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Thermodynamic descriptions are powerful tools to formally study complex gene expression programs evolved
in living cells on the basis of macromolecular interactions. While transcriptional regulations are often modeled
in the equilibrium, other interactions that occur in the cell follow a more complex pattern. Here, we adopt a
nonequilibrium thermodynamic scheme to explain the RNA-RNA interaction underlying IS10 transposition.
We determine the energy landscape associated with such an interaction at the base-pair resolution, and we
present an original scaling law for expression prediction that depends on different free energies characterizing
that landscape. Then, we show that massive experimental data of the IS10 RNA-controlled expression are
better explained by this thermodynamic description in nonequilibrium. Overall, these results contribute to better
comprehend the kinetics of post-transcriptional regulations and, more broadly, the functional consequences of
processes out of the equilibrium in biology.
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I. INTRODUCTION

Gene regulation is essential for the cell to adjust its physiol-
ogy against environmental changes and then persist. What lies
behind this picture is a series of macromolecular interactions
that allow a precise orchestration of multiple gene expres-
sions. In particular, cells rely on protein-DNA interactions to
regulate transcription, as seminally revealed for the lactose
utilization network in the 1960s [1]. Since then, many other
gene expression programs based on transcription regulation
have been deciphered, with functional implications [2], and
even synthetic circuits have been engineered [3]. However,
other types of regulations exist in the cell after RNA is made,
which are supposed to complement that transcriptional control
in order to fine-tune expression or allow faster responses [4].
Indeed, regulations based on RNA-RNA interactions are per-
vasive in biology. Among other examples, they can be found
within the mechanisms that bacteria exploit in response to
stress, especially to regulate globally acting elements [5], that
mammalian and plant cells employ to decoy functional RNAs
[6], or that retroviruses follow to dimerize their genomes,
such as in the case of the human immunodeficiency virus
[7]. One such type of regulation consists in a small RNA
(sRNA), naked or together with a protein, able to target a
given messenger RNA (mRNA) to regulate its translation or
stability [5]. Even so, the quantitative description of all these
regulations that occur in vivo from simple, accurate, and for-
mal mechanistic models is still a challenge.

Thermodynamic models (or, alternatively, models based
on statistical mechanics) have been already exploited to
quantitatively understand transcription regulations (protein-
DNA interactions) [8–10]. There, the system is assumed in
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equilibrium and its dynamic regulatory range (or fold change
in expression, denoted by r) scales with the Boltzmann factor
of the net free energy release associated with the inter-
molecular interaction (denoted by �Ginter) in relatively good
agreement. Mathematically (considering the regulator as a
repressor of gene expression), it can be written

r =
regulated

protein expression

non-regulated
protein expression

= 1

1 + e−β(�Ginter−μ)
, (1)

where β is the reciprocal of the temperature times the gas
constant, and μ represents a kind of chemical potential of the
regulator (note that eβμ scales with the concentration of the
regulator) [10]. In absence of saturation, it can be written r ∝
eβ�Ginter . Importantly, r is a mesoscopic parameter, in the range
[0, 1], that is accessible both theoretically and experimentally.
Moreover, 1−r can be seen as the probability of having a
regulator tightly bound to each target gene (r = 1 − Pbound). In
this work, the scaling law shown in Eq. (1) was considered as
a null model, which entails that �Ginter is the unique predictor
energy of r.

However, this assumption of thermodynamic equilibrium
appears to be inappropriate (or at least incomplete) to model
post-transcriptional regulations based on RNA-RNA interac-
tions, as previous results have pointed out that only �Ginter

is not sufficient to predict r [11–13]. Instead, and mostly
from heuristic approaches, other Boltzmann factors relative to
additional free energies characterizing the interaction, such as
the free energy of seed pairing (denoted by �Gseed), need to be
considered in a combinatorial way to achieve relatively good
estimates [11,12]. This certainly challenges the conventional
wisdom and forces us to find an alternative thermodynamic
picture from which to derive a formal relationship. Further-
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more, there are different kinds of riboswitches (i.e., structured
RNAs able to control gene expression in cis) that have been
shown to function either thermodynamically (at equilibrium)
or kinetically (out of equilibrium) [14,15]. Interestingly, two
molecular features mainly mark the difference between tran-
scriptional and post-transcriptional regulations in vivo. First,
RNAs are typically short-lived macromolecules, while DNA
and proteins are not [16]. Second, RNA-RNA interactions rely
on a lesser regulator-target ratio than protein-DNA interac-
tions, which leads to lower dynamic ranges [17].

Here, we adopted a nonequilibrium thermodynamic
scheme to explain RNA-RNA interactions (a nonequilibrium
scheme because we considered further energies characterizing
the system apart from �Ginter to derive a different scaling
law). As a working example, we considered the IS10 trans-
position system that occurs in bacteria [18]. There, a sRNA
(dubbed RNA-OUT) interacts with the 5’ untranslated region
(dubbed RNA-IN) of a given mRNA, encoding a transposase,
to repress the protein synthesis. RNA-OUT is a structured
sRNA with a stem-loop conformation (with an external loop
of 6 nucleotides (nt) and a long stem with three small in-
ternal loops, as already proposed [18] and here assumed),
while RNA-IN is a nonstructured element in which the Shine-
Dalgarno box [19] and the start codon are exposed to the
solvent. In the following, we describe the energy landscape
associated with the interaction at the base-pair resolution and,
in turn, we derive a simple but general statistical model that
emerges from a regulatory scenario in steady state but out of
equilibrium [20].

II. RESULTS

A. Energy landscape

To resolve the energy landscape associated with the sRNA-
mRNA interaction with precision, the different gains and
losses of free energy that occur as the reaction coordinate
progresses need to be computed [Fig. 1(a)]. We defined the re-
action coordinate as the number of intermolecular base pairs.
In the particular case of the IS10 system, this ranges from 0
(no interaction; state 1) to 33 base pairs (bp) (final complex;
state 3). Notably, the different secondary structures that are
progressively formed in that interaction range (base pair by
base pair) can be evaluated by hand according to a simplified
physicochemical model with the stacking and looping free en-
ergies previously determined at 37 °C [21,22]. To this end, we
followed a decomposition principle by which the free energy
of a given structure is the sum of the individual contributions
of each stack and loop; that is,

G(structure) =
∑

i

Gi(stack or loop). (2)

Initially, the species are just folded intramolecularly
[Fig. 1(b)], as this process occurs much faster than the even-
tual interaction (in the order of seconds or even minutes)
[23]. The free energy of RNA-IN is directly GIN = 0 and the
free energy of RNA-OUT GOUT = −20.5 Kcal/mol (from 20
stacks and 4 loops). Then, the free energy of the state 1 reads
G1 = GIN + GOUT = GOUT.

FIG. 1. (a) Energy landscape of the sRNA-mRNA interaction
in the IS10 system at the base-pair resolution. The intramolecular
folding state is labeled as 1, the just-the-seed-paired intermolecular
folding state as 2, and the final intermolecular folding state as 3.
Vertical arrows (in blue) mark the different free energies that charac-
terize the interaction. (b) Intramolecular RNA secondary structures
in state 1. (c) RNA secondary structure in the state 2 with intra- and
intermolecular contacts. (d) Intermolecular RNA secondary structure
in state 3. The Shine-Dalgarno box and the start codon are shaded (in
blue).

The sRNA-mRNA interaction can be divided into three
different stages. In first place, the two species have to meet
in order to start the interaction. This association clearly incurs
in a thermodynamic penalty (denoted by �G#

inter) due to en-
tropic considerations [21]. Here, we considered �G#

inter ≈ 10
Kcal/mol without loss of generality (Fig. 1(a); note that in
conventional physicochemical models �G#

inter ≈ 4 Kcal/mol
[21,22], but here we followed recent estimations of this energy
barrier [24]). This value can be assumed, to some extent,
independent of the sequence, and it is expected to vary from
in vitro to in vivo due to molecular crowding effects or
spurious interactions that can take place in the cell [25].
In second place, the seed regions of both RNAs interact to
form a partly-stabilized complex [state 2; Fig. 1(c)]. Here,
the seed region consists of 5 nt, from which we calculated
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�Gseed = −9.1 Kcal/mol, and in the case of RNA-OUT they
are located in the external loop of its structure (scenario of
kissing loop). Then, the free energy of the state 2 reads G2 =
G1 + �G#

inter + �Gseed. Note that G2 might even be lesser
than G1 if the seed region were long enough [24]. In third
place, the intermediate complex starts a process of branch
migration to break the intramolecular base pairs and form
the intermolecular ones, ending in a stable hybridization state
between the two RNAs [Fig. 1(d)]. By aggregating the free
energies of all 27 stacks and one loop of this final complex, we
obtained GIN:OUT = −55.8 Kcal/mol; the free energy of the
state 3 is then G3 = �G#

inter + GIN:OUT. For branch migration
to start, nonetheless, the system incurs in a thermodynamic
penalty (denoted by �Gini

migr), as the resulting secondary struc-
tures that need to be formed are suboptimal. We considered
�Gini

migr ≈ 2 Kcal/mol, which roughly corresponds to the gain
in free energy if the external loop of RNA-OUT is enlarged.
This small gain is released once the intramolecular structure
is completely destroyed [at a reaction coordinate of 29 bp;
Fig. 1(a)]. For simplicity, we neglected potential intramolec-
ular interactions occurring in the 3’ end of RNA-OUT upon
hybridization [Fig. 1(d)]. Denoting by �Gmigr the free energy
gap between the states 2 and 3 (G3 = G2 + �Gmigr), we were
able to write

�Ginter = �G#
inter + �Gseed + �Gmigr, (3)

with �Ginter = −25.3 Kcal/mol. Clearly, our calculations
agree with a decomposition of the intermolecular interaction
into incremental steps, i.e., �Gmigr + �Gseed = GIN:OUT −
GOUT is satisfied [26].

This detailed energy landscape can be abstracted into a
simple figure if we consider the whole branch migration as
a single process. For that, its different elementary steps were
assumed fast and reversible so that detailed balance can be
applied [27]. Accordingly, for 6 � r � 29, it can be written
kr,r+1/kr+1,r ∝ e−β(�Ginter

r −�Gintra
r ), where �Gintra

r corresponds
to the broken intramolecular base pair at the reaction coor-
dinate r and �Ginter

r to the formed intermolecular base pair,
thereby increasing the reaction coordinate from r to r + 1.
Consequently, by considering a Markov chain the whole
branch migration, we defined an effective free energy barrier
between the states 2 and 3 as �G#

migr = �Gini
migr − G1 (i.e.,

the total free energy gain as the intramolecular structure of
RNA-OUT is destroyed, noting that |GOUT| is indeed the gross
gain). In this way, the resulting energy landscape has three
stable states and two energy barriers (Fig. 2), and a practical
mathematical formulation can then be developed. According
to the transition state theory, a given kinetic rate is propor-
tional to the Boltzmann factor of the free energy barrier faced
[28]. Thus,

k12 ∝ e−β�G#
inter , k21 ∝ eβ�Gseed ,

k23 ∝ e−β�G#
migr , k32 ∝ eβ(�Gmigr−�G#

migr ), (4)

where ki j is the kinetic constant to go from the state i to
the state j (the different �Gs correspond to free energy gaps
between transition and stable states, sensu Arrhenius).

FIG. 2. Abstracted energy landscape of the sRNA-mRNA inter-
action in the IS10 system. There are two transition states and three
stable states (labeled as 1, 2, and 3). Vertical arrows (in blue) mark
the different free energies that characterize the interaction. Oblique
arrows over the landscape (in black) designate the kinetic constants.

B. Kinetic modeling

Our aim was to derive a scaling law relating r with the
free energies characterizing the system, as this is instru-
mental to predict gene expression changes directly from the
sequence (i.e., sequence-to-function mapping), as the RNA
folding problem is solved. To this end, we developed a kinetic
model, where we considered transcription and degradation of
RNA, as well as reversible transitions among the different
conformational states. If we denote by xi the concentration
of the RNA species in the folding state i (x1 for the mRNA
and x′

1 for the sRNA in the state 1), the system of nonlinear
ordinary differential equations that govern the sRNA-mRNA
interaction reads

ẋ1 = α − k12x1x′
1 − δx1 + k21x2,

ẋ′
1 = nα − k12x1x′

1 − δx′
1 + k21x2,

ẋ2 = k12x1x′
1 − (k21 + k23 + δ)x2 + k32x3,

ẋ3 = k23x2 − (k32 + δ)x3, (5)

where α is transcription rate of the mRNA, n is the relative
transcription rate of the sRNA with respect to the mRNA (e.g.,
due to different gene copy numbers or promoter strengths),
and δ the RNA degradation rate (for simplicity, assumed equal
for all species, single or complex). Of note, if we consider the
total amount of mRNA, given by y = x1 + x2 + x3, it turns out
that ẏ = α−δy, which entails mass conservation. The dynamic
regulatory range (ratio of protein concentrations with and
without sRNA) can be defined as r = 1− x3

y (i.e., Pbound = x3
y ),

assuming that the translation rate per mRNA is equal and
substantial in states 1 and 2, but 0 in state 3.

Numerical simulations revealed how, upon the expression
of the sRNA, the concentrations of the different species evolve
to reach a stationary picture in which all folding states are
represented [Fig. 3(a)]. According to kinetic parameter values
inferred from experimental data (in studies of kissing loop
interactions) [23], this process takes about half an hour, the
system is far from being completely in the final intermolec-
ular folding state (about two-thirds of mRNAs are paired to
sRNAs), and the just-the-seed-paired intermolecular folding
state is the least represented. Our simulations confirm that r
improves by promoting the formation of the final intermolec-
ular complex [i.e., increasing k23 and reducing k21; Fig. 3(b)],
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FIG. 3. Numerical simulations of the RNA-based regulated re-
sponse with a kinetic model. (a) Time-dependent concentrations (xi)
of the different RNA species that correspond to the three stable
states (labeled as 1, 2, and 3). The initial condition corresponds to a
scenario of absence of sRNA. The kinetic parameters are n = 1, α =
10 nM/min, δ = 0.1 min–1, k12 = 0.06 nM–1 min–1, k21 = 6 min–1,
and k32 = 0.01 min–1, and the initial condition is x1 = 100 nM and
x2 = x3 = 0. (b)–(d) Dynamic regulatory range (r) as a function of
distinct kinetic parameters. k12 varies from 0.01 to 0.1 nM–1 min–1 in
(b) and (c), and δ varies from 0.1 to 0.3 min–1 in (d).

by enforcing the irreversibility of this process [i.e., increasing
δ and reducing k32; Fig. 3(c)], and by working with an excess
of sRNA in the cell [i.e., increasing n; Fig. 3(d)]. However,
the improvement is limited due to the nonlinear nature of the
system, a consequence of accounting for intermediate state
2. Indeed, this acts as a buffer to balance sRNA release (to
go back to state 1) and branch migration (to go forward to
state 3).

The system can be analytically solved in steady state if
we consider that the sRNA is much more expressed than
the mRNA (n � 1). In this regard, the mRNA amount limits
the reaction and x′

1 ≈ nα
δ

is a good approximation. Thus, we
obtained

x1 ≈ α/δ

1 + nα
δ

k12
k21

( k23
k32+δ

) , (6)

and by exploiting the relationships shown in Eqs. (4) we
finally found

r ≈ 1

1 + [eβ(�Ginter−μ) + eβ(�Gtrans−μ′ )]−1 , (7)

where �Gtrans = max(�Gseed, �Gwild-type
seed ) + �G#

migr (a vari-
able > 0). As in the case of Eq. (1), μ (also μ′) represents
a kind of chemical potential of the regulator (eβμ ∝ eβμ′ ∝
x′

1). To obtain a compact expression in energetic terms,
we considered k21 as the fastest kinetics in the system.

Certainly, in the case of structured sRNAs, �G#
migr >

−�Gseed typically holds, meaning that once the just-the-seed-
paired intermolecular folding state is reached, the reaction
tends to preferentially go back (i.e., k21 > k23) [24]. In addi-
tion, if n is moderate, k21 > nα

δ
k12 also holds. The contribution

of �Gseed is saturated by �Gwild-type
seed to account for cases

in which k21 < nα
δ

k12 (this saturation effect is in tune with
what follows from DNA reactions in vitro, i.e., saturation of
toehold-mediated kinetics [27]). Interestingly, �Gtrans is in
essence the free energy gap between the two transition states
in Fig. 2, which makes Eq. (7) a satisfying combination of a
standard Gibbs formulation with the Curtin-Hammett princi-
ple [29].

It is worthwhile to note that for systems in which there
is a sufficient free energy gap between states 2 and 3 (e.g.,
�Gmigr < −20 Kcal/mol), once the final intermolecular com-
plex is formed, the probability of going back is negligible,
because the RNA will be degraded before this process can take
place (i.e., δ � k32). Hence, x3 ≈ k23

δ
x2, which already breaks

the conventional scheme of thermodynamic equilibrium. In
this case, the dynamic range is independent of �Ginter and the
model predicts a maximal performance of r ≈ eβ(�Gtrans−μ′ ).
Consequently, a stable seed pairing (e.g., enriched in GC con-
tent) and weak intramolecular structures (e.g., with internal
loops and low GC content) are requirements to achieve a high
dynamic range.

Equation (7) corresponds to a scenario of nonequilibrium
and differs from Eq. (1), the conventional statistics at equi-
librium [10] that was here considered as the null model.
However, the system of Eqs. (5) is general enough so that
Eq. (1) can also be derived from it. If we consider that
the sRNA-mRNA interaction is a process much faster than
the transcription and degradation of these RNA species, we
can write k12x′

1x1 = k21x2 and k23x2 = k32x3, which means
detailed balance, and Eq. (1) naturally arises after some cal-
culations. Note also that in the limit μ′ → +∞ (or �Gtrans �
μ′), we get Eq. (1) directly from Eq. (7), which makes equi-
librium an asymptote of a more complex scenario.

Equation (1) predicts that even if there is no accessibil-
ity (i.e., no seed region, �Gseed = 0), the protein can be
down-regulated provided the free energy of interaction is
low enough (i.e., �Ginter < μ). However, this does not oc-
cur with the scaling law here presented, because �Gseed = 0
entails �Gtrans > μ′ and then the term eβ(�Gtrans−μ′ ) always
contributes to have high values of r (i.e., poor regulation),
even if eβ(�Ginter−μ) ≈ 0. In other words,

lim
�Ginter→−∞

r = 0 (equilibrium),

lim
�Ginter→−∞

r = 1

1 + e−β(�Gtrans−μ′ ) (nonequilibrium). (8)

C. Experimental validation

To validate our theory, we considered the dynamic ranges
reported for a large series of mutants of the IS10 system (mu-
tations introduced in both the sRNA and the mRNA), which
were experimentally measured by changes in fluorescence
[11]. For each system, we calculated the values of �Ginter

with the RNAcofold routine of the ViennaRNA package [30].
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FIG. 4. Correlation of experimentally measured dynamic range
(r) against a computationally predicted free energy for different
mutants of the IS10 system (529 data points). (a) Nonequilibrium
thermodynamic model (r vs φ), fitted with β = 0.545 mol/Kcal,
μ = −26.6 Kcal/mol, and μ′ = 20.7 Kcal/mol. (b) Equilibrium ther-
modynamic model (r vs �Ginter , this corresponds to the null model),
fitted with β = 0.514 mol/Kcal and μ = −27.6 Kcal/mol. (c) Vari-
ance of experimental data vs model predictions for data with a
maximal dynamic range (rmax). rmax = 1 means that all data are
considered, while rmax = 0.25 means that only those systems with
substantial regulatory activity are considered.

We obtained values that differ a bit from our previous manual
calculations as a consequence of a different value of �G#

inter
(this is not important because it is a systematic discrepancy
that only affects the fitted value of μ) and the consideration of
additional physicochemical features [20]. Moreover, we cal-
culated the corresponding values of �Gseed by following the
aforementioned manual procedure, considering the sequence
motifs previously described in the species RNA-IN and RNA-
OUT [11]. In the case of an intermolecular structure between
the seed regions with a loop or bulge, only the most stable
consecutive stackings were considered. To estimate �G#

migr,
we calculated |GOUT| with the RNAfold routine [30] by im-
posing the seed region to be unpaired, and then we added the
value of �Gini

migr. For RNA-OUT mutants in which the external
loop is very large, we set �Gini

migr ≈ 0, as the base pairing that
follows the seeding is not a process of branch migration but
between unpaired regions [26].

We then represented the experimental values of r vs the
computed free energies. For representation purposes, we de-
fined φ = [eβ(�Ginter−μ) + eβ(�Gtrans−μ′ )]−1, revealing a good
agreement between theory and experiments with our scaling
law from nonequilibrium thermodynamics [Fig. 4(a)]. �Ginter

still exhibits substantial prediction ability [Fig. 4(b), through

the application of the null model], as eβ(�Ginter−μ) is the dom-
inant term in φ for most of the mutant systems. Nonetheless,
an F test showed a statistically significant better prediction
ability in the former case (F1,526 = 81.7, P < 10–6). By using
partial least squares regression, Arkin and co-workers found
empirically that �Ginter and �Gseed explain most of the vari-
ance in repression fold, �Ginter being the main predictor [11].
According to our results, obtained by following a bottom-up
approach, �Ginter can account for up to 76.8% of the vari-
ance, while when both �Ginter and �Gtrans (which depends
on �Gseed) are considered the percentage increases 3.2%. The
explained variance increases more (with respect to the null
model) when only data for systems with significant regulatory
activity are considered, i.e., when the term eβ(�Ginter−μ) is close
to 0 and then the contribution of the term eβ(�Gtrans−μ′ ) is
manifested [Fig. 4(c)].

In theory, the value of β should be fixed. At 37 °C, we
would have β = 1.62 mol/Kcal. However, previous work that
correlated gene expression data with computationally pre-
dicted free energies revealed values of β much lower (β ≈
0.5 mol/Kcal) [31,32]. This might indicate that the physic-
ochemical models used for RNA folding overestimate the
free energies of the processes that occur in vivo and/or that
the reduction of the whole ensemble to a single folding (for
tractable purposes, the minimal free energy structure) leads to
lose the extant functional variability. In this regard, here we
let the value of the β variable to be fitted against the data,
in order to work with computational predictions of energies
and structures, obtaining β ≈ 0.5–0.6 mol/Kcal irrespective
of Eqs. (1) or (7). In any case, the observed exponential trend
between r and predicted �Gs indeed reflects that thermo-
dynamic principles are applicable to formally describe these
systems.

III. CONCLUSION

This work represents a significant step forward in our basic
understanding of RNA-based regulation. An original scaling
law for expression prediction from computational energetic
and structural calculations is derived by following a nonequi-
librium thermodynamic scheme in steady state. Although it is
particularized for the IS10 transposition system, we expect its
validity to enable the study of further riboregulatory systems
in which an sRNA acts as a repressor of translation (it might
also be adapted straightforwardly to deal with an activator of
a cis-repressed mRNA) [5]. This law is dependent on different
free energies, not only the free energy of formation, as a
result of RNA degradation. The more efficient this enzymatic
process (as it is in bacteria), the further from a scenario of
equilibrium. Accordingly, �Ginter will be a suitable predictor
of regulatory activity when the final complex is not stable
enough, as degradation will not be the dominant process at
that moment, while �Gtrans will govern the regulation when
the global reaction is very favorable. Importantly, our model
can be exploited to study natural RNA-based regulation or
even to guide the design of synthetic systems [17,33]. Of
note, our results contribute to appreciate the importance of the
seed region, disclosing from ab initio calculations its impact
on regulatory activity [11]. In addition, our results reveal
a trade-off in gene regulatory systems based on RNA-RNA
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interactions. On the one hand, the sRNA needs to be structured
to enhance its stability in a cellular context, avoiding a prema-
ture degradation by the action of ribonucleases [34]. On the
other hand, that structure contributes to difficult the process
of branch migration by imposing an effective free energy
barrier [27]. In sum, as we realize that enzymatic activity man-
ifests into breaking detailed balance over some biochemical
processes, we expect a wider application of nonequilibrium
thermodynamics to predictably map genotype and phenotype,
especially if this leads to amenable mathematical expressions
connecting microscopic descriptors of the molecular world
with mesoscopic parameters [20].
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APPENDIX

1. Stability analysis

The Jacobian matrix of the system of Eqs. (5) is

J =

⎛
⎜⎜⎝

−k12x′
1− δ −k12x1 k21 0

−k12x′
1 −k12x1− δ k21 0

k12x′
1 k12x1 −k21− k23− δ k32

0 0 k23 −k32− δ

⎞
⎟⎟⎠.

(A1)
In the limit x′

1 ≈ nα
δ

(constant), the system can be reduced
in one dimension, then arriving to the following matrix:

Jreduced =
⎛
⎝

−k12
nα
δ

− δ k21 0
k12

nα
δ

−k21 − k23 − δ k32

0 k23 −k32 − δ

⎞
⎠.

(A2)
Importantly, this matrix is strictly column diagonally domi-

nant and all elements in the diagonal are negative. This entails
that the real parts of all eigenvalues are negative (condition of
stability).

2. Derivation of a thermodynamic model

In the steady state, it can be written that

α − k12x1x′
1 − δx1 + k21x2 = 0,

nα − k12x1x′
1 − δx′

1 + k21x2 = 0,

k12x1x′
1 − (k21 + k23 + δ)x2 + k32x3 = 0,

k23x2 − (k32 + δ)x3 = 0. (A3)

First, by combining the first and second equations, we
obtained (n−1)α = δ(x′

1 − x1). Then, by considering n � 1,
which entails x′

1 � x1, it turned out that x′
1 ≈ nα

δ
(constant).

Second, by combining the third and fourth equations, we
obtained nα

δ
k12x1 = (k21 + δ + k23δ

k32+δ
)x2, which was further

simplified to nα
δ

k12x1 ≈ (k21 + k23δ
k32+δ

)x2, by considering k21 �
δ. Therefore, we obtained y ≈ x1 + k23

k32+δ
x2. Then, we were

able to write r ≈ x1+x2

x1+ k23
k32+δ

x2
. By doing some rearrangements,

we obtained

r ≈ 1

1 +
nα
δ

k12

(
k23

k32+δ
−1

)
nα
δ

k12+k21+ k23δ

k32+δ

. (A4)

From here, we assumed k21� nα
δ

k12+ k23δ
k32+δ

and k23
k32+δ

� 1,
which allowed us to write

r ≈ 1

1 + nα
δ

k12
k21

( k23
k32+δ

) . (A5)

Finally, by knowing that k12k23
k21k32

∝ e−β�Ginter and that k12k23
k21

∝
e−β�Gtrans , we have Eq. (7). If k32 � δ, we just recovered
Eq. (1).

3. Formulation in terms of on and off kinetics

If we denote by kon the effective kinetic constant to form
the final sRNA-mRNA complex and by koff the constant to
dissociate it, it can be written that

Pbound = kon

kon + koff
, (A6)

and then

r = 1

1 + kon
koff

. (A7)

In a scenario of equilibrium, we have kon = nα
δ

k12k23 (i.e.,
the global kinetic rate to go from state 1 to state 3 according
to the energy landscape shown in Fig. 2) and koff = k21k32

(i.e., the global kinetic rate to go from state 3 to state 1). How-
ever, in a scenario of nonequilibrium, the degradation of the
RNA molecules is considered, and then the kinetic constants
cannot be directly derived from the energy landscape. In this
case, there are two off processes from state 3, one to go back to
state 1 and another to degrade the RNA molecules. By using
Eq. (A5), it turned out koff = k21k32 + k21δ, maintaining the
definition of kon as in the scenario of equilibrium.
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