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Spatial extent of a single lipid’s influence on bilayer mechanics
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To what spatial extent does a single lipid affect the mechanical properties of the membrane that surrounds
it? The lipid composition of a membrane determines its mechanical properties. The shapes available to the
membrane depend on its compositional material properties, and therefore, the lipid environment. Because each
individual lipid species’ chemistry is different, it is important to know its range of influence on membrane
mechanical properties. This is defined herein as the lipid’s mechanical extent. Here, a lipid’s mechanical extent
is determined by quantifying lipid redistribution and the average curvature that lipid species experience on
fluctuating membrane surfaces. A surprising finding is that, unlike unsaturated lipids, saturated lipids have
a complicated, nonlocal effect on the surrounding surface, with the interaction strength maximal at a finite
length-scale. The methodology provides the means to substantially enrich curvature-energy models of membrane
structures, quantifying what was previously only conjecture.
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I. INTRODUCTION

Amphiphilic lipids form the foundation of the bilayers that
function as a physical barrier, surrounding and protecting the
living cell. Their collective mechanics determine the rates of
many critical biological processes, including both viral entry
and exit, as well as how the cell recycles membrane signaling
proteins as a fundamental element of regulating its response to
stimuli [1]. Biological membranes are composed of hundreds
of chemically distinct lipid species [2], each with an individual
effect on surface mechanics [3–7]. Yet the spatial form of
that effect, and how it depends on the physical interactions
between lipids, is largely unknown.

Interactions between lipids (either individually or col-
lectively) determine the stable shapes and patterns [8,9]
that critically influence biological processes. For example,
biological membranes sit close to a two-dimensional compo-
sitional phase transition [10,11] and experiments suggest they
tune their lipid composition to maintain that proximity [12].
Material properties also determine the shapes a biological
membrane can support. Intermediates in membrane fusion
and fission are prime examples of curved structures that are
favored by certain lipids. To determine the energy of a mem-
brane shape, and how lipids affect its stability, the curvature
(c) at a point on the shape is compared to the spontaneous
curvature (c0) of the lipids at that point. A commonly em-
ployed elastic energy functional, the Helfrich/Canham (HC)
Hamiltonian [13,14] is proportional to the squared deviation
of c and c0.

This model is able to describe a number of biologically
relevant phenomena. The relative stability of flat and highly
curved hexagonal phases is determined by lipid headgroup
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and acyl chain chemistry [6,15,16]. Adding positively-curved
lysolipids blocks fusion while negatively-curved arachidonic
acid favors fusion [17]. A lipid’s c0 determines how it segre-
gates between the leaflets of sonicated vesicles [18,19]. These
experimental observations can be explained applying the HC
model, which, as typically applied, generally assumes het-
erogeneous lipid compositions. This assumption is frequently
well justified. However, it is an open question as to how single
lipids influence local material properties.

For example, consider a simple assumption (analyzed in
more depth below): that a lipid determines bilayer mechanical
parameters within a “footprint” of area Ap around it (i.e., a
local effect). Here, the subscript p refers to treating an indi-
vidual lipid as a particle diffusing in the membrane surface.
The local HC energy for the lipid is

Ep = κm

2
Ap(c − c0)2, (1)

where κm is the bending modulus of the leaflet. Within
this model and these assumptions, a force acts to move
the lipid to where c is equal to c0. Using common values
for the elastic constants (κm = 7.7 kcal/mol, Ap = 65 Å2,
c0 = [−29 Å]−1), applicable to high-curvature-favoring phos-
phatidylethanolamine (PE) lipids [4], yields Ep = 0.30
kcal/mol on a flat surface, or a Boltzmann weight of e−βEp =
60% compared to a small, highly curved surface with curva-
ture c0. For larger structures, enrichment is even more modest
and challenging to detect as a single-lipid effect [20].

An alternative assumption is that the effect on spontaneous
curvature is spread over the entire bilayer (i.e., a longer-range
effect). In this case, there is no force driving enrichment based
on spontaneous curvature. We define the spatial range of a
single lipid’s influence on a leaflet’s mechanical parameters
as the “mechanical extent” (ME); it is placed in mathematical
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terms below as a spatial weight, w(x, y), which is in turn
extracted from molecular simulation data.

The difference between local mechanical extent and
longer-range mechanical extent is critical for determining how
a heterogeneous lipid environment [21], be it transient or
persistent, will support a membrane reshaping process like
endocytosis or viral budding. For local extent, the influence
of a lipid is independent of the frequency q of the bilayer
undulation; a concentration of curvature sensitive lipids will
strongly promote shapes even at small length-scales. For well-
distributed extent, only low q modes will feel the influence of
the lipid. A third possibility, which we present evidence for
below in the case of saturated lipids, is that a lipid’s influence
is maximal at a particular value of q. Discussed below, this
physical mechanism favors modulation of the shape of later-
ally separated lipid phases, potentially explaining how lipid
composition can tune a length-scale in quaternary mixtures
[22]. Previously, a finite length-scale was predicted to emerge
only as a result of the interplay between tension and composi-
tional curvature-coupling [23–26].

Ternary systems of dioleoyl (DO)-phosphatidylcholine
(PC, or DOPC), DOPE, and DO-phosphatidyl serine (PS, or
DOPS) are used to test the redistribution behavior of known
lipids. Of the simple lipids of the plasma membrane (with two
acyl chains and no carbohydrate units), those with PE head-
groups have the most significant curvature, c0 = [−29 Å]−1

[3,4], and simulations reproduce the curvature of PE ac-
curately [27]. Extending the simulations to saturated lipids
(palmitoyl sphingomyelin, i.e., PSM and dipalmitoyl-PC, i.e.,
DPPC), mixed with palmitoyl-oleoyl-PC (POPC) tests the
effect of acyl chain on ME. Generally, results indicate a lipid’s
ME is localized. However, an interesting effect emerges for
the saturated lipids as their fraction increases; simulations
indicate a finite length-scale of curvature preference on the
order of nanometers. As discussed below, this has novel impli-
cations for why complex mixtures including saturated lipids
give rise to rich patterning as part of liquid-liquid lateral phase
separation.

II. THEORY AND METHODS

A. Continuum energetics and the definition of mechanical extent

The following sections establish two curvature-related
quantities necessary to determine the mechanical extent of a
lipid’s influence on bilayer mechanics. The first is the trans-
verse curvature bias, 〈cq〉(z) [see Eq. (16)], defined as the
apparent curvature sampled by a lipidic surface when the
positions of the constituent lipids are measured at a height
z above the bilayer midplane. This quantity is necessary to
correct for systematic bias determining the local curvature
around a lipid that is introduced when choosing an internal
coordinate for a lipid’s lateral position.

The unbiased position is called the neutral surface [28,29]
and is determined by where in a lipid the transverse curvature
bias is zero. Once we demonstrate how to compute curvature
free from the bias of the lipid coordinate system, we can define
the spontaneous curvature spectrum, �c0(q) [see Eq. (28)].
The quantity �c0(q) is the difference in spontaneous curva-
ture of a lipid and the surface background implied by the

dynamic redistribution of the lipid on an undulation with wave
vector q. We demonstrate how the q dependence of �c0(q)
determines the mechanical extent of the lipid, as we define it.

1. Preliminary Fourier description of lipid surfaces

In this work, out-of-plane undulations, h(x, y), and ME,
w(x, y), will be described in Fourier space:

f (x, y) = A−1
∑

q

fqeı{qx,qy}{x,y}, (2)

where the coefficients, fq, are determined by

fq =
∫ Lx

0
dx

∫ Ly

0
dy f (x, y)e−ı{qx,qy}{x,y}, (3)

and where the function f can be h or w. For the Fourier
transform of the periodic bilayer, Eq. (2), only q-space wave
vectors compatible with the periodic boundary conditions are
nonzero, that is

q = {qx, qy} =
{

2πm

Lx
,

2πn

Ly

}
, (4)

where m and n are integers and Lx and Ly are the periodic cell
dimensions. Since these functions are real-valued, the prop-
erty fq = f ∗

−q must hold. Therefore, only half of the modes
are independent and a set of wave vectors can be defined using
the shorthand “{q > 0}” as [30]:

{q > 0} ≡ {qx, qy}, (5)

such that

0 < qx < qmax for qy = 0 (i.e., n = 0)

−qmax < qx < qmax for qy > 0 (i.e., n > 0).

Note that negative qy are only included implicitly in the set
through f−q = f ∗

q . This contains all the necessary information
for the independent modes and allows for the treatment of
the real and imaginary components of the Fourier amplitudes
separately. Therefore, computations can be done on a “per
mode” or “per degree of freedom” basis. Moving forward we
use the “per mode” formalism; however, we do comment on
the differences when necessary.

2. Fluctuations in planar membrane curvature

Consider a single undulating mode of a bilayer described
with Fourier amplitudes as in Eq. (3). Computing the HC
Hamiltonian energy density,

EHC = κb

2
(c1 + c2 − c0)2 + κ̄c1c2, (6)

where κb (the bilayer bending rigidity) and κ̄ (the saddle-splay
modulus) require expressions for the principal curvatures c1

and c2 in terms of hq. The principal curvatures are quadratic
coefficients describing the parabolic variation of the surface
away from the tangent plane. Straightforward formulas are
available for computing them for general surfaces [31]. For
nearly planar simulations with small fluctuations, the use of
the linearized Monge gauge simplifies mathematical analysis.
The Monge gauge parametrization begins with

r(x, y) = {x, y, h(x, y)}, (7)
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and continues by dropping terms of higher order than h2
q when

computing observables. This truncation is applicable only to
a small deformation, which includes most thermally induced
undulations at physiological temperatures. The principal cur-
vatures are now

c1 = −∂2h(x, y)

∂x2
, c2 = −∂2h(x, y)

∂y2
,

c1 + c2 = −∇2h(x, y). (8)

The leading signs are chosen so that curvature is positive if the
upper (+z) leaflet headgroups are outside of a convex surface.
The energy as a function of hq is

EHC(hq) =
∫ Ly

0
dy

∫ Lx

0
dx

1

2
κb[−∇2h(x, y)]2

=
∑
{q>0}

κbA−1|hq|2q4, (9)

with A = LxLy. Terms potentially reflecting bilayer sponta-
neous curvature c0 integrate to zero. The surface normal to
first order in hq is

n(x, y) = ẑ −
∑
{q>0}

qhqeı{qx,qy}{x,y}, (10)

where ẑ is the unit z direction normal to the flat membrane.
Auxiliary surfaces can then be defined that are displaced along
the membrane normal, n, a distance z:

r(x, y; z) = {x′, y′, z′} = r(x, y) + (δ + z)n(x, y), (11)

where δ is the so-called neutral surface at which curvature
and area-compression energetics are uncoupled [28,32] and
at which the surface pivots at nearly constant area. This def-
inition will be used subsequently to describe variations in
curvature at different transverse positions along the bilayer
normal. Notationally z is used as a parameter, with each value
defining a distinct surface (displaced by z along the normal)
with distinct curvature.

According to Eq. (9), the modes q do not couple energeti-
cally, therefore the partition function Zq for a single mode can
be expressed as

Zq =
∫ ∞

−∞
d Re (hq)

∫ ∞

−∞
d Im (hq) e(−βEc ) = πA

βκbq4
, (12)

where the integral is taking over the real and imaginary parts
of a single Fourier amplitude, hq. The whole system partition
function Z for the independent modes is the product of the
individual functions:

Z =
∏

{q>0}
Zq. (13)

3. The transverse curvature bias 〈cq〉(z)

Embedded in the linearized Monge gauge is the assump-
tion that the lipids are evenly distributed on the bilayer surface
[33]. Under this assumption, the average curvature of the sur-
face (zero) is also the average curvature experienced by a lipid
(for a single component bilayer). However, this assumption
is only valid if a lipid’s position is measured at δ [notation-
ally defined here as z = 0, see Eq. (11)]. For example, in

the case of negative curvature, lipids will appear to be more
concentrated above the neutral surface as a consequence of
this systematic biased sampling of their position. The lipid
normal tends to point toward negative curvature. This leads
to systematic bias of the sampled curvature in terms of which
internal coordinate of the lipid is used to track the lipid. The
top panel of Fig. 1 depicts the origin of the bias graphically.
The assumption of a uniform distribution of lipids will be
broken.

Transverse curvature bias only applies to molecular mo-
tions that are correlated with collective undulation; the
magnitudes of tilt (i.e., orientational noise distributed around
the normal) and protrusion (lipids sliding along the normal)
will not influence the observed curvature when averaged over
sufficient time.

Without loss of generality, consider a mode with height
variation along only the x direction (qy = 0). For an arbitrary
atom i in a lipid, its location will be measured at position
r(x; z), where z is the average displacement of atom i from δ.
As previously mentioned, the density of the lipid will not be
uniform (in general) when measured by the position of atom
i. Instead, a spatially varying metric factor

m(x; z) =
[
∂rx(x; z)

∂x

]−1

, (14)

again parameterized by z and with rx(x, z) as the first compo-
nent of the vector defined in Eq. (11), quantifies the change
in density. Here the ratio of a change in rx to a change in x
is the relative area of the displaced surface at z to the base
surface. The inverse relationship of area to density determines
the inverse proportionality in Eq. (14). While this appears to
define a full three-dimensional model of the leaflet similarly
to Ref. [34], the goal is to determine the proper definition of
the two-dimensional surface model where curvature should be
measured. Three-dimensional mechanical properties can be
determined by tracking the deformation of a leaflet’s atoms,
for example, to determine Poisson’s ratio [35].

The expected curvature sampled by an atomic site i for
some mode q = {qx, 0}, integrated over the patch area, is

〈cq〉(z) = Z−1
q

∫ ∞

−∞
d Re (hq)

∫ ∞

−∞
d Im (hq) e−βEc (hq )

×
∫ Ly

0
dy′

∫ Lx

0
dx′

[
− ∂2h(x, y)

∂x2

]
m(x; z)

= −2z

βκb
. (15)

Where, consistent with the linearized Monge gauge, terms of
order h2

q and higher have been dropped. Per unit area, the
curvature will thus be

〈c̄q〉(z) = −2z

Aβκb
, (16)

where 〈c̄q〉 is the curvature per mode (per area, as denoted
by the bar). Note that there is no expected dependence on q
for the curvature per mode; the subscript serves to indicate
that this is a “per mode” value. This is the definition of the
transverse curvature bias.

Per degree-of-freedom, the value is halved; that is, there
are two degrees of freedom denoted by q. Note that δ in
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FIG. 1. Top: A cartoon illustrating the curvature-sampling bias created by tracking a lipid’s position away from the neutral surface. Colored
arrows indicate how measuring a lipid’s position off the neutral surface (dashed black line) biases either toward negative curvature when
sampled too close to the head groups (red arrows) or toward positive curvature when sampled too far into the acyl chain region (blue arrows).
Bottom: Transverse curvature bias profiles, 〈cq〉(z), for mixtures including DOPC, DOPE, and DOPS. Profiles including all lipids are shown in
black. The average curvature per lipid (vertical axis) is reported as a function of the atom used to measure a lipid’s lateral position. The atom’s
identity is mapped to its height in a nearly planar initial state (horizontal axis). The lipid’s average curvature is recorded at the neutral surface
determined using the average over all lipids. The arrow for DOPE in the center panel indicates the shift due to lipid spontaneous curvature.
The red and blue colors indicate the sign of curvature according to the cartoon above. Note that the data points for each lipid’s profile are not
independent; they are correlated by being spatially fixed by the molecular geometry. Error bars are standard errors of the mean.

Eq. (7) does not appear when limiting the expansion to
O[h2

q]. The logic above dictates that the reference surface
should have a uniform distribution of lipids as it is deformed.
In practice, some distribution ρ(x) of lipid position will
be sampled at atom j. This distribution can be written as

ρ(x) = ρ0m(x; z′ − δ), where the position of the neutral sur-
face δ may be unknown (here z′ = z + δ). By plotting 〈cq〉(z′)
against z′, δ can be determined by finding where 〈cq〉(z′) is
zero. This is the basis for the transverse curvature bias profiles
plotted below in Fig. 1.
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4. The spontaneous curvature spectrum, �c0(q) of a single lipid

Consider an individual lipid with spontaneous curvature
c0,i in a bilayer composed of lipids with spontaneous curvature
c0. We model the ME of a lipid by a function w(x, y) that
is the fractional impact of the lipid as a distance from the
internal coordinate chosen by analysis of the bias above. The
HC energy is then modified by a change �Ep based on the
lipid’s parameters:

EHC,p = EHC + �Ep,

EHC,p = EHC +
∫ Ly

0
dy

∫ Lx

0
dx w({x, y} − {xp, yp})

×
[
κm

2
(c({x, y} − c0,i )

2 − κm

2
(c({x, y}) − c0)2

− κm

2

(
c0,i

2 − c0
2
)]

, (17)

where w(x, y) is normalized such that

∫ Ly

0
dy

∫ Lx

0
dx w(x, y) = Ap. (18)

Here A is the area of the surface integrated over, and Ap

is the area of the single lipid. Note that a constant term,
κm
2 (c0,i

2 − c0
2) has been subtracted that would influence only

the chemical potential. The spontaneous curvature difference
c0,i − c0 here models the difference in spontaneous curvature
between the lipid i and the background c0.

To compute the partition function now requires integrating
over the surface of the membrane while including the contri-
bution from the particle at {xp, yp}:

Zp =
∫ ∞

−∞
d{ Re (hq)}

∫ ∞

−∞
d{ Im (hq)}

×
∫ Ly

0
dyp

∫ Lx

0
dxp e−βEHC,p , (19)

where here EHC,p depends on the Fourier amplitudes ({hq})
and the lipid position (xp, yp). The integral is taken over the
single particle position and the set of hq Fourier coefficients.
As before, the membrane modes are separable, therefore we
can write the partition function for a single mode and single
particle as

Zp;q =
∫ ∞

−∞
d Re (hq)

∫ ∞

−∞
d Im (hq)

×
∫ Ly

0
dyp

∫ Lx

0
dxp e−βEHC,p . (20)

In this model, lipids are not directly coupled to each other, and
so only couple through membrane fluctuations and so would
be similarly separable in the case of multiple particles.

Inserting the Fourier series representation of w into
Eq. (17) yields

�Ep = 1

2

∑
{q>0}

κmq2�c0hqwqe−ı{qx,qy}{xp,yp}, (21)

where �c0 = c0,i − c0. The expectation value for curvature is
then

〈c〉 = �c0

∑
{q>0}

1

2
(wq + w∗

q)A−1. (22)

The average curvature sampled depends on the wavelength of
the undulation based on w(x, y).

Now consider the simplest case of point-wise (local) ME,

wlocal({x, y} − {xp, yp})

= Apδ({x, y} − {xp, yp})

= Apδ(x − xp)δ(y − yp)

= Ap(2π )−1
∫

dqy

∫
dqx eı{qx,qy}·{xp,yp}, (23)

that is,

wq,local = Ap(2π )−1. (24)

The single-particle, single-mode partition function Zq;p, to
second order in �c0, is

Zq;p = ZqA

(
1 + βκm

Ap

A (�c0)2

2

)
. (25)

The average curvature sampled by the lipid is

〈c〉 =
∑
{q>0}

Ap

A
�c0 + O

[
�c2

0,

(
Ap

A

)2]
, (local ME). (26)

The curvature sampled using a local extent function, wlocal, is
q independent.

The integration steps necessary to arrive at the partition
functions and average curvatures are variations on∫ L

0
dxhs

q sin(qx)e−βλ sin(q′x)

=
{

hs
q

1
2βλL + O[λ3] if q = q′

0 if q 	= q′ , (27)

where q = 2πmL−1, q′ = 2πnL−1 with integer m and n, hs
q is

the magnitude of a sinusoidal undulation, and λ is a coupling
constant, e.g., �c0. The sin function in the exponential is the
weight due to curvature energetics, while the pre-exponential
factor is the magnitude of curvature itself.

The ME can be extracted from the spontaneous curvature
spectrum:

�c0(q) = A−1
p A〈cq〉(δ) (28)

= A−1
p �c0wq,

where 〈cq〉 indicates the expectation value of curvature sam-
pled along mode q. The simulated area A and sampled
curvature 〈cq〉 depend on simulation size, whereas the spec-
trum itself does not. Note that when wq is included in the
definition of �c0(q), a constant �c0 enters the formula. This
reflects the normalization of wq in Eq. (18). With this def-
inition, wq may be negative if, for example, the sign of the
spontaneous curvature switches at a particular value of q.
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5. The q = 0 limit from the lateral pressure profile

Spontaneous curvature is typically inferred from molecular simulations using the lateral pressure profile (LPP) method
[28,36]. When integrated over a single leaflet the calculation yields the derivative of the leaflet free energy with respect to
curvature,

−
∫ ∞

0
dzzp(z) = ∂F

∂c

∣∣∣
c=0

, (29)

evaluated at zero curvature, similar to how a virial expression yields the derivative of the free energy with respect to volume, i.e.,
the pressure. Interpreting the simulated free-energy derivative through the HC model of an individual lipid’s effect on bilayer
mechanics, Eq. (17), yields

∂F

∂c

∣∣∣∣∣
c=0

= ∂

∂c

[
− kBT log

(∫ ∞

−∞
d Re (hq)

∫ ∞

−∞
d Im (hq)

∫ Ly

0
dyp

∫ Lx

0
dxp e−βEHC,p

)]∣∣∣∣∣
c=0

= Zp
−1

∫ ∞

−∞
d Re (hq)

∫ ∞

−∞
d Im (hq)

∫ Ly

0
dyp

∫ Lx

0
dxp

∂EHC,p

∂c

∣∣∣
c=0

e−βEHC,p

= −κbc0 + Zp
−1

∫ ∞

−∞
d Re (hq)

∫ ∞

−∞
d Im (hq)

∫ Ly

0
dyp

∫ Lx

0
dxp w(xp, yp)(−κm�c0)e−βEHC,p

= −κbc0 − 2A−1w0κm�c0, (30)

where here we have assumed that the ME has no explicit cur-
vature dependence, which is consistent with the formulation in
Eq. (17). The last line follows because all non-zero-frequency
contributions to wq average to zero at net zero curvature:∫ Ly

0
dy

∫ Lx

0
dx w(x, y) = 2w0 = Ap. (31)

The single point at zero in the spontaneous curvature spectrum
is computed from the standard form:

�c0(0) = κ−1
m �F

′
c(0), (32)

where �F
′
c(0) is the difference of F

′
c(0) between the lipid

under consideration and the average value of the total bilayer
(average values may be weighted by Ap if differences can be
estimated).

6. Interpretation of w(x, y)

If w(x, y) is assumed to be radially symmetric, then its
Fourier transform can be written as a one-dimensional Hankel
transformation [37]:

w(q) = 2πH0[w(r)]

= 2π

∫ ∞

0
drw(r)J0(qr)r, (33)

where here w(q) is similarly symmetric with respect to the
orientation of q and so only depends on magnitude, and J0 is
a Bessel function of the first kind. The inverse is equivalent,
with the exception of the accumulated factors of 2π :

w(r) = (2π )−1
∫ ∞

0
dqw(q)J0(qr)q. (34)

Qualitatively, we interpret the spectrum in terms of three
observations. First is how the curvature spectrum attenuates
at high q. If the spectrum is fit well by an exponential decay,

then the ME in q and real space will be

w(q) = Ape−2παq, w(r) = Ap

2π

α

(α2 + r2)3/2
, (35)

where α is the decay coefficient for q (see p. 6 of Ref. [38]),
this is a Lorentzian. Similarly, if the spectrum more closely
matches a Gaussian distribution,

w(q) = Ape−σ 2q2/2, w(r) = Ap

2πσ 2
e−α r2

2σ2 , (36)

the ME is also a Gaussian. To distinguish between the two is
not critical, rather, it is useful to extract a qualitative measure
of the ME, such as the Gaussian or Lorentzian width.

Second is whether the spectrum meets the zero-q limit
established by the LPP, c0,q=0. Large systems are necessary
to simulate long modes with slow relaxation times that would
inform on the low q behavior of w(x, y). However, if the sim-
ulated spontaneous curvature spectrum is inconsistent with
c0,q=0, then we infer that a component of the spontaneous
curvature effect is below the q range of the spectrum. That is,
the simulation was too small to detect the full ME, or too short
to capture the slow relaxation of small q modes with reliable
statistics.

Third is whether a particular length-scale emerges from
the mid-q variation of the spontaneous curvature spectrum.
This is indicated by a peak or valley in the spectrum, and
as discussed further below, would suggest a mechanism for
curvature-coupled modulation of the shape and size of lateral
compositional inhomogeneity.

B. Molecular dynamics

1. Build and simulation parameters

Two sizes of systems were built and simulated: (i) large
systems with an elongated y axis for computing spontaneous
curvature spectra including the effect of low q undula-
tions and (ii) small, square-patch systems for computing
F

′
c(0)via the LPP. Large-patch systems (1,320 total lipids–
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660 lipids/leaflet) were divided into three main groups: (i)
DOPC:DOPE:DOPS at 55:0:45, 25:30:45, and 0:55:45 mole
fractions; PSM:POPC at 10:90, 20:80, and 30:70 mole frac-
tions; and DPPC:POPC at a 20:80 mole fraction. Additionally,
small-patch systems (200 total lipids–100 lipids/leaflet) were
simulated: (ii) 80:0:20 DOPC:DOPE:DOPS; (iii) PSM:POPC
at 0:100, 5:95, 10:90, 12:88, 15:85, 17:83, 20:80, 30:70,
and 40:60 mole fractions. Simulations are referred to by
their main lipid constituents in bold face, with DO lipids
shortened to their headgroup chemical acronym. For exam-
ple, DOPC:DOPE:DOPS at 25:30:45 relative composition is
PC25PE30PS45.

All systems were built using the CHARMM-GUI Mem-
brane Builder protocol [39–43]. Minimization and initial
relaxation steps were performed using NAMD [44] as pre-
scribed by CHARMM-GUI. All systems were simulated with
a constant temperature of 310.15 K, anisotropic pressure (x
and y coupled; zero surface tension) of 1 bar, and used the
CHARMM all-atom force field [45,46]. Nonbonded interac-
tions were switched off between 10–12 Å, and long-range
electrostatics were handled by PME with a spacing of less
than 1 Å. All bond lengths involving hydrogen were con-
strained [47,48].

2. Large-patch simulations with Amber for spontaneous
curvature spectra

Following the initial relaxation steps, the large patch sys-
tems were converted into AMBER format [49,50] using
ParmEd. The simulations were run using the Amber 18 GPU
implementation of PMEMD [51–53]. The temperature was
controlled by a Langevin thermostat with a friction coefficient
of 1 ps−1. Constant pressure was maintained by a Monte Carlo
barostat. A 2 fs time step was used with coordinates saved
every 200 ps.

3. Small-patch simulations with NAMD for �c0 at q = 0

The small patch systems had constant temperature main-
tained by a Langevin thermostat with a 1 ps–1 damping
frequency, and constant pressure was maintained by a Nosé-
Hoover Langevin piston [54,55] with a 50 fs oscillation period
and a 25 fs damping time scale. A 1 fs time step was used
and coordinates were saved every 200 ps for analysis. LPPs
were obtained post-simulation using 250 slabs along z using a
patched version [56] of NAMD (v2.12).

4. Computation of hq and 〈c〉q

The instantaneous Fourier spectrum is computed by re-
solving the height h(x, y) of the all-atom membrane on a
discretized grid of bins, with a maximum spacing of 15 Å
(qmax = 0.21). The number of bins for a particular dimension
was computed using ceil(L/15 Å). The height is initially com-
puted on a per-leaflet basis. The final height ha of a grid point
labeled by a was taken as the mean of the two leaflet heights.

The Fourier amplitude hq of a particular mode q was com-
puted as

hq =
∑

a

ha�x�yeı{qx,qy}{xa,ya}, (37)

where ha is the height of grid point a with lateral coordinates
xa and ya, and �x�y is the area of the patch that contributes

to grid point a. As the trajectory was processed to compute hq,
the x and y coordinates of each lipid were also recorded.

The instantaneous curvature at a lipid was then computed
as ∇2h(x, y):

c(x, y) =
∑
{q>0}

A−1hq|q|2eı{qx,qy}·{xp,yp}, (38)

which is real by virtue of h(x, y) being real as stated above.
The q-dependent curvature is

〈cq〉 = 〈hq|q|2eı{qx,qy}{xp,yp}〉, (39)

where 〈〉 indicates sampling over the trajectory of the sim-
ulation; it depends on the correlation of hq and the lipid’s
position, {x, y}.

III. RESULTS AND DISCUSSION

A. The transverse curvature bias determines where to measure
lipid position on an undulating surface

Figure 1, at bottom, shows the transverse curvature bias,
〈cq〉(z) computed from Eq. (16), for DOPC, DOPE, and
DOPS, including the average over all lipids. The lateral po-
sitions of the lipids were measured separately using the heavy
atom positions of the forcefield. Each atom has a correspond-
ing �z computed from the nearly flat initial condition (the
first ten nanoseconds, following the standard CHARMM-GUI
pre-equilibration sequence). As expected, when measuring the
lateral position using atom sites near the acyl chains (bilayer
middle) the observed curvature is biased to positive values,
while the opposite is true when position is measured with
headgroup atoms, consistent with the cartoon. The neutral
surface, δ, where the lateral distribution is uncoupled to curva-
ture, is shown with a vertical line intersecting the labeling of
the horizontal axis. This analysis yields the appropriate atom
for computing the spontaneous curvature spectrum. Note that
the neutral surface atom appears to be q dependent, moving
closer to the water interface at higher q.

The difference in average curvature sampled implies the
lipids’ c0. For a dilute mixture of a lipid like PE in PC or
PS, Eq. (16) would provide the difference in spontaneous
curvature, �c0, between the target lipid and the background.
For PE mixtures like those simulated here, the effect will wane
as PE becomes the majority species and is forced to regions
of positive curvature simply by self-exclusion. Additionally,
mode amplitudes will be enhanced by this weak dynamic
redistribution of the lipids to their preferred curvature.

The transverse curvature bias may also be used for robust
estimates of the bending modulus; this is described below in
the Appendix.

B. The q = 0 point of the spontaneous curvature spectrum
computed from F

′
c(0)

Values of F
′
c(0) are available for DOPC (0.061 ±

0.0025 kcal/mol/Å) and DOPE (0.2281 ± 0.0036
kcal/mol/Å) in tandem with bending moduli (for both lipids,
17.0 kcal/mol) from Ref. [57]. For DOPS, highly anionic
bilayers require a correspondingly large ion concentration
for counterbalance. Along with this is the necessity for a
sufficiently large water layer to dissipate the layer effects
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FIG. 2. F
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c(0)versus percentage of PSM in a POPC bilayer. Error

bars are standard errors of the mean. The dark shaded regions are
within one standard deviation for a linear fit of their respective
data with PSM > 60%. The lighter shaded regions are two standard
deviations.

of high salt concentration [58]. Accordingly, the value of
F

′
c(0)for DOPS was inferred from a relatively low coverage

20% DOPS/80% DOPC mixture.
The value of F

′
c(0) for PSM is determined by fitting the

linear coefficient of F
′
c(0) for mixtures of PSM and POPC

as the fraction of PSM goes to zero. This is necessary be-
cause the value of F

′
c(0) for 100% PSM is not necessarily

equal to the contribution of a PSM monomer to the F
′
c(0)

in which PSM is a minority lipid. The correspondence of
properties when a lipid is in the minority or majority appears
to apply to mixtures of DOPE and DOPC [59]. Note that it is
the influence of the monomer that is sampled by the curvature
spectrum of PSM dilute in POPC. The variation of F

′
c(0) with

PSM mole-percentage is plotted in Fig. 2. The slope of F
′
c(0)

with percentage PSM in POPC is −4 × 10−4 ± 5 × 10−4

kcal/mol/Å/% when averaged between 0% and 10% and
−1.4 × 10−3 ± 2 × 10−4 kcal/mol/Å/% when averaged be-
tween 0% and 20%. Statistically, these data indicate nonlinear
variation of curvature stress with sphingomyelin content. The
full characterization of this nonlinear variation, also observed
for PSM/DOPE mixtures [59], is beyond the scope of this
present work. The fit implies that the contribution to F

′
c(0) for

monomers of PSM is −0.14 ± 0.02 kcal/mol/Å, taking the
data from 0% to 20% as the reference.

C. Fitting w(q) for a qualitative measure of mechanical extent

Fitting the spontaneous curvature spectra to Eq. (35) yields
a model of the spatial range of the individual lipids via the
function w(q). As we have described it, the spontaneous
curvature spectrum is a combination of c0 multiplied by the
extent function w(q). In the extensive experiments performed
by Rand and coworkers, e.g., Refs. [3,4,6,7,16], c0 is ex-
tracted from a model relating osmotic stress to the strain
of hexagonally packed lipidic cylindrical monolayers (the

inverse hexagonal phase). This yields the zero-frequency con-
tribution to the spectrum.

In this work, the fit is complicated by applying different
methodology, (analysis of the LPP) to extract the q = 0 point.
The LPP has very high statistical precision, but a caveat must
be provided; for DOPC, DOPE, DOPS, and DPPC we assume
that the parameter c0 is the same at 100% composition as it
is when dilute. If the value of c0 inferred reflects the lipid
matrix, then we refer to this as a nonadditive contribution to
bilayer mechanics. This is clearly an issue for sphingolipids
and cholesterol but does not appear to be significant for DOPE
and DOPC [59]. The full numerical results of the fits are listed
in Table S1 of the Supplemental Material [60].

1. The q-dependent spontaneous curvature spectra of unsaturated
lipids with varying headgroup chemistry indicate primarily

localized mechanical extent

The spontaneous curvature spectra for mixtures of DOPC,
DOPE, and DOPS are shown in Fig. 3. These data are com-
puted from both lipid redistribution information from large
simulations (〈c̄q〉, closed points) as well as F

′
(0) inferred from

LPPs (open points at q = 0). A lipid with localized extent
has a spontaneous curvature spectrum that is constant across
q, see Eq. (24). The spectra obtained in Figs. 3–5 appear
to be roughly consistent with an asymptote to a constant
value at high q, consistent with local extent. It is expected
but reassuring that two completely different methodologies
(the LPP and dynamic redistribution methods) give consistent
�c0. Although qualitatively the methods are consistent at low
q, there are statistical variations that appear inconsistent with
completely localized ME.

In accord with the observation that the fits are largely local,
a robust fit of Eq. (35) can be performed by first subtracting
out the value of �c0(q) at high q, �c0klocalAp. The magni-
tude of the residual spectra, knonlocal, indicates the delocalized
extent. The ME is fit with:

wexp(q) = Ap(knonlocale
−2παq + klocal ), (40)

c0(q) = c0wexp(q) (41)

with c0knonlocal and α as least-squared fit parameters, while
klocal is computed directly from the apparent asymptote above
q � 0.165. Including all three parameters simultaneously in a
least squares fit yields unphysical parameters for very local-
ized spectra, because for small α the constant and exponential
terms become linearly dependent.

We report here the relative magnitude of the local and
nonlocal pieces with the percent of the effect attributed to
the nonlocal (exponential) factor. In the case where the local
and nonlocal switch signs, e.g., DOPS in PC55PS45, abso-
lute values are applied for reporting the percent contribution.
Qualitatively, if the spectra are flat across the span of q
reported from the simulations, they will tend to have large
klocal and thus the same spontaneous curvature for any surface
undulation.

There is minimal nonlocal extent in the PC55PS45,
PE55PS45, and PC25PE30PS45 simulations shown in Fig. 3.
In both the PE55PS45 and PC25PE30PS45 simulations, the
introduction of nonlocal extent either contributes weakly
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FIG. 3. Spontaneous curvature spectra sampled from PC55PS45, PC25PE30PS45, and PE55PS45. DOPC is shown in black triangles, DOPS
in gray circles, and DOPE in lighter gray squares. Open circles at q = 0 are computed from the LPP. The data is a histogram of values. Error
bars are ± the standard error of the histogram bin mean.

(e.g., knonlocal = 13% for DOPC and 7% for DOPE in
PC25PE30PS45) or does not change the statistical significance
of the fit, for DOPE and DOPC. For DOPS in all three
of these mixtures, a rather short-ranged α, < 3 Å, with
magnitude knonlocal > 60%, improves the fit significantly over
a completely local fit. The somewhat small value of α is still
consistent with the size of a lipid (with an area per lipid ca.
65 Å2), although the Lorentzian form of the real-space extent
has a long tail. In summary, for these lipids with common
headgroup and unsaturated tail chemistry, we find largely
localized extent with a small nonlocal, but still short-ranged,
contribution.

2. The complex spontaneous curvature spectra of saturated lipids
indicate nonlocal extent

Figure 4 shows the spontaneous curvature spectra of three
PSM/POPC mixtures. The spectrum of PSM drops signifi-
cantly at high q where it displays negative curvature. At low q,
where collecting statistics is challenging due to the slow relax-
ation times, error bars are large but generally consistent with
an estimate from the LPP that PSM has positive spontaneous
curvature. A key feature of increasing PSM in the simulation
is the emergence of positive curvature between q = 0.05 and
q = 0.2 Å−1. These points are indicated in Fig. 4 with black
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FIG. 4. Spontaneous curvature spectra sampled from simulations of PSM in POPC. POPC is shown in blue. PSM is colored red. Open
circles at q = 0 are computed from the LPP. Each data point is the average over modes within a narrow range of q. The dashed line indicates
an exponential fit to the spectra as discussed in the text. Points outlined in black in the intermediate range of q indicate where saturated lipids
appear to have increased positive curvature. Error bars are ± the standard error of the histogram bin mean.
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FIG. 5. Spontaneous curvature spectra sampled from
DPPC20POPC80. POPC is shown in blue. DPPC is colored
red. The data is a histogram of values. Points outlined in black in
the intermediate range of q indicate where saturated lipids appear
to have increased positive curvature. Error bars are ± the standard
error of the histogram bin mean.

outlines. As apparent outliers, if the highlighted points were
not used in the fit their deviation would be even more striking.

Consider then a lipid analogous to PSM but with a chem-
ically simpler lipid backbone (glycerol). Figure 5 shows the
spontaneous curvature spectrum of a 20% DPPC in POPC
mixture. Here, a statistically significant peak is indicated be-
tween q = 0.1 and q = 0.15, suggesting a length-scale for
the curvature sensitivity of DPPC. These points have been
highlighted as for PSM.

Compared with unsaturated lipids, the mechanical extent
for these saturated lipids is nonmonotonic. Instead, there is a
marked positive curvature preference at the nanometer length
scale. Considering the development of this feature as PSM
concentration is increased, its origins may involve coupling to
a background of other saturated lipids present at higher PSM
fractions.

A potentially interesting observation at high q is that PSM
appears to orient according to curvature. In the Supplemental
Material [60], plots of the transverse curvature bias are shown
at high q for PSM, DPPC, and POPC. The two acyl chains
appear to favor substantially different curvature, indicating
that the orientation of PSM couples to curvature.

D. Nonlocal mechanical extent supports modulation of lipid
phase separation

In 1986, Leibler [61], and later with Andelman [62], ap-
plied the Ginzburg-Landau (GL) formalism to characterize
how particle-curvature coupling leads to inhomogeneity of the
particle distribution and enhancement of surface undulations.

The GL formalism is sufficiently flexible to describe line
tension physics that gives rise to macroscopic phase separa-
tion [63–65]. Lipid composition is represented by the order
parameter �(r) with Fourier weight �q, while the coupling
between surface and composition is parameterized with :

Fcouple =
∫

dqx

∫
dqy�qq2hq. (42)

When surface undulations are accounted for, a length-scale q∗
emerges for the largest variations in �q:

q∗ =
√

γ σ 2 − 2σ

2(2κb)
, (43)

where σ is tension and γ is the GL parameter penalizing
gradients of � and is related to line tension [63]. Curvature-
compositional coupling can enhance the ability of particles to
phase separate by reducing the energetics of variations in �,
as described in Ref. [24].

This mechanism has been proposed to explain the modula-
tion of the shape of phase-separated lipid domains [23–25,66],
which would otherwise be expected to be circular. For ex-
ample, stripes emerge in some complex lipid mixtures [22]
with a characteristic width that can be tuned. Here the width
of the striped phase may be related to 2π

q∗ . The strength of
the emergence of the length-scale q∗ is set by the relative
strength of tension and curvature, e.g., κ

σ
. As the magnitude

of a thermal undulation is proportional to 1
q4κ+q2σ

, at low q
tension strongly suppresses membrane undulations relative to
high q. Thus, a balance is struck for q∗ at some finite value.

The ME is now introduced. Instead of coupling � directly
to h pointwise, an intermediate function fextent coupled is intro-
duced by convolving w with �:

fextent coupled(x, y) =
∫

dx′dy′�(x′, y′)w(x − x′, y − y′),

(44)
which in Fourier space is simply

fextent coupled(q) = �qwq. (45)

So that Eq. (42) is modified as

Fcouple,ME =
∫

dqx

∫
dqy�qwqq2hq. (46)

With Eq. (46), new length-scales emerge regardless of the
tension; they may be set by length-scales intrinsic to w, if
present. Figure 5 shows a peak in the spontaneous curvature
spectrum of DPPC between q = 0.1 and q = 0.15 Å−1 (e.g.,
a wavelength between 4 and 6 nm). This length-scale is per-
fectly compatible with domains of ordered DPPC that appear
in mixtures with DOPC and cholesterol [67]. Meanwhile, the
spectrum for PSM (Fig. 4) is somewhat more challenging to
interpret but still compelling: there is a statistically significant
increase in the spontaneous curvature between q = 0.05 and
q = 0.15, similar to the case as for DPPC. However, PSM
appears to have a stronger positive curvature effect at low q,
at least within the higher PSM background of 20–30%. Note
that the spectrum for DPPC and PSM here may be influenced
by this very effect—the lipid distribution (i.e., �) couples to
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membrane undulations at a peak value of q∗, enhancing the
apparent curvature spectrum at that point.

IV. CONCLUSIONS

This work developed the methodology necessary to de-
scribe the spatial range of a lipid’s influence on bilayer
mechanical properties, which we termed the mechanical ex-
tent (ME). The ME influences the position-dependent energy
of a lipid. If the ME is highly localized, as we found to be
typical of the lipids we modeled here with all-atom molecular
dynamics simulation, then lipids sense local curvature more
strongly than if the effect is distributed over a larger area.
Similarly, the ME should influence the chemical potential of
lipids as they are trafficked between bilayers; for example,
fully localized lipids cannot “balance” the stresses of nearby
lipids.

An important step in the method is to control for how to
sample the lateral position of a lipid that is composed of many
atoms. To do so, we demonstrate how a particular choice,
the so-called neutral surface of bending, yields an unbiased
position. As a corollary, described in the Appendix, we show
how to infer the bending modulus of a lipid from its depth-
dependent sampled curvature.

Extracting the undulation-wavelength-dependent average
curvature yields what we term the spontaneous curvature
spectrum. The spectrum is proportional to the ME. Sponta-
neous curvature spectra for mixtures of varied headgroups and
simple unsaturated acyl chains (DOPC, DOPE, and DOPS)
demonstrate well-localized extent. While a similar localized
curvature effect was found for saturated lipids (PSM and
DPPC), they also displayed a marked positive curvature pref-
erence at the nanometer length-scale. We predict that this
preference for a finite length-scale modulates the shape of
lipid-liquid domains, promoting very small domains via cur-
vature coupling.
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APPENDIX: COMPUTING THE BENDING MODULUS
FROM THE TRANSVERSE CURVATURE BIAS

In Ref. [68] the authors outline how to compute the bend-
ing modulus from the undulations of a dynamic molecular
simulation without running afoul of apparent fluctuations at
higher q that are unrelated to curvature energetics. An ex-
ample of these spurious increases in the undulation spectral
intensity are fluctuations of the lipid tilt vector away from the
local bilayer normal, as well as protrusions of the lipids above
or below their neighbors. The principal result of that work is
that by controlling for lipid tilt, the true curvature-mediated
undulations can be extracted and the analysis can be extended
to higher q (shorter wavelength modes amenable to smaller
simulations). A similar method was reported by Allolio et al.
[69].

Connecting the average curvature sampled by the lipids of
a bilayer provides an arguably more convenient route with
the same logic. Equation (16) is based on the correlations of
surface curvature and the lipid director. Molecular fluctuations
uncorrelated with the surface normal (for example, local tilt-
ing) will, on average, not contribute to 〈c〉(z). The method
is thus to plot the average curvature sampled by a lipid as a
function of zi, with zi determined by the average height profile
of atoms from an approximately planar simulation. The slope
of the best fit line to 〈c〉(z)q is −2

Aβκb
.
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