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Entropy estimation within in vitro neural-astrocyte networks as a measure of development instability
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The brain demands a significant fraction of the energy budget in an organism; in humans, it accounts for 2%
of the body mass, but utilizes 20% of the total energy metabolized. This is due to the large load required for
information processing; spiking demands from neurons are high but are a key component to understanding brain
functioning. Astrocytic brain cells contribute to the healthy functioning of brain circuits by mediating neuronal
network energy and facilitating the formation and stabilization of synaptic connectivity. During development,
spontaneous activity influences synaptic formation, shaping brain circuit construction, and adverse astrocyte
mutations can lead to pathological processes impacting cognitive impairment due to inefficiencies in network
spiking activity. We have developed a measure that quantifies information stability within in vitro networks
consisting of mixed neural-astrocyte cells. Brain cells were harvested from mice with mutations to a gene
associated with the strongest known genetic risk factor for Alzheimer’s disease, APOE. We calculate energy
states of the networks and using these states, we present an entropy-based measure to assess changes in
information stability over time. We show that during development, stability profiles of spontaneous network
activity are modified by exogenous astrocytes and that network stability, in terms of the rate of change of entropy,
is allele dependent.

DOI: 10.1103/PhysRevE.103.042412

I. INTRODUCTION

The brain is an energy intensive structure and must couple
its ability to grow with the need to maintain stability [1]. Its
flexibility to adapt to the environment must balance robustness
against perturbations. Energy demands in the brain are high;
it comprises only 2% of the human body mass, but consumes
20% of the total energy [2]. Brain energy requirements are dy-
namic as neuronal spiking activity drives energy consumption
[3,4], and astrocytes, another class of cells in the brain, facil-
itate neuronal energy processing [5–7]. During development,
a period when spontaneous activity is ubiquitous, energy con-
siderations are vital. Anatomical circuitry is established in the
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absence of modulating sensory input [8–13]. In addition, a
large fraction of energy resources is utilized at the synapse,
the site where spiking activity originates and information is
conveyed from one cell to another; limits on the supply of
energy will therefore influence information processing ca-
pacity. Indeed, the majority of energy consumption during
development is attributed to synaptic synthesis and efficacy,
which promotes brain circuitry development [14–16]. Energy
demands mediate network driven oscillations [17] and require
that information transmission is maximized at minimum en-
ergy cost.

Coordinated spontaneous activity during development has
been widely studied in several structures such as the retina,
spinal cord, neocortex, and hippocampus, as it serves to create
a template for healthy circuit development capable of respond-
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ing to subsequent sensory input [18–22]. This development
is strongly influenced by the ability of the circuit to effi-
ciently process and transmit neural information and energy
[23]. While it is important to quantify information trans-
mission, experimental constraints in measuring intracellular
spiking dynamics limit the ability to determine a relationship
between information transmission and network development
instability. Network scale intracellular recording methods are
required and currently such methods are limited to simulta-
neous recordings from only a few neurons [24]. As such, it is
necessary to develop quantitative measures to serve as indirect
proxies for information transmission, such as entropy.

We describe a suite of analytical tools designed to assess
time-dependent changes of spiking dynamics within neu-
ronal networks. On the cellular level, synchronous activity
affects the probability of postsynaptic firing, as in long-term
potentiation [25–28] and collective activity on the network
level influences information transmission [29–35]. Informa-
tion theoretic measures have been used to infer a wide range
of phenomena associated with collective dynamics, in ex-
perimental and computational systems [19,20,36–46]. For
example, Meshulam et al. [42] implemented a theoretical
framework to create a maximum entropy model from in vivo
population recordings of hippocampal CA1 neurons. Their
model accurately predicted neuronal activity regardless of the
cell’s ability to code for position. In a computational model,
mutual information (MI) was used to calculate the relationship
between the MI of a network of stochastic units that code
for a particular stimulus and their distance from the response
probabilities induced by continuous or discrete stimuli [38].
They showed a logarithmic relationship when the stimulus
was continuous and an exponential one for a discrete stimulus
suggesting that MI is a useful tool to measure neural codes.

Here, we quantify energy across the network as a function
of the spiking neuronal activity in time bins within a record-
ing epoch; we define the entropy of the system using these
energy states. Based upon these quantities, we devise a metric
to evaluate the stability of developing networks. Dysfunc-
tion in spiking activity during development can cause severe
alterations in synaptic connectivity and neurodevelopmental
disorders [2,47], resulting in network instabilities; however,
such instabilities might not appear until later in the lifetime of
the organism. We apply this measure to evaluate spontaneous
dynamics from developing networks of in vitro hippocampal
neurons and astrocytes. Cells were harvested from the brains
of mice in which mutations were made to the gene associated
with the strongest genetic risk factor for Alzheimer’s disease,
APOE.

Apolipoprotein E (APOE), the protein associated with the
APOE gene, is a lipid transport protein primarily produced
by astrocyte cells in the brain [48,49]. It is thought to be
involved in neuronal repair after injury [50–52]. There are
three major APOE mutations: APOE2 is believed to be pro-
tective, APOE3 is neutral, and APOE4 dramatically increases
risk for developing Alzheimer’s and decreases the age of on-
set in a gene-dose-dependent manner [50,53]. We show that
in networks composed of neurons and astrocytes harvested
from APOE4 mice, and in networks consisting of neurons and
astrocytes harvested from mice that do not make APOE, the
development profiles are unstable, but in opposing manners.

However, networks of neurons and astrocytes harvested from
APOE2 mice are shown to be stable. Similar trends were also
measured from networks of neurons harvested from mice that
do not make APOE, but were supplemented with astrocytes
from mice that produce either APOE2 or APOE4.

This paper is organized as follows. In Sec. II, we describe
the experimental design and detail the quantitative measures.
In Sec. III, we describe the physiological phenomena that we
observed in the extracellular membrane potential fluctuations
within each network. We apply our measures of energy and
entropy to these neural-astrocyte networks as a function of
time to characterize their differences. Finally, in Sec. IV, we
discuss our findings.

II. METHODOLOGY

A. Experiment

Animal protocols conformed to NIH guidelines and ap-
proved by the Georgetown University Animal Care and Use
Committee were used. Please refer to Appendix A for cell
culturing details. Briefly, single cell suspensions of embry-
onic hippocampal neurons were separately harvested from the
following types of APOE mice and plated onto previously
prepared microelectrode arrays (MEAs): mice that do not
make APOE (APOE KO), APOE2 mice, and APOE4 mice.
Astrocytes from APOE2 and APOE4 targeted replacement
mice were provided as a gift from the G. W. Rebeck labora-
tory. On day in vitro 7 (DIV7), astrocytes from either APOE2
or APOE4 mice were added to MEAs plated with APOE KO
neurons to achieve an astrocyte to neuron ratio of 0.4. Control
APOE-KO networks contained no exogenous astrocytes. No
additional astrocytes were added to MEAs that contained hip-
pocampal neurons harvested from APOE2 or APOE4 mice,
i.e., the endogenous astrocytes synthesizing either APOE2
or APOE4, respectively. To ensure reproducibility of results
across animals, all reported experimental groups were derived
from multiple experimental preparations.

Figure 1 shows the sequence of recording and preprocess-
ing of the MEA data. We recorded all spontaneous electrical
activity using the MEA2100 amplifier, A0, residing on a
heated microscope stage at 37◦C. The MEA is composed of
59 TiN electrodes, each of which is 30μm in diameter and
arranged on an 8 × 8 square array. In addition, there is one
reference electrode and four auxiliary analog channels; the in-
terelectrode spacing is 200 μm. Electrical activity is amplified
and sampled at a 10 kHz acquisition rate in order to allow
the detection of spikes. To assess the development of each
network, 5-min recordings began on DIV10 and continued
daily until DIV21. Data were digitized and stored on a Dell
personal computer (Round Rock, TX) for offline analysis.

Low-frequency components were removed by high-pass
filtering all MEA voltage traces at 25 Hz (MCRack, Multi
Channel Systems MCS GmbH, Reutlingen, Germany). Nega-
tive voltage deflections were observed during recordings and
these recorded spikes were detected using a threshold algo-
rithm from Offline Sorter (Plexon Inc., Dallas TX). Spikes
were calculated as a multiple of the standard deviation of the
biological noise ranging between ±6σ and ±7σ . As described
below, we used custom software written in MATLAB (The
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FIG. 1. Schematic of the recording and filtering system. Neurons
and astrocytes are plated onto an MEA. The extracellular voltage sig-
nal is amplified using the integrated signal processor and headstage
of the MEA2100 system. To reliably capture extracellular action
potentials, data is sampled to the computer at 10 kHz. Spike times are
extracted using a second-order Butterworth high-pass filter at 25 Hz.

Math Works, Natick, MA) to analyze the activity from the
mixed hippocampal neural-astrocyte cell networks.

B. Data analysis

1. Binning

Figure 2 outlines the analysis process. Let T =
(t1, t2, . . . , tn) be the spike time series for an electrode,
where tn is the time of occurrence of a spike; we pick a
bin size τ with which to divide the recording epoch. So,
Nτ = 300/τ is the number of bins.

We compute the binary vector B ∈ [0, 1]Nτ such that

bi =
{

1, if ∃ t ∈ T : (i − 1)τ � t < iτ
0, otherwise. (1)

That is, bi is 1 if there is at least one spike in the ith
time bin. The binning process returns the binary matrix M ∈
{0, 1}Nactive×Nτ , where Nactive is the number of active electrodes
in each MEA. We use three physiologically relevant bin sizes:
3, 10, and 100 ms, which resulted in 1 × 105, 3 × 104, and
3 × 103 data points per DIV per electrode, respectively.

2. Energy estimation

There are many approaches to encoding energy within
neurons and neural networks [54]. We base our method on
[42] and estimate the energy state of each network using the
number of electrodes that are simultaneously active in each
bin.

Let E = (e1, e2, . . . , eNτ
) be the normalized energy vector

such that

ei =
∑Nactive

j=1 Mi j

Nactive
. (2)

t

Evaluate entropy
distribution

Evaluate energies from spike time-series

Define energy and gradient
probability distributions

Evaluate cumulative
entropy over time

FIG. 2. Overview of the data analysis process.

ei is a discrete variable that can assume a finite set of
values, S:

S = (0, 1, . . . , Nactive)
1

Nactive
. (3)

To determine how the energy states are distributed in each
network, we estimate their probability distribution,

p̂(s) = ns

Nτ

, (4)

where ns is the number of occurrences of the energetic state s
in the energy vector E .

Let W = (w1, . . . ,wi, . . . ,wNτ −1) be the energy gradient
vector where

wi = ei+1 − ei. (5)

wi is a discrete variable that can assume a finite set of
values, G:

G = (−Nactive, . . . ,−1, 0, 1, . . . , Nactive)
1

Nactive
. (6)

We fit the raw energy distributions from the set of MEAs
with the same allele on the same DIV to a generalized
decreasing sigmoid

f (x; a) = a1[1 − (1 + a2e−a3x )−1/a4 ], (7)

using the penalized loss function

l (x; a) = f (x; a) − y + λ‖a‖. (8)
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Here, we have

x = ln [ p̂(S)],
y = S,

(9)

where S is the concatenation of the energy state vectors
E from each MEA and p̂(S) is their probability. We use
MATLAB’s lsqnonlin function [55,56] that implements
a trust-region-reflective algorithm based on the interior-
reflective Newton method described in [57,58]. We train the
learned parameters a on 70% of S and we test on the remain-
ing 30% and choose the value of λ that minimizes the loss
function.

3. Entropy estimation

We define the discrete phase space � such that

� = {(s, g), s ∈ S, g ∈ G} (10)

and

p̂(s, g) = n(s, g)

Nτ

, (11)

where n(s, g) is the number of occurrences of the point (s, g).
Then, we estimate the conditional probability:

p̃(s, g) = p̂(s, g)

p̂(s)
= n(s,g)

ns
, (12)

such that ∑
g∈G

p̃(s, g) = 1. (13)

In order to estimate the entropy of each energetic state s we
use Miller’s [59] estimator (see Appendix B), defined as

ĤMM(s) ≡ ĤMLE + ms − 1

2ns
, (14)

where ĤMLE is the maximum likelihood estimator of Shan-
non’s entropy [60], such that

ĤMLE = −
∑
g∈G

p̃(s, g) log2 p̃(s, g), (15)

and ms = #{g : p̃(s, g) �= 0}.
We fit the raw entropy distributions from all MEAs from

the same treatment on the same DIV to a fourth-degree poly-
nomial using MATLAB’s polyfit function [55].

Finally, we estimate the expected value of the entropy

E [H] =
∑
s∈S

p(s)H (s) (16)

with the mean entropy

m =
∑
s∈S

p̂(s)ĤMM(s)

= 1

Nτ

Nτ∑
i=1

ĤMM(ei )

= iτ
Nτ

.

(17)

To investigate the evolution of the mean entropy over de-
velopment, we define the relative entropy as

m(dB) = 20 ln

(
mDIVx

mDIV10

)
, (18)

where x ∈ {14, 18, 21}.

III. RESULTS

Embryonic neurons were plated onto previously prepared
MEA substrates as depicted in Fig. 1. To reflect changes in
development stability of the networks, we analyzed datasets
from four time points within a 12-day period between DIV10
and DIV21. Rastergrams of spontaneous activity from APOE-
KO neurons plated with or without exogenous astrocytes are
presented in Fig. 3 and from mixed neural-astrocyte APOE2
and APOE4 networks in Fig. 4. Figure 3(a) shows that in
the absence of APOE, network activity is sparse, with little
increase in spiking over time. In contrast, APOE-KO neu-
rons that were supplemented with either APOE2 [Fig. 3(b)]
or APOE4 [Fig. 3(c)] astrocytes display more activity as
early as 3 days after the addition of exogenous astrocytes;
these networks continue to develop resulting in strong, robust
firing patterns by DIV21. In Fig. 4, endogenous astrocytes
in these networks synthesize either APOE2 [Fig. 4(a)] or
APOE4 [Fig. 4(b)], respectively. Activity was robust early in
development on DIV10. By DIV21, APOE2 networks display
uniform, synchronous activity whereas the APOE4 networks
have a broader range of firing patterns. Several electrodes dis-
play high-frequency firing patterns whereas activity in other
electrodes is very sparse.

We calculate the energy distribution within each network
during the course of their development. Figure 5 shows the
evolution from DIV10 to DIV21 of the fits to the energy
distributions for τ = 10 ms. We refer the reader to the raw
data plots in Appendix E, Fig. 11. The macroenergy state is
normalized to a number between 0 and 1, where 0 corresponds
to the absence of activity within a bin across all electrodes, and
1 corresponds to activity in all possible channels for a given
bin, i.e., an ideally synchronous network state. The learned
parameters of the fits are not used in any quantitative evalua-
tion; importantly, the artifact at p̂(e) = 1 for e ∼ 0 should be
disregarded.

One feature common to all four networks is that the qui-
escent state, i.e., e = 0, is the most probable network state
regardless of the developmental state of the network (Fig. 6).
This quiescent state probability is very high throughout the
development of all networks and is quite stable for both
τ = 3 ms [Fig. 6(a)] and 10 ms [Fig. 6(b)]. When τ = 100 ms
[Fig. 6(c)], the quiescent state is still the most probable state,
but its value decreases considerably. Additionally, there are
large fluctuations in the APOE4 networks; the quiescent state
probability drops considerably on DIV18 with minimal recov-
ery on DIV21. However, once e > 0, activity patterns between
the networks begin to differentiate over time (Fig. 5).

On DIV10 [Fig. 5(a)], APOE2 networks and both APOE-
KO networks are quite similar; as the energy state increases,
the probability gradually decreases. In the APOE4 networks,
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FIG. 3. Rastergrams of 1 min of network activity from several channels in APOE-KO neural networks under the different experimental
conditions show qualitative changes in spiking dynamics as the networks develop. (a) Networks with no exogenous astrocytes display sporadic
synchronized spiking on DIV10. The synchronous activity does not become uniform or more widespread as the activity evolves. (b) Astrocytes
from APOE2 mice were added on DIV7. By DIV10, 3 days after the addition, activity has increased and by DIV21, there are several
synchronized electrodes. )c) Astrocytes from APOE4 mice were added on DIV7. On DIV10, there are clusters of increased activity. By
DIV21, as in panel (b), activity has increased with uniform firing throughout the epoch.

there is a sharp drop in the probability when e > 0 and the
range of energy states is not as broad. On DIV14 [Fig. 5(b)]
the range of occupied energy states increases for all four
networks (emax ∼ 0.7) compared to DIV10 (emax ∼ 0.5). We
remark that a higher energy corresponds to more simultane-
ously active electrodes and therefore all networks increase
their synchronicity at this time. It is also interesting to note
that both KO networks show an inflection point, while the

FIG. 4. Rastergrams of 1 min of network activity from sev-
eral channels in the APOE2 and APOE4 networks show qualitative
changes in spiking dynamics as the networks develop. (a) APOE2
networks display a modest transition to synchrony by DIV21.
(b) APOE4 networks have a wide range of activity patterns and by
DIV21, there are electrodes exhibiting very sparse firing and others
with persistent activity.

APOE4 networks maintain the same concavity throughout
their development.

On DIV18 [Fig. 5(c)], both APOE-KO networks strongly
overlap as well as increase to a higher maximum energetic
state (emax ∼ 0.8); there is also a broad, flat region of states
with equal probability, indicating a nearly uniform energy
distribution at this point in their network development. In
contrast, the distributions in the APOE4 networks have their
broadest range of energies on DIV14 and start to contract by
DIV18 (emax ∼ 0.55). The APOE2 networks have a consistent
profile from DIV14 to DIV18. Lastly, on DIV21 [Fig. 5(d)],
both APOE-KO networks are stable from DIV18, with a
maximum energy state near emax ∼ 0.8. APOE4 networks are
stable from DIV18 to DIV21, while APOE2 networks have a
small increase in their energy range with the emergence of a
small inflection point.

These energy distributions provide a picture of the
evolution of global activity and synchronicity during the de-
velopment of each network. Next, we ask how likely during
the recording epoch, does each network transition between
energy states. Given that a network is in a particular energy
state, what is the probability that it will increase or decrease
its energy?

To investigate these questions we define the energy gra-
dient w as the difference between two consecutive energetic
states: w > 0 indicates increasing energy, w < 0 indicates
decreasing energy, and w = 0 indicates a steady state. We
evaluate energy gradients within each recording epoch and
calculate the conditional probability distributions. This results
in phase-space plots of energy gradients that describe the cal-
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FIG. 5. Energy distribution sigmoid fits for τ = 10 ms during
network development. (a) On DIV10, both APOE-KO and APOE2
show a similar profile; as the energy states increase, there is a gradual
decrease in the probability. APOE4 networks have a sharp drop in
probability as the energy increases. (b) On DIV14, the APOE-KO
networks have a small increase in their maximum energy state. The
sharp drop in the APOE4 profile from DIV10 has decreased and
these networks expand their range of energy states. The APOE2
networks are similar to their DIV10 profile with a small reduction
in the slope. (c) APOE-KO networks overlap in their energy profile
with a maximum in their energy state of 0.8. APOE2 networks are
nearly constant from DIV14 and APOE4 networks start to contract
their energy profile. (d) All networks remain nearly the same as for
DIV18.

FIG. 6. Average quiescent state probabilities. (a) When τ =
3 ms, all networks have a very high probability with little fluctuation
during network development. (b) There is a small drop in the overall
probability for τ = 10 ms. Developmental variability is small for all
networks, with the exception of APOE4 networks having an increase
in fluctuations on DIV18. (c) When τ = 100 ms the probability of
the quiescent state drops for all networks and there is a large drop for
APOE4 networks from DIV10 to DIV18. Fluctuations in the other
networks remain small.

culated moves from energy states within each network, akin
to the moves within a chess game.

Figure 7 shows the conditional probability distributions
of the energy gradient plots, P̃(e,w), of four representative
MEAs: one per APOE treatment. Within each spatial map,
we identify four different regions, which vary in extent and
sparsity depending on the type of astrocytes that are present
in each neuronal network. A bright-red region is bounded by
the w = 0 and the w = −e diagonal (i.e., return to e = 0).
This triangular region shows the high probability that a net-
work will decrease rather than increase its energy. A slim,
blue-green arch extending upwards from the origin describes
the transition probabilities to higher energy states and shows
the paths networks take to generate events that will lead to
bursts. Cells along the leftmost column, (e = 0,w ∈ G), have
a greater probability to experience energy increases in an in-
cremental, stepwise fashion rather than taking large jumps. In
general, for any nonzero energy state, as the energy increases,
it is more likely that the system will decrease in energy (red
regions) and the higher the energy, the harder, i.e., lower
probability, it is for the network to increase its energy. The
outer regions where dark blue predominates are regions in
the phase space for which there are no observed transitions
in energy.

Early in the development on DIV10, all networks start
with a small fraction of the phase space occupied, with the
APOE4 network occupying a particularly small fraction of
phase space. For all networks, regions with higher probabil-
ity consist primarily of transitions to lower energy states; in
general, there are few states with a nonzero probability to
transition to a higher energy state. On DIV14, most of the
networks continue to have many areas defined by high proba-
bility transitions to lower energy states. The APOE4 network
[Fig. 7(d)] also has regions with high transition probabilities
to higher energy states. In addition, all of its high probability
transitions are surrounded by areas with zero probability. On
DIV18, the occupied phase space increases for all networks
except for the APOE4. The APOE-KO-E2 network [Fig. 7(a)]
has several sites with high transition probabilities to lower
energies and the gradients are large, ranging from 0.2 to 0.4.
Interestingly, these accessible states are also interspersed with
many zero-probability transitions. Also, there is a cluster of
high-probability states with transitions from lower to higher
energies, but they are not prevalent until DIV18 and the initial
states with these high probabilities are around 0.4. For the
APOE-KO-E4 network [Fig. 7(b)], there are fewer inaccessi-
ble transitions surrounding accessible transitions. In addition,
the transition probabilities to lower energy states are not as
high as in the APOE-KO-E2 network. The APOE2 network
[Fig. 7(c)] does not have many accessible transitions at high
energies. The phase space for the APOE4 [Fig. 7(d)] network
reverts to a similar structure of few accessible states as seen on
DIV10. Both the APOE-KO-E2 and APOE-KO-E4 networks
have stable patterns from DIV18 to DIV21. For the APOE2
network, the general phase-space boundary is similar from
DIV18 to DIV21, with a slight increase in the number of
high-probability transitions. As with the APOE-KO-E2 net-
work, these transitions are interspersed with regions of zero
probability. Finally, while there is an expansion in the phase
space for the APOE4 network from DIV18 to DIV21, the
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FIG. 7. Representative phase-space maps of conditional probabilities for the energy gradient at τ = 10 ms during network development.
Overall, most of the occupied areas have a high probability to transition to a lower energy state. (a) For the APOE-KO-E2 networks on DIV10,
the transitions with high probability typically have small gradients, clustered around zero; on DIV14, the gradients increase for the regions
with high-probability transitions to lower energies. By DIV21, more of the phase space is occupied, with a prominent speckle pattern of high
transition probabilities. (b) APOE-KO-E4 networks follow a similar trajectory as the APOE-KO-E2 networks for DIV10 and DIV14. By DIV18
and DIV21, transition probabilities to lower energy states are high when the initial energy state is high. There are also more nonzero probability
transitions, creating a smoother pattern of accessible states. (c) APOE2 networks also have a similar clustering of high transition probabilities
with small gradients on DIV10. On DIV14, the high-probability transitions to lower energy states tend to occur with larger gradients. When the
network is in a high energy state by DIV18, transitions to lower energy states are sparse and by DIV21, high-probability transitions to lower
energy states increases, with an emerging speckle pattern due to regions of zero probability transitions. (d) APOE4 networks start with the
smallest occupied region of phase space and the occupied region increases on DIV14; high-probability transitions increase. Interestingly, these
high-probability transitions originate from a high or low energy state; these transitions are surrounded by large regions of zero-probability
transitions. By DIV21, the map expands to higher energies with large transition probabilities, with a lower density than that of the other
networks.

high-probability transitions at the higher energy states are
surrounded by many inaccessible regions.

To account for experimental variability, we normalize m,
the mean entropy, over the number of active electrodes in the
experiment to obtain the mean single-electrode entropy, mr ≡
m/Nactive (we refer the reader to Fig. 12 in Appendix E for

the raw entropy distributions as a function of energetic state).
Figure 8 shows the fits for the cumulative single-electrode en-
tropies by different networks on different DIVs, as a function
of the duration within each recording epoch. APOE4 networks
are the least stable, with a strong increase of mean entropy
over DIV, whereas the APOE2 networks display a consistent
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FIG. 8. Cumulative entropy linear fits as a function of time for
τ = 10 ms. On DIV10, the cumulative entropy is nearly the same
for all networks. From DIV14 through DIV21, APOE4 networks
have the largest cumulative entropy. APOE2 networks show a steady
and consistent value in their cumulative entropy during development.
Both APOE-KO networks show the smallest change in their cumula-
tive entropy during development.

pattern during development. APOE-KO-E2 and APOE-KO-E4
networks display similar, largely overlapping, trajectories.

Figure 9 shows the mean single-electrode relative entropies
for all taus during the course of network development. Here,
we include the mean relative entropies for the APOE-KO
control networks (i.e., networks with no additional astrocytes)
to evaluate how the addition of astrocytes to neuronal net-
works from APOE-KO mice affects stability. Interestingly, the
entropy in the APOE-KO control networks decrease exponen-
tially for τ = 10 and 100 ms, albeit with large fluctuations
from DIV10 to DIV14. In contrast, the entropy in the APOE4

FIG. 9. Mean relative entropies for τ = 3, 10, 100 ms. APOE4
networks display an exponential increase in entropy during devel-
opment, whereas the entropy for the APOE-KO control networks
decrease exponentially; these effects are independent of τ . The fluc-
tuations for the APOE2 networks are small when τ = 10, 100 ms and
when τ = 3 ms, there is a small increase over time. The APOE-KO-
E2 and APOE-KO-E4 entropies are virtually constant from DIV10
until DIV18 for both τ = 10 and 100 ms.
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FIG. 10. Distributions of p̂(s), τ = 10 ms.

networks increases exponentially, and this increase is τ invari-
ant. The largest increase occurs between DIV14 and DIV18, a
period when neuronal networks typically stabilize their activ-
ity, but these networks exhibit a rapid rate of dissipation. The
entropies for both APOE-KO-E2 and APOE-KO-E4 networks
are nearly constant from DIV10 to DIV18 for both τ = 10
and 100 ms. The APOE2 networks show a similar behavior
throughout their development for τ = 10 and 100 ms, with
a small increase during development when τ = 3 ms. These
behaviors are independent of changes in the number of active
electrodes over DIV; the respective figures for m as seen in
Figs. 13 and 14 in Appendix E have trends consistent with the
ones describe above.

IV. DISCUSSION

We developed an analytical framework based on Shannon
entropy to estimate mean entropy as a function of time in
in vitro neuronal networks. We applied this framework to
investigate early stage differences in network development of
spontaneous voltage transients recorded from in vitro mouse
neural-astrocyte hippocampal networks. The networks con-
sisted of either neurons harvested from APOE knock out mice
with exogenous astrocytes from APOE2 or APOE4 mice or
cocultures of hippocampal and astrocytic cells from either
APOE2 or APOE4 mice. Coordinated spontaneous neural ac-
tivity provides the basis for the creation of healthy neural
circuitry. The tools we developed allow us to quantify quali-
tative features observed in the rastergrams of network activity
and to articulate dynamics that might not be easily visualized.
Importantly, we use these tools to investigate whether early
abnormalities in network development could forecast prob-
lems known to manifest later in life.

The framework assumes that neuronal networks are phys-
ical systems moving between energetic macrostates, where
energy is defined as the number of channels that detect at
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least one spike within a given bin. As such, each bin assumes
the binary value of 0 or 1. We selected a range of bin sizes
for our analyses that is within the physiologically relevant
time frame for spiking activity and allows us to assess the
stability of the calculated trends. The goal was to create a set
of tools that are “tau-agnostic” within a physiological range.
Furthermore, τ describes the resolution timescale with which
we look at the networks; as we vary τ we adjust the zoom on
our “temporal camera” and evaluate its impact on the calcu-
lated differences between the different treatments. In addition,
we identify the existence of τ -invariant features that might
mark stronger trends by fitting the probability distributions of
energetic macrostates of networks to capture their collective
developmental trend. The use of the generalized decreasing
sigmoid best represents several features of the data: the quasi-
linear decay at low energies, the plateau at median energies,
and the final downward tail at high energies. We remark
that the prevalence of the sigmoid function in quantifying
evolutionary biological processes [61–63] might suggest the
presence of a fundamental biological phenomenon observed
in these current studies.

Out of all the energetic macrostates, the quiescent state
(e = 0) is the most probable and this was observed for all net-
works throughout their development. This high probability of
quiescence suggests that synchronous activity need not always
lead to an increase in network activity. Rather, synchronicity
can emerge due to a reorganization of the existing activity
and these connections strengthen as the networks become
more established over time. We propose a link to the high
quiescent state probability to a physiological phenomena: the
finite neurotransmitter available at each synapse during a spik-
ing event. Repetitive firing at any given synapse will deplete
neurotransmitter from synaptic vesicles and a delay will ensue
to recycle “spent” vesicles [64,65].

The energy gradient maps with bright red regions, high
probability density, and negative gradient suggest that the
networks function as negative feedback loops. The higher the
energy, the less probable it is for the energy to increase, pre-
sumably due to the reduced availability of neurotransmitter.
The region defined by the slender green-blue arch relates to
findings from neuronal avalanche studies [66,67]. The proba-
bility distribution in this region suggests that bursting is not a
sharp, discrete event but it is preceded by a build up of spikes,
akin to a neuronal avalanche. Our gradient maps show that the
probability of moving directly from the quiescent state to a
high energy state is very small; the networks must move along
several paths with finite probability, leading to high energy
states and these paths must pass through intermediate areas of
increasingly energetic states. Lastly, there are high-probability
transitions to lower energy states and these transitions are in-
terspersed with large regions of zero probability. This pattern
appears in all networks and is prominent later in development.
It is most prominent in the APOE-KO-E2 and APOE2 net-
works, suggesting that as those networks mature, transitions
from high energy states are restricted to discrete gradients and
several transitions in the phase space are not accessible.

As previously stated, current state-of-the-art techniques do
not allow for the direct measurement of network-wide infor-
mation transmission. The MEA system measures the rate of
change of the extracellular voltage, dV/dt , defined by the su-

perposition of the extracellular membrane potentials from any
cell capacitively coupled to a channel. This is in contrast to an
intracellular probe where the voltage, V (t ), is measured and
arises due to the gating of ions through primarily membrane
sodium and potassium channels. The approach that we have
taken to define the entropy of the network is similar to the
physical approach encountered in engineering thermodynam-
ics where the rate of change of entropy, dS, is often divided
into two separate components: dextS, due to external exchange
of heat, and dintS due to the internal generation of entropy.

As such, we can write

dS = dintS + dextS, (19)

and since our system consists of an array of extracellular
electrodes, we access the entropic rate component due to
fluctuations in the external electromagnetic field.

There is a flattening of the entropy distribution for the
networks containing APOE-KO neurons, and the distribution
spans a broad range of energies for each network, regardless
of the type of added astrocyte. These flat entropy distributions
suggest the lack of a preference for a particular energetic
state as it relates to transmission of information. The stable
profile of the APOE2 networks across all DIVs, with a peak
around low energies, suggests a stable information transmis-
sion structure throughout their development. In contrast, the
narrow range of the profile of APOE4 networks suggests that
information transmission capabilities of these networks might
not be as robust.

The absence of APOE presents itself as a pathological
neurological state with physiological deficits, and APOE-KO
mice are used as a disease model [68–71]. However, while the
APOE4 allele is a risk factor for Alzheimer’s, APOE4 mice
are not a disease model. Importantly, neurological deficits
attributed to the APOE4 allele do not materialize until much
later in life. As such, we were interested in investigating
whether our measure might uncover unique dynamical irreg-
ularities early in network development. Indeed, our measure
elucidates time-dependent changes in the mean entropy for
all treatments, with the networks without APOE displaying a
large attenuation. It may be that effective connections might
not form during the development of these networks. It has
been suggested that APOE is involved in synaptic transmis-
sion [50] and therefore a lack of APOE might adversely
influence formation of healthy synapses. Adding astrocytes
containing APOE—of either allele—arrests this deficiency,
with reduced fluctuations over time. This suggests that APOE
can facilitate the development of a healthy network state.

In contrast, the APOE4 networks display an alarming trend
in their mean entropy in the form of a dramatic, exponential
increase in slope over time. As a result, these networks might
be more sensitive to external perturbations. In fact, studies
have shown that adult APOE4 mice have a higher likelihood
for seizure [72] as well as morphological abnormalities in
their dendritic spines [73]. We record network activity during
a pivotal period of development; neuronal networks are expe-
riencing rapid creation and pruning of synapses to establish
proper contacts, and we hypothesize that APOE4 networks
may be impaired in these efforts. Interestingly, while the
APOE2 networks have a slightly larger mean entropy than the
APOE-KO-E2 or APOE-KO-E4 networks, in the case when
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τ = 10 and 100 ms, APOE2 networks have reduced variability
over time. These small fluctuations suggest that their informa-
tion retention is stable during development.

We conclude by noting that these networks are created
from in vitro, rather than in vivo preparations, making a clear
one-to-one mapping to the brain dynamics less tenable. How-
ever, a major advantage to the coupling of an MEA system
to cultured neuronal networks is the ability to uncover novel,
time-dependent trends that are difficult, if not impossible, to
currently measure in vivo. While results from these studies
might be relevant to the fabrication of neuromorphic devices
[74,75], conclusive, physiological studies are required to elu-
cidate biochemical mechanisms. Here, we suggest, from a
dynamics perspective, that APOE2 networks operate within a
steady state of information transmission during development.
Additionally, we show that an unstable state is restored to a
steady state when APOE-deficient networks are supplemented
with exogenous APOE. Finally, in APOE4 networks, where
physiological deficits will not present themselves until later in
life, our measure shows a propensity for instability that might
serve as a harbinger of things to come.
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APPENDIX A: CELL CULTURE

Colonies of human APOE2 and APOE4 targeted re-
placement mice were bred in-house on a C57Bl6/J mouse
background. These mice, homozygous for the APOE2 or
APOE4 alleles, respectively, feature a targeted replacement
of the murine APOE gene with human APOE. Expression
of human APOE is driven by the endogenous murine pro-
moter [76]. In addition, colonies of APOE-KO mice were
bred in-house on a C57Bl6/J mouse background. To pre-
pare individual embryonic (E17.5) hippocampal cultures from
APOE2, APOE4, or APOE-KO mice, we used a protocol
modified from [77]. Embryonic hippocampi were extracted
into ice-cold dissection solution. The meninges were carefully
removed from extracted tissue and the hippocampal tissue
were finely chopped and digested with 0.1% trypsin fol-
lowed by mechanical trituration. Before plating, MEA plates
(MEA2100, Multi Channel Systems MCS GmbH, Reutlingen,
Germany) were cleaned, autoclaved, and treated with poly-D-
lysine and laminin (Sigma Aldrich, St. Louis, MO). A single
cell suspension resulted from the trituration, and cells were
added to the MEAs to achieve an approximate density of
700 cells/mm2. At this plating density, spontaneous electrical
activity was observed as early as DIV7 [78]. MEAs were
covered with a gas permeable Teflon membrane to prevent
evaporation of the media and to avoid contamination [79].
Cultures were maintained in Neuralbasal A supplemented
with B27, penicillin/streptomycin, and horse serum (Thermo
Fisher Scientific, Waltham, MA) in a humidified 5% CO2 and
95% O2 incubator at 37◦C.

TABLE I. Number of experiments per treatment.

DIV10 DIV14 DIV18 DIV21

APOE2 8 8 8 8
APOE4 8 8 8 8
APOE-KO-E2 16 16 15 15
APOE-KO-E4 13 13 13 13
APOE-KO 12 12 11 11

Table I shows the number of MEAs used for each
treatment. Assuming normality, this setup yields Var(m) <

1%, 3%, 5% for τ = 3, 10, 100 ms.
We see from Fig. 10 that the sample distributions of p̂(s)

are comparable across treatments.

APPENDIX B: FINITE SAMPLE SIZE EFFECTS

Estimating information theoretic quantities has been a vi-
brant area of research in psychology, neurophysiology, and
neuroscience. Most recently, Valiant and Valiant [80] intro-
duced an algorithm that approaches this problem by finding
the simplest histogram with the most similar fingerprint to that
of the data. They compare it to the most common entropy es-
timators: the naive estimator ĤMLE [81,82] the Miller-Madow
corrected estimator ĤMM [59], the jackknifed estimator ĤJK

[83,84], the best upper bound estimator ĤBUB [85], and the
Coverage Adjusted Estimator (CAE) [86].

Here, we show in Fig. 6 that the average p̂(0) �
90% and 80% for τ = 3 and 10 ms, respectively. Furthermore,
rare energetic states bring little contribution to iτ . Considering
the worst case scenario of ns = 1, this accounts for τ/300 =
0.001%, 0.003%, and 0.03% for τ = 3, 10, and 100 ms,
respectively.

Table II shows that it is reasonable to use the Miller-
Madow bias correction for τ = 3 ms because N0/m0 	 100
and N1/m1 ∼ 100, as pointed out by Paninski in [85]. There-
fore, for consistency, we use the same estimator for τ =
10, 100 ms.

We remark that, while recording for longer epochs might
initially seem to solve to these limitations, these are liv-
ing, evolving networks and it is important to consider the
nonstationarity of developmental neuronal network activity.
Indeed, we record for epochs that are short compared to the
total lifetime of each network to assume stationarity; changes
calculated during these epochs are assumed to be free of
developmental effects. Considering the worst case scenario
of ns = 1 during a recording of 300 s under the stationarity
assumption, obtaining 100 data points from which to estimate
entropy would require a recording epoch of 500 min to ∼
8.3 h. This would adversely impact the health of the cells
and, importantly, exceed the duration over which to assume
stationarity.

APPENDIX C: OUTLIERS REMOVAL FOR ENERGY AND
ENTROPY DISTRIBUTION FITS

Outliers were removed that did not satisfy an n-nearest-
neighbors criterion before fitting commenced. In this study we
selected n = 2 in order to eliminate pairs of isolated points.
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TABLE II. Average sum p̂0 + p̂1, where p̂ j ≡ p̂(1/Nactive ) and the average ratios N0/m0, N1/m1, where Nj = p̂ jNτ , mj = Nactive + j, for
τ = 3 ms.

DIV10 DIV14 DIV18 DIV21
p̂0 + p̂1

N0
m0

N1
m1

p̂0 + p̂1
N0
m0

N1
m1

p̂0 + p̂1
N0
m0

N1
m1

p̂0 + p̂1
N0
m0

N1
m1

APOE2 99% 2400 95 98% 2800 115 97% 2800 145 96% 2500 130
APOE4 99% 3300 60 99% 4800 100 99% 6500 210 99% 1600 245
APOE-KO-E2 97% 2000 115 96% 1700 95 93% 1600 78 92% 1500 70
APOE-KO-E4 97% 2000 105 95% 1700 85 93% 1600 75 93% 1600 70
APOE-KO 99% 4100 118 98% 2700 90 95% 2400 90 95% 2200 65

We define the threshold vector R = (r1, r2), where ri is the
threshold radius for the ith closest neighbor.

ri = μi + σi, (C1)

where μi and σi, respectively, are the mean value and the
standard deviation of the distance of the ith closest neighbor.

For every data point j we defined the closest-neighbors
vector D j = (d1, d2), where di is the distance from the ith
closest neighbor.

The test condition is

test j =
{

0, if min(D j − R) > 0
1, otherwise, (C2)

and we removed all the data points for which test j = 0, that
is, we removed all the data points that do not show at least 1
nearest neighbor within their threshold radius.

APPENDIX D: OUTLIERS REMOVAL FOR MEAN
ENTROPY FITS

To evaluate changes in the mean relative entropy, m, we
omitted those values that fall outside of a ±1σ interval around
the initial mean value μm.

APPENDIX E: SUPPLEMENTAL FIGURES

This Appendix contains supplementary figures for com-
pleteness of the analysis described in the main body.
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FIG. 11. Raw superimposed probability distributions over DIV for τ = 10 ms, with sigmoid fits.
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FIG. 12. Raw superimposed entropy distributions over DIV for τ = 10 ms, with fourth degree polynomial and a confidence region greater
than 50%. Entropy is measured in bits and its physical interpretation is the amount of information that a network discharges based on its
energy state. Initially, on DIV10, all networks display a similar peak near the energy state e ∼ 0.2. The e ∼ 0.2 peak and general profile for
the APOE2 networks is nearly constant throughout the development of those networks. APOE-KO-E2 and APOE-KO-E4 networks broaden
their profiles over time, with their maximum entropies flattening as the networks develop. The changes in energy do not result in changes in
entropy, indicating the presence of a white noiselike entropy distribution. The peak in the APOE4 networks flattens over development with a
rightward shift.
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FIG. 13. Raw superimposed cumulative entropies over time, over DIV, for τ = 100 ms, with linear fit.

FIG. 14. Mean relative entropies over DIV, for all values of τ .
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