions. Here locomotion is possible with fore-aft frictional
anisotropy [15], buoyancy [18], change of shape [19], or when
body inertia is considered for sliding bodies [20], in which
case it may be relatively efficient. The main assumptions
of this work—anisotropic resistance forces, negligible body
inertia, and prescribed joint angles—are common to most pre-
vious studies of n-link microswimmers and crawling bodies
mentioned here.

By considering bodies with more than three links
[9,22–24], studies have obtained some of the benefits of sim-
plifying the body’s spatial configuration while approaching
the case of a smooth body. In an earlier work, we computed
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the optimally efficient sliding motions of a smooth curvilin-
ear body using a quasi-Newton local optimization algorithm
starting from various random initial points in the space of
time-periodic body kinematics [21]. We truncated the number
of shape degrees of freedom at 45 in most cases, superposing
products of five spatial modes with nine temporal modes.
We computed optima across a space of friction anisotropy
ratios (shown in Fig. 1), i.e., the ratios of friction coefficients
for sliding in the normal direction (values on the horizontal
axis) and the backward direction (values on the vertical axis),
relative to the coefficient of friction in the forward direction,
which is generally the smallest for real snakes [25]. Here
forward and backward sliding means sliding tangent to the
body axis (or backbone) in the direction of the head or tail,
respectively, and normal sliding means sliding perpendicular
to the body axis, to either side. The model originated in
previous experimental and theoretical studies of snake and
snake-robot locomotion [25–29], analogous to resistive force
theory for swimmers [17,30]. Many of the optimal motions
found in Ref. [21] could be classified as direct, retrograde, or
standing waves of body axis curvature, based on whether the
local curvature maxima propagate toward or away from the
direction of locomotion, or remain stationary, respectively. In
the rightmost portion of the parameter space in Fig. 1 we have
μn/μ f � 1, a common regime for snakes and snake robots
[31,32]. Here the optimally efficient motions are relatively
smooth retrograde traveling-wave motions, and they are rel-
atively unchanged when the number of spatial and temporal
degrees of freedom in the body kinematics are approximately
doubled (from 5 to 10, and 9 to 19, respectively). In the limit
μn/μ f → ∞, the retrograde waves can achieve the upper

2470-0045/2021/103(4)/042414(18) 042414-1 ©2021 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.103.042414&domain=pdf&date_stamp=2021-04-16
https://doi.org/10.1103/PhysRevE.103.042414


SILAS ALBEN PHYSICAL REVIEW E 103, 042414 (2021)

0.1 0.2 0.3 0.5 0.7 1 1.5 2 3 5 6 10
1

1.4
2
3
5
7
10

20
30

60
100

200
300

600

µb

Direct
Retrograde

Standing

µ
= 6,µb =1

Tim
e

Tim
e

Tim
e

Direct Standing Retrograde

µf

µ µf

µµ
µ µ µ µ µ µ=

µb =1
µb ==

FIG. 1. Left: Classification of local optima across friction coefficient space, presented in [21]. The triangles, crosses, and circles mark
locations where optima that are direct, standing, or retrograde waves were found, respectively. The solid lines mark interfaces between regions
containing a distinct type of wave optimum, while the dashed lines delineate a region with both standing- and retrograde-wave optima. Right:
Three sequences of snapshots of locally optimal motions giving examples of direct, standing, and retrograde waves. These occur at particular
friction coefficient ratios, listed above the snapshots and marked with green, red, and blue symbols in the panel at left. The three sequences
of snapshots are given over one period of motion, and they are displaced vertically to enhance visibility, but the actual net displacement is
horizontal.

bound for efficiency, corresponding to uniform sliding in the
direction of lowest friction [21]. The case μn/μ f = +∞,
corresponding to bodies mounted on knife edges or no-skid
wheels [33], can result in kinematic singularities that may be
resolved physically by wheel slippage [16]. The central part
of the parameter space in Fig. 1, μn/μ f ≈ 1 and μb/μ f � 1,
includes two other common regimes for biological snakes:
isotropic friction and larger backward friction (due to snake
scales). Here standing-wave optima were found in [21]. The
left part of Fig. 1, μn/μ f < 1, can be realized in wheeled
snake robots by turning the wheels 90◦, so the wheel axis
of rotation is along the body tangent, and the wheels roll
along the body normal. Here direct wave motions were among
the local optima identified in [21]. In the central and left
regions of Fig. 1 there were many optima that were difficult to
classify, and it was difficult to obtain convergence from many
of the random initial conditions, and to identify global optima.
Therefore, in this work we limit the number of spatial degrees
of freedom by considering three-link bodies. One advantage
is easier visualization of the trajectories in the space of body
shapes, which is two-dimensional. With fewer degrees of free-
dom, optimization is also easier, and we can more completely
describe local optima throughout friction coefficient space.
Another advantage is that we can go beyond optimization
and describe the entire space of possible kinematics to some
extent, not just the kinematics that are optimally efficient.
At the end of the paper, we employ a stochastic optimiza-
tion algorithm, which has some robustness advantages over
that in [21], to compute optimal three-link kinematics with

many temporal modes. We also use it to compute optimal
three-link motions with a linear resistance law, corresponding
to swimming in or sliding on a viscous medium, and we
compare with the optima for dry-friction resistance. In [15],
we computed optimal kinematics of three-link bodies with up
to two harmonics, at a particular choice of friction coefficient
ratios motivated by the experiments in [29]. Fast computations
of locomotion without inertia are facilitated by precomputing
“velocity maps,” i.e., maps from shape change to displace-
ments and rotations in physical space [14,15,34]. In [34–36],
velocity maps were used to predict swimming motions that
give large net displacements with zero net rotation. In [37], we
developed the iterative method for computing velocity maps
with Coulomb friction resistance that is used here, and we
computed optimal motions of three-link bodies with isotropic
friction and a single harmonic. Now, we develop a stochastic
optimization algorithm that allows us to compute optimal
kinematics with many harmonics (up to nine are used here)
in a large portion of the two-dimensional space of friction
coefficient ratios. We also describe the properties of the full
space of kinematics, both optimal and nonoptimal. Among
the alternatives to the continuous and stochastic optimization
methods we have used are geometric variational formulations
[11,38,39], which provide additional geometric insights into
the properties of the optima.

The overall goal in this paper is to describe the range
of possibilities for sliding motions across friction coefficient
space more thoroughly than has been done previously, with
an emphasis on those that are optimally efficient, locally and
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(a) (b)

FIG. 2. (a) Schematic diagram of a three-link body with changes in angles �θ1 (here positive) and �θ2 (here negative) between the links.
The body is parametrized by arc length s (nondimensionalized by body length) at an instant in time. The tangent angle and the unit vectors
tangent and normal to the curve at a point are labeled. Vectors representing forward, backward, and normal velocities are shown with the
corresponding friction coefficients μ f , μb, and μn. (b) Examples of body shapes in the (�θ1,�θ2)-plane. Shapes that do not self-intersect are
shown in black; a few shapes at the threshold of self-intersection are shown in red.

globally. This is made possible by restricting to the case of
three-link bodies. In Sec. II, we briefly review the model,
which is the same as in many previous studies. We then restrict
to single-harmonic (elliptical) trajectories in Sec. III, and we
define 10 clusters that represent the typical optimal motions
that occur across friction coefficient space. The optima with
the highest relative efficiency occur with a large backward
friction coefficient and the normal and forward friction coef-
ficients about equal. Those with the lowest relative efficiency
occur when the ratio of normal to forward friction coefficients
is very small or large. We find that symmetric motions achieve
efficiencies as high as nonsymmetric motions in most cases.
In Sec. IV, we consider the spaces of trajectories with up
to three harmonics. They allow large increases in efficiency
near isotropic friction, and in regions with either small normal
friction coefficients or large backward friction coefficients. In
Sec. V, we employ a stochastic optimization method to find
efficiency-optimizing trajectories with up to nine harmonics.
Over friction coefficient space, about six types of motions
are seen, and the improvement over the elliptical trajecto-
ries is largest when the normal friction coefficient is small.
With a viscous resistance model, the optima are qualitatively
similar to those with Coulomb friction when the resistance
coefficients have moderate-to-large anisotropy. Section VI
summarizes the results.

II. MODEL

We use the same Coulomb-friction model as [15,25,29]
and other recent studies. The body is thin compared to its
length, so for simplicity we approximate its motion by that
of a polygonal curve X(s, t ) = (x(s, t ), y(s, t )), parametrized
by arc length s and varying with time t . A schematic diagram
is shown in Fig. 2(a).

The basic problem is to prescribe the time-dependent shape
of the body in order to obtain efficient locomotion. The shape
is described by �θ1(t ) and �θ2(t ), the differences between the
tangent angles of the adjacent links. A set of possible body
shapes is plotted at the corresponding (�θ1,�θ2) locations

in Fig. 2(b). The region inside the gray polygonal boundary
consists of shapes that do not self-intersect. Five examples of
shapes that lie on the boundary are shown in red (along the
upper right portion of the boundary). In this work, we will
consider time-periodic kinematics, which are represented by
closed curves in the (�θ1,�θ2)-plane.

To write the dynamical equations (Newton’s laws), we first
write the body tangent angle as θ (s, t ); it satisfies ∂sx = cos θ

and ∂sy = sin θ . The unit vectors tangent and normal to the
body are ŝ = (∂sx, ∂sy) and n̂ = (−∂sy, ∂sx), respectively. We
write

θ (s, t ) = θ0(t ) + �θ1(t )H (s − 1/3) + �θ2(t )H (s − 2/3),
(1)

where H is the Heaviside function and θ0(t ) is the tangent
angle at the “tail” (the s = 0 end), an unknown to be solved
for using Newton’s equations of motion. The body position is
obtained by integrating θ :

x(s, t ) = x0(t ) +
∫ s

0
cos θ (s′, t )ds′, (2)

y(s, t ) = y0(t ) +
∫ s

0
sin θ (s′, t )ds′. (3)

The tail position X0(t ) = (x0(t ), y0(t )) and tangent angle θ0(t )
are determined by the force and torque balance for the body,
i.e., Newton’s second law [25,29]:∫ L

0
ρ∂tt x ds =

∫ L

0
fxds, (4)∫ L

0
ρ∂tt y ds =

∫ L

0
fyds, (5)∫ L

0
ρX⊥ · ∂tt X ds =

∫ L

0
X⊥ · f ds. (6)

Here L is the body length, ρ is the body’s mass per unit length,
and X⊥ = (−y, x). For simplicity, the body is assumed to be
locally inextensible, so L is constant in time. f is the force
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per unit length on the body due to Coulomb friction with the
ground:

f (s, t ) ≡ −ρgμn(∂̂t Xδ · n̂)n̂ − ρg(μ f H (∂̂t Xδ · ŝ)

+μb[1 − H (∂̂t Xδ · ŝ)])(∂̂t Xδ · ŝ)ŝ, (7)

∂̂t Xδ ≡ (∂t x, ∂t y)√
∂t x2 + ∂t y2 + δ2

, (8)

and g is gravitational acceleration. Again H is the Heaviside
function, and ∂̂t Xδ is the normalized velocity, regularized with
a small parameter δ = 10−3 here. Nonzero δ avoids nonsolv-
ability of the equations in a small number of cases in which
static friction comes into play, but δ has little effect on the
solutions as long as it is much smaller than the scale of body
velocities [typically O(1)], as detailed in [37] in the isotropic
case. We find empirically that there is little change in the re-
sults (less than 1% in relative magnitude) when δ is decreased
below 10−3.

According to (7), the body experiences friction with differ-
ent coefficients for motions in different directions with respect
to the body. The frictional coefficients are μ f , μb, and μn

for motions in the forward (ŝ), backward (−ŝ), and normal
(±n̂) directions, respectively. If μb 
= μ f , we define the for-
ward direction so that μ f < μb, without loss of generality. In
general, the body velocity at a given point has both tangential
and normal components, and the frictional force density has
components acting in each direction. A similar decomposition
of force into directional components occurs for viscous fluid
forces on slender bodies [40].

We assume that the body shape (�θ1(t ),�θ2(t )) is peri-
odic in time with period T , as is typical for steady locomotion
[29]. We nondimensionalize Eqs. (4)–(6) by dividing lengths
by the body length L, time by T , and mass by ρL. Dividing
both sides by g, we obtain

L

gT 2

∫ 1

0
∂tt x ds =

∫ 1

0
fxds, (9)

L

gT 2

∫ 1

0
∂tt y ds =

∫ 1

0
fyds, (10)

L

gT 2

∫ 1

0
X⊥ · ∂tt X ds =

∫ 1

0
X⊥ · f ds. (11)

In (9)–(11) and from now on, all variables are dimensionless.
If the body accelerations are not very large, as is often the case
for robotic and real snakes [29], L/gT 2 � 1, which means
that the body’s inertia is negligible. By setting inertia—and
the left-hand sides of (9)–(11)—to zero, we simplify the equa-
tions considerably:

∫ 1

0
fxds =

∫ 1

0
fyds =

∫ 1

0
X⊥ · f ds = 0. (12)

Similar models were used in [15,21,25,28,29,41,42], and the
same model was found to agree well with the motions of
biological snakes in [29].

The distance traveled by the body’s center of mass over one
period is

d =
√(∫ 1

0
x(s, 1)−x(s, 0)ds

)2

+
(∫ 1

0
y(s, 1)−y(s, 0)ds

)2

,

(13)

also equal to the time-averaged speed of the center of mass,
‖∂t X‖, where the overbar denotes time and space (t and s)
average. The work done by the body against friction over one
period is

W =
∫ 1

0

∫ 1

0
−f (s, t ) · ∂t X(s, t ) ds dt, (14)

also equal to the time-averaged power expended against fric-
tional forces, 〈P〉. As in previous works [15,21,25,29], we
define the efficiency of locomotion as

λ = d

W
= ‖∂t X‖

〈P〉 . (15)

Other definitions of efficiency that consider rotational motion
(possibly useful for maneuverability) could also be consid-
ered. The upper bound on efficiency is

λub = 1

min(μ f , μb, μn)
, (16)

corresponding to uniform motion in the direction of least
friction, and it can be approached by a sequence of particular
concertina-like motions, as shown in [37]. In this work, we
take the relative efficiency λ/λub as the primary measure of
performance. For the case of zero body inertia considered
here, we explained in [37] that d , W , λ, and the body mo-
tion depend only on the path traced by the kinematics in the
(�θ1,�θ2)-plane, and not on how the path is parametrized by
time. That is, if t is replaced by any nondecreasing function
α(t ) that maps the unit interval to itself, d , W , and λ are un-
changed (in the limit δ → 0, and to a very good approximation
for δ = 10−3).

III. SINGLE-HARMONIC (ELLIPTICAL) KINEMATICS

We begin by considering body kinematics given by a single
harmonic, corresponding to elliptical trajectories in the (�θ1,
�θ2)-plane:

�θ1(t ) = A10 + A11 cos(2πt ) + B11 sin(2πt ),

�θ2(t ) = A20 + A21 cos(2πt ) + B21 sin(2πt ), 0 � t � 1.

(17)

An example is the gray ellipse in Fig. 3(a), with the coeffi-
cient values shown as vectors. For any path (17), the path is
unchanged when t is shifted by an arbitrary constant phase.
Although the path is unchanged, the net displacement of the
body over a period, and hence the efficiency of the motion,
depend on the phase if the body undergoes net rotation over a
period.

As in previous works [3,24], we pay particular attention
to the subset of paths that yield no net rotation of the body
over one cycle, because these are the kinematics that yield
nonzero net locomotion over a long-time average. If there
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(a) (b)

FIG. 3. (a) Examples of elliptical trajectories in the region of non-self-intersecting configurations (inside the black polygonal outline).
Examples of body configurations at the boundary of the region are shown at the upper right. The gray ellipse has center A10, A20 and shape
given by {A11, A21, B11, B21}. (b) (�θ1(t ), �θ2(t )) for a three-link body, symmetric about the line �θ1 = −�θ2. A0 is the average of �θ1 over
the ellipse and

√
2A1 and

√
2|B1| are the semimajor and semiminor axes of the ellipse. The sign of B1 gives the direction in which the path is

traversed.

is a nonzero net rotation, points on the body move along
circles over large times, so the long-time average velocity
is zero. However, such kinematics could still yield efficient
locomotion over short-to-medium times, particularly if the net
rotation is small. We consider this possibility later. In [37] we
showed that no net rotation occurs for paths that have a certain
bilateral symmetry, under reflection in the line �θ1 = −�θ2,
e.g., the blue ellipse in panel (b). In that work, we discussed
the case μb = μ f , but the same argument holds if μb 
=
μ f . The rotation that occurs as the body traverses the half-
ellipse above the line �θ1 = −�θ2 is canceled by the rotation
that occurs on the half-ellipse below the line. Ellipses with
bilateral symmetry can be parametrized as

�θ1(t ) = A0 + A1 cos(2πt ) + B1 sin(2πt ),

�θ2(t ) = −A0 − A1 cos(2πt ) + B1 sin(2πt ), 0 � t � 1

(18)

with only three parameters versus six (counting the phase) for
general ellipses. We may take A1 � 0 without loss of gener-
ality by shifting t → t + 1/2 if necessary, which leaves the
path unchanged. For motions with no net rotation, this change
of phase does not change the displacement or efficiency.

Another set of paths that yield no net rotation are those with
antipodal symmetry, i.e., symmetry with respect to reflection
in the origin, such as the green ellipse in panel (a). At antipo-
dal points, �θ1 and �θ2 are reversed in sign, and so are ∂t�θ1

and ∂t�θ2. Therefore, the shapes and kinematics of the body
are mirror images when viewed in the body frame—defined
here as the frame in which the tail lies at the origin, with zero
tangent angle. Equations (12) are solved by equal and opposite
values of dθ0(t )/dt and mirror image vectors dX0/dt in the
body frame, because they result in mirror-image distributions
of f in the body frame, which both satisfy Eqs. (12). Hence the
body rotations at antipodal points cancel, and the net rotation

over a full path is zero. Ellipses with antipodal symmetry are
also parametrized by three parameters,

�θ1(t ) = A11 cos(2πt ) + B11 sin(2πt ),

�θ2(t ) = −A11 cos(2πt ) + B21 sin(2πt ), 0 � t � 1,

(19)

where A21 has again been set to −A11 to fix the arbitrary phase.
The lack of net rotation for trajectories with bilateral

and antipodal symmetry was also shown by [43]. A third
special case that we discuss later is reciprocal kinematics—
kinematics that are the same under time reversal. These are
degenerate ellipses that reduce to straight line segments, e.g.,
the red line in panel (a). These yield no net locomotion if
μb = μ f , but they can yield efficient locomotion in other
cases.

A. Efficient single-harmonic kinematics

We begin by studying the performance of trajectories given
by ellipses with bilateral symmetry [e.g., Fig. 3(b)]. We con-
sider (A0, A1, B1) ranging over a three-dimensional grid in
which A0 and B1 range from −1.2π to 1.2π , and A1 from
0 to 1.2π , each in increments of π/20. Outside of these
coefficient ranges, elliptical trajectories are generally not valid
because they contain self-intersecting body shapes. We thus
obtain a set that fills the space of kinematically valid ellipses
somewhat densely. For the ellipses that lie entirely in the
non-self-intersecting region (about 8000), we compute the
body motions, work done against friction, and the relative ef-
ficiency λ/λub using precomputed velocity maps, as described
in [37]. We compute the results for the friction coefficient ra-
tios (μn/μ f , μb/μ f ) ranging over a 12-by-8 grid with values
ranging widely in magnitude, shown on the axes of Fig. 4(a).
For each (μn/μ f , μb/μ f ) pair, we compute the top two lo-
cal optima for efficiency, obtaining 12×8×2 = 192 optima in
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(a)

(b)

(d)

(c)

FIG. 4. Cluster classification of the best [panel (a)] and the second best [panel (b)] local optima in efficiency for elliptical trajectories
across a grid of (μn/μ f , μb/μ f ) values. The set of 192 local optima are used to define 10 clusters based on proximity in (A0, A1, B1) space.
At each (μn/μ f , μb/μ f ) pair, the number and color of the square denotes the cluster to which it belongs. (c) The elliptical trajectory of the
optimum closest to the centroid of each cluster, with color corresponding to that cluster. The cluster number of each ellipse is located along
the right side of the panel, at the minimum vertical position of the corresponding ellipse. Each ellipse corresponds to a square in panel (a) that
is outlined in black or purple. (d) For each ellipse in (c), snapshots of the body motion at five instants spaced 1/4 period apart, starting from
the thin colored line, proceeding from light to dark gray, and ending with the thick colored line. The friction coefficient ratios for each motion
are labeled, with the abbreviations μn/ f and μb/ f in place of μn/μ f and μb/μ f .

total. We then use a k-means clustering algorithm (specif-
ically, the “kmeans” function in MATLAB) to partition the
optima into 10 clusters based on location in (A0, A1, B1)-
space. With just 10 clusters, we reduce the number of optima
to consider while approximating each of the 192 optima well
by the nearest cluster centroid. In Fig. 4, the clusters cor-
responding to the best [panel (a)] and second best [panel
(b)] optima are shown by numbered and colored squares
at the corresponding (μn/μ f , μb/μ f ) pairs. Panel (c) shows
trajectories for the optima closest to the centroid of each
cluster, shown by outlined squares in panel (a). Panel (d)
shows snapshots of the body motions corresponding to each
of the 10 ellipses in panel (c). Each sequence of snapshots
in panel (d) starts from the thin colored line, proceeds from
light gray to dark gray, and ends with the thick colored line.
An animation of these motions is shown in the supplemental
material.

We see in panels (a) and (b) that each cluster (i.e., color)
tends to occur in a few distinct regions of (μn/μ f , μb/μ f )
space. In other words, the friction coefficient ratios tend to
select certain types of motions as optima. In Fig. 1 (from
results in [21]), we sorted the optima for smooth bodies into
three wavelike motions. It was difficult to obtain convergence
to local optima at many (μn/μ f , μb/μ f ) values in the smooth
case. Also, many of the optima in [21] were difficult to clas-
sify, and they did not correspond to the wavelike classification.
With the smaller parameter space represented by elliptical
trajectories of three-link bodies, here we are able to identify
all local optima and sort them more precisely. Unlike the three
wave-type categories, the 10 clusters here cover all of the
kinematic parameter space [given by (A0, A1, and B1)]. In
panels (a) and (b), the 10 clusters overlap in multiple ways,
but seven major regions in (μn/μ f , μb/μ f )-space can be
identified as follows:
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FIG. 5. Relative efficiencies of the global (a) and second-best optima (b) among elliptical trajectories with bilateral symmetry.

(i) μn/μ f � 1, represented by optima 1, 3, and 8 [shown in
panel (d)]. Optima 3 and 8 have very small amplitudes about
motions that are nearly flat or completely folded, respectively,
and move with a slight motion mainly in the normal direction
when μn/μ f � 1.

(ii) 0.1 < μn/μ f < 1, represented by optimum 2. This is
a somewhat larger amplitude version of optimum 3, and it
translates in both normal and tangential directions.

(iii) In the vicinity of isotropic friction, μn/μ f ≈ 1,
μb/μ f ≈ 1 is a heterogeneous region in which two large-
amplitude motions (4 and 6) predominate.

(iv) μn/μ f ≈ 1, μb/μ f > 1. The brown optimum (5) is
the most common here. It is a large-amplitude motion that
translates roughly tangent to the body’s mean flat state. This is
a heterogeneous region with both small- and large-amplitude
motions (3, 6, and 9).

(v) μn/μ f > 1, μb/μ f > 1, but not � 1. The optima are
mainly 5 and 10, both large-amplitude motions.

(vi) μn/μ f > 1, μb/μ f � 1. Here the optima are mainly
7 (a large-amplitude motion) and 9 (a very small-amplitude
motion).

(vii) μn/μ f � 1. Here 1, 3, and 10 predominate, and the
body moves mainly in the tangential direction. 10 roughly
resembles the concertina motion of snakes, in which the front
and rear of the body contract and expand alternately, while 1
resembles lateral undulation, i.e., a traveling wave along the
body.

Like the smooth case, the three-link case shows a rough
partition based on small, medium, and large values of μn/μ f ,
with additional divisions based on μb/μ f . It is interesting that
at most (μn/μ f , μb/μ f ) values, the colors in panels (a) and
(b) differ, so the top two optima come from different clusters.
One might have expected the top two optima to be nearby
motions within the same cluster. This is the case in most of
the region where yellow squares are found, but it is rarely
true elsewhere. This could result from a relatively smooth
efficiency landscape in most cases, without large numbers of
closely spaced optima. Six of the ten optimal paths in panel (c)
are symmetric or nearly symmetric about the origin, meaning
they oscillate about a flat mean shape. The remaining four
(6, 8, 9, and 10) oscillate about mean shapes that are folded
to a large extent. We also find that the undulatory optimum 1
is common both at μn/μ f � 1 and � 1, but not at intermedi-
ate values (similar kinematics give zero net locomotion with

isotropic friction [37]). The small-amplitude motions 3 and 8
also appear where μn/μ f is very small and very large.

Figure 5 shows the relative efficiencies of the global [panel
(a)] and second-best optima [panel (b)] in these regions. The
corresponding A0, A1, and B1 values are plotted in Fig. 15
of the Appendix. The maximum relative efficiency, nearly
0.6, is achieved at μn/μ f = 1 and μb/μ f = 20, the top cen-
ter of panel (a), by kinematics in the cluster represented by
motion 9 in Fig. 4(d)—a very small-amplitude reciprocal
kinematics. The second best optimum at the same friction
coefficient ratios [top center of panel (b)] is nearly as good,
but it corresponds to a very different kinematics—number 5
in Fig. 4(d). The motion shown there is for an optimum at the
same μn/μ f but a much smaller μb/μ f (1.2). The maximum
relative efficiencies decline smoothly and monotonically in
all directions moving away from the top center of panel (a).
At the bottom center of panel (a) is isotropic friction, with
maximum relative efficiency 0.26. The kinematics are given
by the large red ellipse in Fig. 4(c), and the motion is number
4 in panel (d). Moving to the lower left corner of Fig. 5(a),
μn/μ f = 0.01 and μb/μ f = 1, the relative efficiency drops
to 0.06, its minimum over the panel, given by motion 3 in
Fig. 4(d). Here, even a small amount of tangential motion
causes a large drop in relative efficiency. At the other ex-
treme, μn/μ f = 100, the relative efficiency is 0.1, and it is
achieved by a small-amplitude circular trajectory about the
origin (the flat state), similar to the kinematics of motion 3
in Fig. 4(d), but now resulting in mainly tangential motion.
For both μn/μ f � 1 and � 1, the single harmonic and the
three-link body do not permit sufficiently fine scale motions
to come close to the upper bound of efficiency. We will see
later that adding more harmonics allows a large improvement
in efficiency for μn/μ f � 1, but less so for μn/μ f � 1, for
three-link bodies.

The relative efficiencies of the second-best optima, shown
in Fig. 5(b), are 70–99% of those of the best optima over most
of the middle parts of the panels, but they drop to 30–60%
of the best values at the most extreme values of μn/μ f , 0.01
and 100. The values have a general pattern of decrease from a
peak at the top center that is similar to panel (a), but with a bit
less monotonicity. We discuss corresponding patterns in the
variation of the coefficients {A0, A1, and B1} in the Appendix.

So far we have considered elliptical trajectories with bilat-
eral symmetry, a three-parameter space. We now enlarge to
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FIG. 6. Relative efficiency (λ/λub) vs net rotation (|�θ0|, in radians) for elliptical trajectories that are bilaterally symmetric (blue dots),
antipodally symmetric (green dots), or reciprocal (red dots). Values for other trajectories are shown by gray dots. Each panel shows data at a
given pair of friction coefficient ratios, labeled along the top and left of the figure.

the full six-parameter space of arbitrary elliptical trajectories,
most of which have nonzero net rotations. We investigate to
what extent efficient locomotion can occur with nonzero but
small (possibly very small) net rotation. If some nonsymmet-
ric motions have negligible rotation and greatly outperform
the symmetric cases with zero net rotation (exemplified by
the green and blue ellipses in Fig. 3), we should consider the
larger space of nonsymmetric motions further. We consider
the general ellipse in (17), first reducing to a five-dimensional
space by fixing the phase (which does not change the path),
and then varying the phase for each path. We fix the phase
by taking A21 = −A11 and A11 � 0. Each parameter in (17)
varies from −1.2π to 1.2π (except A11, varying from 0 to
1.2π ) in increments of π/20. Restricting to paths in the region
of non-self-intersecting bodies, we obtain 4.7×106 ellipses
(compared to about 8000 in the bilaterally symmetric case),
a large increase due to exponential growth with parameter
space dimension. For each path, we vary the phase from 0 to
2π because the phase affects the displacement and hence the
efficiency when there is nonzero net rotation. In Fig. 6, we plot
the relative efficiency versus net rotation (in radians) for the
general elliptical trajectories for various friction coefficient ra-
tios. Each panel has a different set of friction coefficient ratios
(labeled along the left and top of the figure), on a 5-by-3 grid
that is a subset of the 12-by-8 grid considered earlier. Each
trajectory is represented by a dot, gray for nonsymmetric, blue
for bilaterally symmetric, green for antipodally symmetric,
and red for reciprocal (as in the examples of Fig. 3).

The gray dots can have very small rotations, as small
as 10−8 in some cases. However, the green and blue
dots’ rotations are generally orders of magnitude smaller,
∈ [10−18, 10−10]. These rotations are not precisely zero due
to numerical roundoff error. In most panels, the green and

blue dots achieve top efficiencies that are essentially the same
as those of the much larger sets of gray dots. However, in
the top two panels of the first column (μn/μ f = 0.1), the
gray dots reach efficiencies that are 20–30% higher. Excluding
those with net rotations >10−2 decreases this advantage sub-
stantially. Among the gray dots there is a decline in relative
efficiency as net rotation tends to zero, and the gray dots
with highest efficiencies usually have net rotations �10−3.
Some of the gray dots are only slight perturbations of sym-
metric cases, so we would expect similar efficiencies with
small but nonzero net rotations. The red dots (reciprocal mo-
tions) achieve zero net locomotion, and hence zero relative
efficiency, in the bottom row (μb = μ f ). They underperform
the other groups in the middle row, but they are equal or
close to the top performers in the top row, particularly the
right side (μn/μ f � 1). In the middle and top rows, most
reciprocal motions have nonzero and sometimes large rota-
tions. However, a small group of red dots can be seen (by
zooming in), distinct from the blue and green dots, with very
small rotations (� 10−15), and with high efficiencies. These
are nonsymmetric versions of motions 8 and 9 in Fig. 4.
Because the green and blue dots achieve nearly the same peak
relative efficiencies as the gray dots, and they are fewer in
number by many orders of magnitude, we consider only these
symmetric cases when we add higher harmonics. It rapidly
becomes impractical to compute all periodic trajectories with
coefficients on the aforementioned grids as the number of
coefficients increases above five. Nonsymmetric paths with
up to two harmonics are described by nine coefficients. Using
the same coefficient grids as for the nonsymmetric ellipses
(with a single harmonic), an estimate of the factor of increase
in computing time for the nine-dimensional space relative to
the five-dimensional space is 494 ≈ 6×106. Many coefficients
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 7. Examples of the effect of adding higher harmonics to elliptical trajectories. The trajectories are given by (20). In (a), (c), (e), and
(g), we have A1 = 0.5 and B1 = 1; in (b), (d), (g), and (h), we have A1 = 1 and B1 = 0.5. To these ellipses we add just one additional nonzero
mode, setting either A2 [in (a) and (b)], B2 in [(c) and (d)], A3 [(e) and (f)], or B3 [(g) and (h)] to 0.2 (light blue lines) or 0.4 (dark blue lines).

lead to self-intersecting paths, but even after eliminating these,
the factor of increase is many orders of magnitude and beyond
our computing resources. Bilaterally symmetric trajectories
with a given number of harmonics are described by half the
coefficients of the nonsymmetric ones, allowing us to consider
the full bilaterally symmetric trajectory parameter space with
higher harmonics, but only a small number of them.

IV. MULTIPLE-HARMONIC KINEMATICS

We now add higher harmonics to elliptical trajectories,
considering trajectories with bilateral symmetry here [e.g.,
the blue ellipse in Fig. 3(a)], and both bilateral and antipo-
dal symmetry later. Trajectories with bilateral symmetry and
harmonics up to k are given by

�θ1(t ) = A0 +
k∑

n=1

An cos(2πnt ) + Bn sin(2πnt ),

�θ2(t ) = −A0 +
k∑

n=1

−An cos(2πnt ) + Bn sin(2πnt ),

0 � t � 1, (20)

while those with antipodal symmetry are given by

�θ1(t ) =
k∑

n = 1
n odd

A1n cos(2πnt ) + B1n sin(2πnt ),

�θ2(t ) =
k∑

n = 1
n odd

A2n cos(2πnt ) + B2n sin(2πnt ), 0 � t � 1.

(21)

In both cases we have 2k + 1 terms [when we use A21 = −A11

to set the arbitrary phase in (21)] compared to 4k + 2 terms
in the general nonsymmetric case, for k � 1. Figure 7 shows
examples of bilaterally symmetric trajectories obtained by
adding the second or third harmonics to the basic ellipse. In
both rows, we start with example ellipses shown in green.
These have just the A1 and B1 terms in (20), with all other
terms zero. We take the major axis twice as long as the minor
axis in these examples, so in (a), (c), (e), and (g) we have
A1 = 0.5 and B1 = 1, while in (b), (d), (f), and (h) we have the
other symmetric orientation, given by A1 = 1 and B1 = 0.5.
To these ellipses we add just one additional nonzero mode,
setting either A2 [in (a) and (b)], B2 [in (c) and (d)], A3 [(e)
and (f)], or B3 [(g) and (h)] to 0.2 (light blue lines) or 0.4 (dark
blue lines), and the other coefficients to zero. These examples
show that the effects of the 4πt modes (top row) are approxi-
mately to dilate the path on one side and contract on the other,
though the change of shape is nonuniform and somewhat
complicated. The 6πt modes (bottom row) approximately
dilate the path at one pair of opposite sides and contract at
the other pair. The trajectories self-intersect in several cases
[which is separate from the question of whether the body
self-intersects, determined by the location of the trajectory
in (�θ1,�θ2)-space]. Another, geometric interpretation of the
terms in (20) and (21) was given by [44]: those with the lowest
harmonic (1) represent an ellipse; those with harmonic 2 (i.e.,
with coefficients A2 and B2) also represent an ellipse, but one
that is traversed twice within the unit period, and likewise
for any harmonic n. Thus (20) and (21) can be thought of as
superpositions of ellipses that are traversed integer numbers
of times within the unit period.

It is very expensive to solve for the body motions for
trajectories of the form (20) with k > 2 with a dense grid
of coefficients, i.e., varying all 2k + 1 coefficients on the
aforementioned grids with spacing π/20. Instead, we consider
two five-dimensional subspaces, the first consisting of ellipses
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FIG. 8. The numbers of local optima of efficiency at various friction coefficient ratios in the space of {A0, A1, B1} describing bilaterally sym-
metric ellipses [panel (a)], the larger space of {A0, A1, B1, A2, B2} with second harmonics added [panel (b)], and the space of {A0, A1, B1, A3, B3}
with third harmonics added [panel (c)].

plus second harmonics, varying {A0, A1, B1, A2, B2} on the
aforementioned grids, and the second consisting of ellipses
plus third harmonics, i.e., varying {A0, A1, B1, A3, B3} on the
same grids. In Fig. 8 we plot the numbers of local optima for
efficiency at various friction coefficient ratios. This quantity
gives a measure of the smoothness of efficiency space. The
number of optima for bilaterally symmetric ellipses, i.e., the
space of {A0, A1, B1}, is shown in panel (a); ellipses plus sec-
ond harmonics are shown in panel (b); and ellipses plus third
harmonics are shown in panel (c). In panel (a), the number of
local optima has a minimum of two at the top, right of center,
and a maximum of 45 at the top left. These are also locations
where the relative efficiency was large and small for the best
elliptical trajectories, according to Fig. 15(a). On the right
side of Fig. 8(a) (μn/μ f > 1), there are at most 10 optima,
and about 2–4 times as many at points with the reciprocal
value of μn/μ f , on the left side. In panels (b) and (c), the
numbers of local optima increase enormously at the top left
to about 1000 in each case, while the minimum value of 2 in
(a) increases modestly, to 4 and 6 in (b) and (c), respectively.
At other points, the numbers of optima increase by factors of
4–8 typically, moving from (a) to (b) or to (c). The numbers
of local optima plotted in Fig. 8 are found by comparing

each value of efficiency on the mesh with those of its nearest
neighbors [numbering 33-1 in panel (a), and 35-1 in panels
(b) and (c)]. The numbers of optima presented in Fig. 8 are
mesh-dependent, and they increase as the meshes are refined.
When we decrease the mesh spacing from π/20 to π/40, the
numbers of optima increase, with the largest increases where
the numbers are highest in Fig. 8. At the smallest values (�10)
there is little or no change. It is not computationally tractable
to perform the computation on a mesh that is fine enough
to fully resolve all the optima in these spaces, but the qual-
itative trends shown by Fig. 8 become stronger as the mesh
is refined, and they are expected to persist in the continuum
limit.

One might expect that the cases with larger numbers of lo-
cal optima, and larger changes in the numbers of local optima
when the higher harmonics are added, are more sensitive to
small changes in body motions. One question is whether the
optimal efficiencies in these cases [e.g., the values on the left
side of Fig. 5(a)] have larger increases when higher harmonics
are added.

Figure 9 shows the changes in peak efficiency when the
parameter space is enlarged from smaller to larger sets of
harmonics in (20). First, we consider the improvement when
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FIG. 9. The factor of improvement in maximum relative efficiency when the space of modes is enlarged from (a) {A1, B1} to {A0, A1, B1};
(b) {A0, A1, B1} to {A0, A1, B1, A2, B2}; (c) {A0, A1, B1} to {A0, A1, B1, A3, B3}. The modes corresponding to these coefficients are listed in
Eqs. (20). The factor is plotted at various friction coefficient values shown on the axes.
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FIG. 10. Probability densities of relative efficiency, estimated from histogram data for various friction coefficient ratios (labeled at top and
left). Each color corresponds to bilaterally symmetric trajectories with a given maximum harmonic k, labeled at left, resulting in 2k + 1 modes.
Each curve corresponds to a different random ensemble of about 106 trajectories.

motions that are biased with respect to the flat state (i.e.,
those with nonzero A0) are considered, for elliptical trajec-
tories. Panel (a) shows the factor of improvement in the peak
efficiency when modes with {A0, A1, B1} are considered com-
pared to those with just {A1, B1}. At the smallest μn/μ f ,
the A0 term allows for a large increase in the peak relative
efficiency. At most other friction coefficient ratios, there is no
improvement, except in a strip of values contained within 1 �
μn/μ f � 10, where the improvement is typically 20–30 %.
Panel (b) shows the improvement obtained by expanding from
{A0, A1, B1} to {A0, A1, B1, A2, B2}. It is somewhat surpris-
ing that in most cases here, there is little improvement from
considering these two additional modes. There is little to no
improvement except near isotropic friction and near 0.01 �
μn/μ f � 0.1, where the improvement is at most 31%. Panel
(c) shows the improvement from expanding from {A0, A1, B1}
to {A0, A1, B1, A3, B3}. Here too, the improvement is modest,
with improvements up to 51% near isotropic friction, but less
than 7.5% outside of 1/3 � μn/μ f � 3. Taken together, these
results suggest that in most cases ellipses, in particular ellipses
centered at the origin, may be good approximations to the
optimal trajectories with large numbers of harmonics. Our
stochastic optimization results shown later will support this
statement, except in some cases with μn/μ f � 1.

As the number of modes increases above five, it becomes
prohibitively expensive to compute results across a grid that
resolves all of the coefficient parameter space. We explore
higher-dimensional spaces by instead selecting a random en-
semble of ≈106 points in coefficient space. For example,
with harmonics up to k = 3, there are seven coefficients in
(20). A large ensemble of seven-component vectors is cho-
sen, with each of the seven components (the coefficients)
drawn from a uniform distribution on [−1.2π, 1.2π ]. Most

points yield trajectories that include self-intersecting bodies
at certain times, and these are eliminated. The relative effi-
ciency is computed for the non-self-intersecting cases, ≈106

in number. This is done for k = 2, 3, 4, and 5 harmonics, with
coefficients in a (2k + 1)-dimensional space, and 10 different
random ensembles in each case. For each ensemble, we bin
the data in small increments of relative efficiency, and we
construct an estimate of the probability density of relative
efficiency, plotted for each k in Fig. 10, on the five-by-three
grid of friction coefficient ratios used in Fig. 6. The maxi-
mum efficiencies (approximately the maximum of the values
labeled on the horizontal axis in each panel) vary widely
among the panels, but the density distribution shapes have
certain common features. The densities typically have a peak
at an efficiency that is some distance from zero (except in
the leftmost column), the typical efficiency magnitude for
a random kinematics. After the peak, the densities fall off
exponentially (a linear behavior on this log-linear scale) or
faster. They are many orders of magnitude smaller near the
maximum efficiencies, which are therefore rare events. There
is some scatter among the 10 different random ensembles
(the set of 10 curves with the same color in each panel),
particularly at the largest efficiencies. Nonetheless, the curves
of a given color tend to cluster together, and near the peaks
the densities are not very sensitive to the particular ensemble
used. In most cases, k = 2 gives the best performance—the
highest density of states at the largest efficiencies—and the
performance decreases with larger k. The spaces with lower k
are nested in those at higher k, so the maximum efficiency over
all kinematics must occur in the space with largest k. However,
Fig. 10 shows that it is unlikely to arise in the samples chosen.
The method of sampling (uniform sampling in each coeffi-
cient, with self-intersecting motions discarded) could affect
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FIG. 11. Efficiency-maximizing trajectories with bilateral symmetry, with different maximum harmonics k—3 (red), 5 (green), 7 (light
blue), and 9 (purple)—corresponding to 2k + 1 modes in each case. The trajectories are plotted in the region of nonintersecting trajectories,
plotted at various friction coefficient ratios labeled at the bottom and left. The trajectories are computed with the stochastic optimization
algorithm described in the text.

the increased prevalence of lower-efficiency states at larger
k. For example, many kinematics with large high-harmonic
components may be ineffective for locomotion, and these are
likely to occur with the uniform sampling of each coefficient
used here.

V. STOCHASTIC OPTIMIZATION

We have presented the relative efficiency for individual
optima, their kinematics in the elliptical case, and some
of the features of trajectory spaces—numbers of optima,
distributions of rotations and efficiencies, and incremental
improvements from enlarging the spaces of modes—with di-
mensions up to 11 (i.e., k up to 5). We now study the features
of optimal trajectories as the space of modes is increased
further by using a stochastic optimization method with
ensembles of trajectories. Compared to the quasi-Newton ap-
proaches used in [3,21], the stochastic method is gradient-free,
and therefore simpler to implement—particularly given the
constraint that trajectories remain in the non-self-intersecting
region. The main drawbacks are that more iterations are
needed to obtain convergence, and the stochastic algorithm
requires parameters that are tuned heuristically, unlike the
more standardized Newton-type search algorithms [45].

Here we create a large number of populations (e.g., 250),
each population with 50 trajectories, and we evolve the
populations over many generations. At each generation, we
evaluate the relative efficiency of each trajectory, select the top
50% of trajectories, and replace the entire population with ran-
dom perturbations of the top 50%. We add perturbations to the
coefficients, drawn from uniform or Gaussian distributions.
The magnitude of each coefficient in a given perturbation
is a tuned parameter, typically 0.001–0.01 multiplied by the
reciprocal of the harmonic corresponding to the coefficient. If
the perturbation magnitude is at the smaller end of the range,
the population converges slowly but directly to the nearest
local optimum. If the perturbation magnitude is at the larger
end, the population converges more quickly and possibly to a
wider range of optima, but it fluctuates more around a given
optimum. Therefore, we start with a larger perturbation mag-
nitude and progressively decrease it, as in simulated annealing
[45]. We run each population for 1000 generations, by which
point convergence is obtained.

In Fig. 11 we plot the optimal trajectories thus obtained,
among all the populations, in friction coefficient space.
The trajectories are plotted within the region of non-self-
intersecting shapes, outlined in black at each pair of friction
coefficient ratios. We consider trajectories with bilateral
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FIG. 12. Efficiency-maximizing trajectories with antipodal symmetry, with different maximum harmonics k—3 (red), 5 (green), 7 (light
blue), and 9 (purple)—corresponding to 2k + 2 modes in each case. The trajectories are plotted in the region of nonintersecting trajectories,
plotted at various friction coefficient ratios labeled at the bottom and left. The trajectories are computed with the stochastic optimization
algorithm described in the text.

symmetry here. Different colors correspond to different max-
imum harmonics k in (20)—3 (red), 5 (green), 7 (light blue),
and 9 (purple)—with 2k + 1 modes in each case. As for the
elliptical trajectory optima in Fig. 4, certain types of trajec-
tories are strongly correlated with certain regions of friction
coefficient space. There is generally very good agreement
between the optima with different k. On the left, μn/μ f � 1,
the optimal trajectories are very small, in most cases almost
45-45-90 right triangles with two sides aligned with the �θ1

and �θ2 axes, and close to the upper left or lower right
corners of each subregion. These are two versions of the
same motion (symmetric about the line �θ1 = �θ2, i.e., with
�θ1 and �θ2 interchanged), with the body executing very
small motions about a mean shape that is nearly completely
folded together as in motion 8 of Fig. 4(d). The triangles are
largest and easiest to see at μn/μ f = 0.33 and μb/μ f = 1,
and gradually become smaller moving leftward and upward in
friction coefficient space. There is a transition to much larger
lenticular or oval-shaped trajectories, centered at the origin
at μn/μ f = 0.5. These become larger, eventually filling the
non-self-intersecting region at μn/μ f = 2 for some μb/μ f .
Here and at μn/μ f = 3, triangular trajectories in the corners
reappear, this time more curved and larger than previously.
For larger μb/μ f and 1 � μn/μ f � 10, small slit trajectories

appear, very similar to motion 9 in Fig. 4(d), and occurring
at similar friction coefficient values. At smaller μb/μ f , as
μn/μ f ranges from 5 to 20, the corner trajectories become
larger and rounder, and at the largest μn/μ f = 100, all the
trajectories become small circles at the origin, like kinematics
3 in Fig. 4(d), but symmetric about the flat state, and moving
mainly tangentially at this pair of friction coefficient ratios.
Most of these trajectories are simple closed curves that can be
approximated reasonably well by ellipses.

Figure 12 shows the results with the same optimization
procedure but for the other main class of zero-net-rotation
trajectories—those with antipodal symmetry. The values of k
are the same, but they result in 2k + 2 modes now using (21).
Except in a few cases [e.g., (5,3),(10,5)], these trajectories
also have the bilateral symmetry of the previous trajectories.
Where the trajectories in Fig. 11 are centered at the origin, the
two types of optima agree well. Where they disagree, if the an-
tipodally symmetric optima also have bilateral symmetry (as
in nearly every case), they must be inferior, or else they would
also occur in Fig. 11. In general, the antipodally symmetric
optima vary more smoothly in parameter space.

For all friction coefficient ratios, we find that the optima
with bilateral symmetry are at least as good as those with
antipodal symmetry, and often much better. The factors by
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FIG. 13. (a) The factors by which the efficiencies of the bilaterally symmetric optima exceed those of the antipodally symmetric optima.
(b) The relative efficiencies of the bilaterally symmetric optima.

which the efficiencies of the bilaterally symmetric optima
exceed those of the antipodally symmetric optima are plotted
in Fig. 13(a). The factor is about 12 at μn/μ f = 0.01, 2.4–2.7
at μn/μ f = 0.1, and decreases to about 1 at μn/μ f = 0.5 and
1. It then rises again to 1.2–1.3 for 2 � μn/μ f � 10, and then
drops back to 1 for larger μn/μ f . The values of the relative
efficiency for the bilaterally symmetric optima are shown in
panel (b). They are fairly uniform, 0.34–0.42, on the left side
of the panel, 0.01 � μn/μ f � 0.5. On the right side of the
panel, they are similar to the values for the elliptical optima in
Fig. 5(a), except near isotropic friction. There the bilaterally
symmetric optima are about 60% more efficient, but the ad-
vantage decreases rapidly moving to larger μb/μ f and μn/μ f .
This is consistent with the fact that the trajectories in Fig. 11
become either more rounded (at large μn/μ f ) or flat (at large
μb/μ f ), in both cases closer to ellipses. For μn/μ f = 0.01,
the bilaterally symmetric optima are about six times as effi-
cient as the elliptical optima. Here the efficiency is sensitive
to the detailed shape of the trajectory (i.e., triangular versus
flat), and the higher harmonics are needed to approximate the
optimal trajectory for a three-link body.

A. Linear resistance

Many previous works have considered the optimal motions
of three-link swimmers at zero Reynolds number [1–13]. To
compare with this important case, we now consider how the
optimal trajectories change when the resistive force is linear
in velocity, instead of speed-independent as in the preced-
ing results. This corresponds to resistive force theory, which
is the lowest-order approximation to the nonlocal viscous
forces on a slender body [40]. Although nonlocal slender

body theories have also been developed and used extensively
[3,30], resistive force theory gives a sufficient representation
of the physics for many swimming problems [46–50]. The
anisotropy ratio for a long cylinder, μn/μ f = 2, has been
used most often for a body swimming in a Newtonian fluid
[2,30,40]. Reference [51] mentions a value of 1.5 as more
appropriate for undulating bodies; Ref. [52] mentions values
between 1 and 2 in an empirical theory for shear-thinning flu-
ids; and Ref. [53] derives ratios both less than and greater than
2 for complex fluids. Ratios greater than 2 (of the order of 10)
have also been used to model the crawling of micro-organisms
on wet surfaces [48,54–56]. We are unaware of studies that de-
rive ratios smaller than 1 for biological or physical swimmers,
although Refs. [17,51] mention the possibility for the marine
worm Nereis, which has enhanced resistance along the body
axis due to bristles, and which uses direct wave locomotion.
We are also unaware of swimmers that have been modeled
with μb/μ f different from 1, but some difference would occur
with bodies that are not fore-aft symmetric. For comparison
with the sliding locomotion results in this paper, we compute
optimally efficient trajectories with the linear resistance law
in the same space of ratios of resistance (previously friction)
coefficients.

For the case of linear resistance, we replace ∂̂t Xδ by ∂t X
in (7). Bilaterally and antipodally symmetric trajectories still
yield no net rotation; the cancellations in rotation are not
affected by how the resistive force depends on the velocity
magnitude. The definition of efficiency is changed from (15)
to λ = ‖∂t X‖2/〈P〉, and it is proportional to measures of effi-
ciency (e.g., the “Lighthill efficiency”) used in previous stud-
ies [2,3,57]. The same upper bound, λub = 1/μmin, holds with
resistance that is linear in velocity, as follows. We now have

〈P〉 =
∫ 1

0

∫ 1

0
μn(∂t X · n̂)2 + {μ f H (∂t X · ŝ) + μb[1 − H (∂t X · ŝ)]}(∂t X · ŝ)2ds dt � μmin

∫ 1

0

∫ 1

0
‖∂t X‖2ds dt . (22)

We decompose ∂t X into its time-and-space average ∂t X plus the remainder ∂̃t X, which has zero time-and-space average:

∂t X = ∂t X + ∂̃t X, ∂t X ≡
∫ 1

0

∫ 1

0
∂t X ds dt . (23)
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FIG. 14. (a) Trajectories (with bilateral or antipodal symmetry) that maximize relative efficiency, with different maximum harmonics k—3
(red), 5 (green), 7 (light blue), and 9 (purple)—when the resistance law is linear in velocity. (b) The relative efficiencies corresponding to the
motions in panel (a).

Therefore,

〈P〉 � μmin

∫ 1

0

∫ 1

0
‖∂t X‖2ds dt = μmin

∫ 1

0

∫ 1

0
‖∂t X‖2 + ‖∂̃t X‖2ds dt + 2μmin∂t X ·

∫ 1

0

∫ 1

0
∂̃t X ds dt (24)

= μmin

∫ 1

0

∫ 1

0
‖∂t X‖2 + ‖∂̃t X‖2ds dt � μmin‖∂t X‖2. (25)

Therefore, for a given average speed ‖∂t X‖, 〈P〉 is at least μmin‖∂t X‖2, which occurs when all points of the body move uniformly
in the direction of minimum resistance, at constant speed ‖∂t X‖. This provides the upper bound on efficiency:

λub ≡ 1

μmin
� ‖∂t X‖2

〈P〉 = λ. (26)

Figure 14(a) shows the trajectories (computed with the
stochastic algorithm) that maximize relative efficiency, among
the class of trajectories with either bilateral or antipodal sym-
metry, when the resistance law is linear in velocity. At large
μn/μ f , the trajectories are similar to those with Coulomb
friction in Fig. 12. Near μn/μ f = 2, the trajectories are off-
center, like those in Fig. 11, and like that proposed by [5]
for high efficiency, but those in Fig. 14 are rounder. At
μn/μ f = μb/μ f = 1, all trajectories yield zero locomotion

with linear resistance [37], so none is shown. For μb/μ f > 1
and μn/μ f = 1 and somewhat larger, small-amplitude recip-
rocal motions are optimal, similar to those in the sliding case,
Fig. 11. The symmetrical lenticular or oval shapes in the
central parts of Figs. 11 and 12 do not appear in Fig. 14.
Here, rounded off-center trajectories appear at both μn/μ f >

1 and <1. Decreasing μn/μ f to 0.1 and with μb/μ f > 1.5,
the trajectories become somewhat triangular, and very small
in size as μn/μ f is decreased further to 0.01, roughly like
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those in Fig. 11, but not as small. In general, many of the
optimal trajectories with linear resistance resemble those with
the Coulomb friction resistance law. The differences are most
pronounced in the vicinity of isotropic friction, where lin-
ear resistance yields no locomotion. Figure 14(b) shows the
distribution of optimal relative efficiencies corresponding to
panel (a). The distribution is similar to that of Fig. 13(b).
The maximum occurs at the top center in both cases. Values
decrease moving leftward and rightward, more to the right
in Fig. 13(b) but more symmetrically in Fig. 14(b). The rel-
ative efficiency values are generally much lower for linear
resistance—about 0–30% of the values for Coulomb friction
in the left half of Fig. 13(b), μn/μ f < 1. In the right half,
they are also generally much lower, but they reach 50% of
the Coulomb friction values when μn/μ f increases to 10, and
they exceed the Coulomb friction values by a few percent
along the rightmost boundary, μn/μ f = 100.

VI. SUMMARY AND CONCLUSIONS

We have investigated efficient sliding motions of three-link
bodies with a Coulomb friction resistance law and various
frictional anisotropy ratios. We found that the reduced space
of elliptical (single-harmonic) trajectories gives a good rep-
resentation of optimal motions when more harmonics are
considered. Friction coefficient space can be partitioned into
distinct regions (about seven are suggested here for elliptical
trajectories) where different types of motions are optimal.
Surprisingly, the top two elliptical optima usually belong
to different clusters in trajectory coefficient space, despite
having similar relative efficiencies, showing that very dif-
ferent motions can be close to optimal for a given choice
of friction anisotropy ratios. Many of the elliptical optima
bend symmetrically to either side of the flat state, but several
optima are strongly asymmetrical, including small-amplitude
reciprocal motions. Some of the optima resemble those seen
previously in the smooth case—small-amplitude retrograde or
direct wave locomotion with very large or very small normal
friction, reciprocal (or ratcheting) motions with large back-
ward friction. But most of the optima are distinct from those
seen previously.

The elliptical motions with zero net rotation belong to three
groups: those with a certain bilateral symmetry, antipodal
symmetry, and a small subset of the reciprocal motions. For
trajectories with harmonics up to a given integer, the first two
groups have about half the dimension of general trajectories,
but they achieve about the same maximum efficiency, with a
noticeable reduction only for very small normal friction.

Adding the second or third harmonic to bilaterally sym-
metric elliptical trajectories increases the number of local
optima by a factor of 4–8 in most of the parameter space,
but increasing to about 20 when normal friction is small.
Adding these modes increases the maximum efficiency by
at most 50%, and usually much less. We then considered
random ensembles with uniformly distributed coefficients of
up to five harmonics. The probability density of efficiency has
a peak at a nonzero efficiency in most cases, and falls off
exponentially or faster up to the maximum efficiency value.
Ensembles that include higher harmonics are skewed toward
smaller efficiencies.

We developed a stochastic optimization method to find
optimal trajectories in larger spaces of modes, with up to
nine harmonics. We found rapid convergence with increasing
numbers of modes. Bilaterally symmetric optima outperform
antipodally symmetric optima where they differ. With small
normal friction, the optimal trajectories with higher harmonics
have the same general sizes and locations as the elliptical
optima, but they have a triangular shape that increases ef-
ficiency by a factor as large as 6 at the smallest normal
friction studied. At intermediate normal friction, the higher-
harmonic optima are similar to the elliptical optima, though
sometimes with angular shapes, and efficiencies are only mod-
erately higher. In nearly all cases, the higher-harmonic optima
are simple closed curves, even though simple closed curves
are a small subset of the full set of trajectories (including
those with self-intersection). With a linear resistance law, the
peak relative efficiencies are much reduced, particularly near
isotropic resistance where the efficiency is always zero. The
optimal trajectories are similar to the Coulomb friction case
at large normal friction, more off-center and rounded at mod-
erate normal friction, and larger and more rounded triangular
trajectories at very small normal friction. As with Coulomb
friction, nearly reciprocal motions with very small amplitude
predominate at large backward friction and moderate normal
friction.

We mention as a possibility for future work the use of ge-
ometric techniques to visualize energy-optimal gaits by using
the energy as a Riemannian metric [38,58]. Gaits (i.e., trajec-
tories) that yield large displacements are those that enclose a
large amount of an appropriately defined curvature quantity.
A “gait gradient” can be computed that maximizes the net
displacement of a gait subject to an energy constraint, and
used to evolve the gait toward optimal efficiency.
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APPENDIX: COEFFICIENTS
FOR ELLIPTICAL OPTIMA

Figure 15 shows the values of the three coefficients—A0,
A1, and B1—that define the top two local optimizers of ef-
ficiency among bilaterally symmetric ellipses, via Eq. (18).
The left column [panels (a), (c), and (e)] shows the A0, A1,
and B1 values, respectively, for the top optimum. The mean
shape is flat for A0 = 0 and more folded as |A0| increases.
The A0 values in panel (a) are close to 0 (a nearly flat mean
shape) in most cases, except for some very folded cases at
the top, left of center [i.e., motion 8 in Fig. 4(d)], and at
the bottom, right of center [i.e., motion 10 in Fig. 4(d)]. The
amplitudes of the motions, described by A1 [panel (c)] and B1

[panel (e)] are typically close to 0 for μn/μ f � 1, large for
μn/μ f ≈ 1, and then very small again (for μb/μ f � 1) or
moderately small (for μb/μ f ≈ 1) when μn/μ f � 1. There is
more heterogeneity among the parameters for the second best
optima [right column, panels (b), (d), and (f)]. By tracking the
parameters of the top several optima (not shown beyond the
top two) across friction coefficient parameter space, we have
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FIG. 15. The left column [panels (a), (c), and (e)] gives the values of the kinematic parameters A0, A1, and B1, respectively, for the global
optimizers of efficiency among elliptical trajectories with bilateral symmetry. The right column [panels (b), (d), and (f)] gives the same values
for the second best local optimizers. The parameters are defined in (18) and shown in Fig. 3(b).

found that there are distinct branches of optima, with A0, A1,
and B1 values that change gradually as the friction coefficient
ratios are varied. Their ordering by relative efficiency switches
at certain friction coefficient ratios. This accounts for some of

the sharp changes in the parameters of the first and second
columns at certain friction coefficient values, where the best
or second-best optima switch from one branch of optimal
motions to another.
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