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Length-scale-dependent elasticity in DNA from coarse-grained and all-atom models
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We investigate the influence of nonlocal couplings on the torsional and bending elasticities of DNA. Such
couplings have been observed in the past by several simulation studies. Here, we use a description of DNA
conformations based on the variables tilt, roll, and twist. Our analysis of both coarse-grained (oxDNA) and
all-atom models indicates that these share strikingly similar features: there are strong off-site couplings for
tilt-tilt and twist-twist, while they are much weaker in the roll-roll case. By developing an analytical framework
to estimate bending and torsional persistence lengths in nonlocal DNA models, we show how off-site interactions
generate a length-scale-dependent elasticity. Based on the simulation-generated elasticity data, the theory
predicts a significant length-scale-dependent effect on torsional fluctuations but only a modest effect on bending
fluctuations. These results are in agreement with experiments probing DNA mechanics from single base pair to
kilobase pair scales.
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I. INTRODUCTION

Mechanical properties of DNA strongly influence how the
double helix performs its various tasks in the cell, where
it is often bent and twisted [1]. Computer simulations have
been playing an increasingly important role in understanding
these properties. Depending on the length scale relevant to
the particular issue at hand and the level of detail required,
simulations of either atomistic [2–8] or coarse-grained res-
olution [9–21] can be employed. At sufficiently long length
scales, the mechanical response of DNA is well described
by continuous elastic models, such as the twistable wormlike
chain (TWLC), which neglects sequence-dependent effects
[22]. The TWLC uses three local configurational variables:
tilt and roll (describing the two possible bending modes)
and twist. The free energy associated with deformations is
quadratic and local, i.e., distal sites are assumed to be in-
dependent. We will refer to these types of model as on-site
models. Describing DNA at shorter distances requires a more
detailed approach since two effects become relevant: sequence
specificity starts to dominate the elastic behavior and the
assumption of coupling locality no longer holds. The former
issue is well-documented—several studies have shown that
DNA elasticity at the base-pair level is strongly dependent
on the involved type of nucleotides [3–5]—while the latter
issue is the main concern of this paper. Couplings beyond
nearest neighbors have been observed in all-atom simula-
tions [2,5,23,24] as well as in coarse-grained models [16].
Lankas et al. [2], in one of the earliest all-atom simula-
tion study to characterize DNA elastic constants, observed
nonlocal correlations which are more pronounced for some
degrees of freedom. These effects were also discussed in the
context of the rigid base and rigid base-pair models [23].
Noy and Golestanian [5] performed a systematic study of

the effective elastic properties of DNA at different length
scales. Eslami-Mossallam and Ejtehadi [24] showed, using
Monte Carlo simulations, that long-range couplings enhance
the local bendability of DNA when compared to the prediction
of purely local models and that the bending persistence length
becomes length dependent.

The aim of this paper is to analyze mechanical models of
DNA with off-site couplings and to incorporate these effects
in a homogeneous TWLC-like model of DNA for which we
derive analytical expressions of bending and torsional per-
sistence lengths. We assume quadratic interactions both for
on-site and off-site terms and do not discuss extreme bend-
ability at short scales and kinking, which would require a
more complex energetic model including beyond-harmonic
interactions (for a recent study of kinking, see, e.g., Ref. [25]).
For the purpose of this paper, which focuses on the behavior of
the bending and torsional persistence lengths, a description of
the DNA configurations using tilt, roll and twist is sufficient.
Notwithstanding, the methodology developed here is applica-
ble to more sophisticated models with an enlarged phase space
of collective variables, such as the rigid base-pair model [23].

Here, we present the results of simulations of a homoge-
neous coarse-grained DNA model and of an all-atom model
for which we average over different sequences. The central
quantity in our analysis is the set of momentum space stiffness
matrices that captures the linear response of the model at all
length scales and presents a convenient way to quantify the
effect of off-site interactions. The momentum space formula-
tion is natural in the context of our work as we consider the
limit of infinitely long homogeneous molecules—implying
translational invariance and independence of modes with dif-
ferent momenta. Moreover, length-scale-dependent bending
and torsional persistence lengths can be directly deduced by
a momentum space integration. The asymptotic value of the
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FIG. 1. (a) Toy model of length-scale-dependent elasticity con-
sisting of a linear chain with neighbors and next-neighbor springs
with stiffnesses K and K ′, respectively [Eq. (1)]. (b) Momentum
space stiffness of the model (7) for K = 1 and K ′ = 3. The one-step
K1, two-step K2, and asymptotic stiffnesses K∞ = K̃0 [Eqs. (12)–
(14)] are shown. In the case shown here (K ′ > 0), the system is softer
at short scales: K1 < K2 < . . . < K∞.

torsional persistence length is obtained from the zero-
momentum component, i.e., for q → 0, of the associated
stiffness matrices. As we shall show, the intrinsic twist of
the DNA chain prompts the asymptotic bending persistence
length to be associated with the momentum space compo-
nents in the limit q → ±�q, where �q is the momentum
related to one turn of the double helix. Hence, from a plot
of stiffnesses in momentum space, one can easily read off
the asymptotic values of the persistence lengths and infer the
short distance behavior as well. Although our focus here is
DNA, it turns out that length-scale-dependent elasticity can
also be understood in simpler systems. Therefore, we start
our discussion introducing a toy model (Sec. II). This model
shows a length-scale-dependent elastic stiffness [Eq. (11)] and
the exponential decay of a local perturbation [Eq. (18)] which
are also found in DNA. The advantage is that the toy model
is simpler and perhaps more intuitive to understand. In addi-
tion, several quantities can be computed exactly. In Sec. III,
the formalism introduced for the simple model is transferred
to our three-dimensional model for DNA. Numerical results
obtained with the coarse-grained and atomistic model are
presented in Sec. IV. Finally, in Sec. V, we discuss the results
obtained and link our findings to experimental observations.

II. LINEAR ELASTIC CHAIN WITH NEXT
NEAREST-NEIGHBOR COUPLING

To illustrate the effect of beyond-nearest-neighbor cou-
plings and the procedure of analyzing length-dependent
elasticity, we first consider a one-dimensional toy model of
a linear elastic chain with next-neighbors couplings. This
model [illustrated in Fig. 1(a)] consists of an elastic chain
of N masses located at positions x0, x1, ...xN−1. Interactions
between the masses are mediated by two types of springs with
stiffnesses K and K ′ and rest lengths a and 2a, acting, respec-
tively, between nearest neighbors and next-nearest neighbors.
Accordingly, the energy of the system—in units of kBT —is

given by

βE = K

2

N−1∑
n=0

(xn+1 − xn − a)2 + K ′

2

N−1∑
n=0

(xn+2 − xn − 2a)2,

(1)
with β = 1/kBT . We use periodic boundary conditions by
defining xN+1 ≡ xN + x1 − x0, which adds an auxiliary spring
at one end of the chain having the same amount of stretching
as the first spring at the opposite end. These boundary condi-
tions are formally necessary for our formalism, however, their
violation merely constitutes a finite-size effect that will vanish
for sufficiently large N . The minimal energy configuration of
the system is xn = x0 + na. We are interested in the stretching
fluctuations at different length scales, as captured by the m-
step fluctuations

〈(xm − x0 − ma)2〉 = m

Km
, (2)

for which we define an effective spring constant Km. In
absence of next-nearest-neighbor couplings (K ′ = 0), one
simply finds Km = K , as the mean-squared extension of m
independent springs is just m times the extension of a sin-
gle spring, which yields the stated relation by virtue of the
equipartition theorem. As we shall show, in the case K ′ �= 0
the spring constant Km depends on m, indicating a length-
dependent elasticity.

For the calculation of Km, we define the displacement from
the spring’s rest length as un ≡ xn+1 − xn − a, such that (1)
becomes

βE = K

2

N−1∑
n=0

u2
n + K ′

2

N−1∑
n=0

(un+1 + un)2

= K + 2K ′

2

N−1∑
n=0

u2
n + K ′

N−1∑
n=0

unun+1 (3)

(the above boundary conditions correspond to uN = u0). We
introduce the discrete Fourier transform of the displacements

Uq =
N−1∑
n=0

e−2π iqn/N un, (4)

with q = −(N − 1)/2,−(N − 3)/2, . . . (N − 1)/2 (assuming
N odd) referred to as momentum here. Accordingly, the in-
verse Fourier transform is given by

un = 1

N

∑
q

e2π iqn/N Uq, (5)

where the sum runs over the above given values of q. Since
the un are real variables, we have U∗

q = U−q. In momentum
space, the energy then becomes

βE = 1

2N

∑
q

K̃q|Uq|2. (6)

The stiffness of the mode with momentum q is

K̃q ≡ K + 4K ′ cos2 πq

N
. (7)

Figure 1(b) shows K̃q for K = 1 and K ′ = 3. The stability
condition of the system K̃q > 0 for all q requires K > 0 and
K ′ > −K/4, allowing for both positive and negative K ′. To

042408-2



LENGTH-SCALE-DEPENDENT ELASTICITY IN DNA … PHYSICAL REVIEW E 103, 042408 (2021)

illustrate the meaning of these two cases, we note that K ′
enters as a diagonal coupling and as a cross term of the form
K ′un+1un, see (3). If K ′ > 0, configurations with un and un+1

of opposite sign are favored, which leads to an anticorrelation
of neighboring un. Conversely, negative K ′ leads to a positive
correlation of neighboring un. It turns out that for DNA only
the former case is observed.

The equipartition theorem, applied to (6), gives

〈Uq Uq′ 〉 = NK̃−1
q δq,−q′ , (8)

where δn,k is the Kronecker delta. Moreover, collective m-step
fluctuations can be expressed as

xm − x0 − ma =
m−1∑
n=0

un = 1

N

∑
q

sin πqm
N

sin πq
N

eiπq(m−1)/NUq. (9)

Combining (2), (8), and (9) we find

m

Km
= 1

N2

∑
q

sin2 πqm
N

sin2 πq
N

〈|Uq|2〉 = 1

N

∑
q

sin2 πqm
N

K̃q sin2 πq
N

. (10)

In the limit N → ∞, one can replace the discrete sum with an
integral

1

Km
= 1

mπ

∫ π/2

−π/2

sin2 my

sin2 y

dy

K + 4K ′ cos2 y
, (11)

where we defined y ≡ πq/N and used (7). For m = 1 and m =
2, a straightforward calculation shows that

K1 =
√

K (K + 4K ′), (12)

K2 = 2K ′√K + 4K ′
√

K + 4K ′ − √
K

. (13)

In the asymptotic limit of large m, the factor sin2(my)/ sin2 y
in (11) becomes increasingly peaked around y = 0. In the case
m � 1, we find (see Appendix A)

Km = K̃0 − 2K ′

m

√
K + 4K ′

K
+ O

(
1

m2

)
, (14)

Equations (12)–(14) show that the stiffness of the chain de-
pends on the length scale at which fluctuations are observed.
In the case K ′ > 0, one finds K1 < K2 < · · · < K∞, e.g., the
chain becomes increasingly stiffer at longer length scales
[Fig. 1(b)]. The behavior is the opposite if K ′ < 0: the chain
is softer at longer distances K1 > K2 > · · · > K∞. As m in-
creases, the contribution of large momenta to Km gradually
diminishes, until finally only the zero-momentum component
(q = 0) contributes to the asymptotic stiffness K∞ = K̃0. In
the opposite limit (m = 1), K1 becomes the harmonic mean
of the momentum domain stiffnesses K̃q. Recall that the har-
monic mean of N numbers ωi with i = 1, 2 ...N is defined as

〈ω〉h =
(

1

N

∑
i

1

ωi

)−1

. (15)

We consider now the effect of a local perturbation stretching
one of the springs (say u0), as illustrated in Fig. 2. This can
be achieved by imposing a local force f > 0 on the selected
degree of freedom such that the energy becomes

βE f = βE − β f u0 = 1

2N

∑
q

K̃q|Uq|2 − β f

N

∑
q

Uq, (16)

FIG. 2. Schematic illustration of the effect of a local perturbation
at site n = 0 resulting in an exponentially decaying stretching profile
〈um〉, see Eq. (18). This depiction represents the case K ′ < 0, where
the stretching decays monotonically (for the sake of clarity, we do
not show next-neighbor springs).

with βE the unperturbed energy (6). The force stretches all
modes to a nonzero average:

〈Uq〉 = β f

K̃q
. (17)

The inverse Fourier transform then gives (for details, see Ap-
pendix (B1))

〈um〉 = β f

N

∑
q

e2iqm/N

K̃q
= β f

π

∫ π/2

−π/2

e2iym dy

K + 4K ′ cos2 y

= β f

K1
[−sgn(K ′)]m e−m/lA , (18)

with m > 0, sgn denoting the signum function and
1

lA
= − ln

|K2 − K1|
K2

. (19)

Here K1 and K2 are the one-step and two-step stiffnesses
defined in (12) and (13). We note that for m = 0, we get from
(18) K1〈u0〉 = β f , showing again that K1 is the stretching
stiffness between neighboring sites. If K ′ > 0, the quantity
〈um〉 has an oscillatory decay, which can be easily understood
from the coupling term K ′unun+1 that contributes negatively
if neighboring un have opposite signs. The same reasoning
explains the monotonic decay if K ′ < 0. Note that in absence
of length-scale dependence, which means that Km does not
depend on m, one has lA = 0. Hence, in that case, a local
perturbation does not affect flanking springs.

To conclude the analysis of the model, we remark that
while our discussion here was limited to interactions ranging
to next-nearest neighbors, i.e., involving just two spring con-
stants (K and K ′), the same formalism is directly applicable
to systems involving further ranging interactions. In that case,
(10) and (18) remain valid, but K̃q will assume a more compli-
cated form. We note a difference in the asymptotic behavior
of the two quantities here analyzed. The m-dependent stiffness
constant Km approaches its asymptotic limit as 1/m, see (14).
This conclusion remains valid for an arbitrary K̃q and is a
consequence of the fact that Km is determined by the average
of (

∑m
i=1 ui )2, e.g., the stretching fluctuations over the whole

segment. A local perturbation produces a shift in 〈um〉 which
decays exponentially from the perturbation site (18), hence
much more rapidly than Km.

III. DNA ELASTICITY IN MOMENTUM SPACE

In our coarse-grained description of DNA, any configu-
ration of a molecule consisting of N + 1 base pairs is fully
described by a set of N + 1 orthonormal triads T̂n = (̂fn̂vnûn),
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FIG. 3. Mapping of a DNA configuration into a rigid base-pair
representation [23] that consists of a series of triads each attached to a
single basepair, capturing the local geometry of the molecule. These
triads are constructed from a set of three mutually orthogonal unit
vectors T̂n = (̂fn̂vnûn), where ûn is the local tangent, v̂n connects the
two backbones and f̂n points toward the major groove. Deformations
of the chain are parametrized by the rotation vectors �n rotating the
triads T̂n into their sequentially adjacent triads T̂n+1.

where f̂n, v̂n, and ûn are unit vectors capturing the local ge-
ometry of the base pair. We define ûn to be the local tangent
and v̂n to connect the two oppositely running backbones such
that the remaining vector f̂n = v̂n × ûn points toward the ma-
jor groove [in the literature this frame is often indicated as
(̂e1̂e2̂e3) [16,26], here we use a different notation to avoid dou-
ble indexing ê1,n]. The spacial configuration of the molecule
is given by the set of points connected by the vectors âun,
where a is the distance between consecutive base pairs. We
assume this distance to be the constant value a = 0.34 nm.
For simplicity, this description ignores stretching deforma-
tions. However, such could easily be included by replacing the
connection vector âun by a variable three-component vector.

Up to a global rotation, a particular chain configuration is
fully captured by the set of rotations that map each triad onto
its consecutive triad, as illustrated in Fig. 3. It is convenient
to parametrize these rotations by the corresponding Euler
vectors �, i.e., the vectors parallel to the rotation axis with
magnitude � = |�| equal to the rotation angle. To link the
vector components to the local geometry, we express it in the
basis of the local material frame:

�n = aτn̂fn + aρn̂vn + a(
n + ω0 )̂un. (20)

The components τ and ρ denote the two bending modes
commonly referred to as tilt and roll [27], quantifying local
bending over the axes f̂n and v̂n, respectively. The total twist

n + ω0 (rotation around ûn) has two components: 
n is the
excess twist and ω0 = 1.75 nm−1 the intrinsic twist of the
double helix, corresponding to one turn of the helix every 10.5
base pairs. The deformation densities τn, ρn, and 
n of (20)
have the dimension of inverse lengths and are expressed in
nm−1, while aτn, aρn, and a
n are dimensionless and express
rotation angles in radians.

The configuration τn = ρn = 
n = 0 (for all n) corre-
sponds to a straight twisted rod with intrinsic twist ω0, which
is assumed to be the ground state of the system. Any deforma-
tion away from this state will be associated with a certain free

energy. Expanding this free energy to lowest nonvanishing
order around the ground state then corresponds to a regime
of linear elasticity. In this paper, we limit our discussion to
this regime. It is customary to describe DNA elasticity using
on-site models, e.g., without interactions between neighboring
sites. For instance, the Marko-Siggia model [26] is defined as

βE = a

2

∑
n

(
Atτ 2

n + Arρ2
n + C
2

n + 2Gρn
n
)
, (21)

where At , Ar , C, and G are stiffness parameters (we neglect in
this description sequence-dependent effects and use constant
stiffnesses). Besides the individual stiffnesses of tilt (At ), roll
(Ar), and twist (C), the model (21) is characterized by a
nonvanishing twist-roll coupling (G), as expected from the
symmetry of the molecule [26]. The effects of this coupling in
the conformations of a DNA molecule were discussed recently
in Refs. [19,21,28].

We generalize the elastic model to allow for interactions
between further neighbors, employing a matrix representation

βE = a

2

∑
n

∑
m

�ᵀ
n Mm�n+m, (22)

with �ᵀ
n = (τn, ρn,
n), and where the Mm are 3 × 3 matrices

describing the couplings between sites separated by m steps.
Stability of the model requires the on-site matrices M0 to be
positive definite.

Furthermore, for homogeneous directionally invariant
chains, the general form of the matrices Mm can be deduced
from symmetry considerations. Let us consider a configura-
tion of N + 1 triads generated by N rotations parametrized
by the vectors �n as in (20). The shape of the molecule
remains unchanged for N rotations parametrized by vectors
�′

n ≡ −aτn̂fn + aρn̂vn + a(
n + ω0 )̂un applied in reversed
order. This mapping of �n into �′

n corresponds to a 180◦

rotation of the triad T̂n around f̂n and swaps the two strands
[26]. Since such a coordinate transformation cannot change
the energy, we see that for every m,

�ᵀ
n Mm�n+m = �′ᵀ

n+mMm�′
n, (23)

with �′
n
ᵀ = (−τn, ρn,
n). This implies that all off-diagonal

terms in Mm involving τ have to be antisymmetric, while
the remaining coupling (between ρ and 
) is required to be
symmetric. Hence, for homogeneous chains, the most general
form of the matrices Mm is

Mm =

⎛⎜⎜⎝
At

m Atr
m Bm

−Atr
m Ar

m Gm

−Bm Gm Cm

⎞⎟⎟⎠. (24)

This symmetry consideration implies for homogeneous on-
site models (characterized by a single nonvanishing stiffness
matrix M0) that Atr

0 = B0 = 0, which is the symmetry
described by Marko and Siggia [26]. This is a consequence
of M0 being symmetric by construction while simultaneously
satisfying (24).

We can rewrite the model (22) in momentum space as

βE = a

2N

∑
q

�̃†
qM̃q�̃q, (25)
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where �̃q and M̃q are the Fourier transform of �n and Mm,
respectively, and † indicates the conjugate transpose. Stability
of the model requires each of the Hermitian [29] matrices M̃q

to be positive definite, i.e., that all eigenvalues are positive.
As indicated in (24), the matrices Mm may contain symmetric
and antisymmetric components. Fourier transformation in m
of the matrices (24) gives

M̃q =

⎛⎜⎝ Ãt
q iÃtr

q iB̃q

−iÃtr
q Ãr

q G̃q

−iB̃q G̃q C̃q

⎞⎟⎠, (26)

where all entries Ãt
q, Ãr

q, Ãtr
q , B̃q, C̃q, and G̃q are real variables.

The off-diagonal terms Ãtr
q , B̃q are odd functions of q (e.g.,

Ãtr
−q = −Ãtr

q ), while all other terms are even functions of q.
The advantage of the momentum space representation is

that modes with different q are independent (except for the
coupling between q and −q). Strictly speaking, this is valid
only if periodic boundary conditions are imposed such that
full translational invariance is achieved. In absence of that,
some boundary terms will appear, which, however, will be
negligible for sufficiently large N .

Given an ensemble of deformation vectors �n the stiffness
matrices can be obtained from the relation [30]

〈�̃q�̃
†
q〉 = N

a
M̃−1

q , (27)

where the 3 × 3 covariance matrix 〈�̃q�̃
†
q〉 is constructed

from the ensemble averages of the products of the three com-
ponents of the vector �̃ᵀ

q = (̃τq, ρ̃q, 
̃q ). In the remainder
of this section, we discuss the consequences of this model
extension on various DNA properties: length dependence of
persistence lengths and decays of local perturbations.

A. Twist persistence length

The twist-correlation function is defined as

CT(m) =
〈

cos

(
a

m−1∑
n=0


n

)〉
= Re

〈
e ia

∑m−1
n=0 
n

〉
, (28)

where Re denotes the real part. We are interested in the twist
persistence length, which is the characteristic decay length of
twist correlations

1

lT
= − 1

ma
ln CT(m). (29)

At this point, we present only a sketch of the calculation, as
it is totally analogous to that of the elastic chain example
discussed in detail in Sec. II. In like manner, we rewrite
the sum in (28) in momentum space using expression (9).
The variables 
̃q for different momenta are independent,
hence the total average (28) factorizes in terms of the form
〈exp(iαq
̃q + iα−q
̃−q)〉 (it is convenient to group terms q
and −q together). Using the property of Gaussian variables

〈e±iαX 〉 = e− α2

2 〈X 2〉, (30)

we obtain in the limit N → ∞,

1

lT
= a

2πm

∫ π/2

−π/2

sin2 my

sin2 y

〈|
̃q|2〉
N

dy, (31)

which is analogous to (11) and where we again used y ≡
πq/N . Just as in the example of Sec. II, the integral is dom-
inated by smaller and smaller y contributions as m increases.
The asymptotic twist persistence length (m → ∞) is finally
entirely governed by the zero-momentum component:

1

lT
= a

2N

〈

̃2

0

〉
. (32)

B. Bending persistence length

From the tangent-tangent correlation function

CB(m) = 〈̂u0 · ûm〉, (33)

one obtains the bending persistence length:

1

lB
= − 1

ma
ln CB(m). (34)

The twist-correlation function could be expressed exactly
in terms of the deformation vectors �n. However, establishing
such a connection for CB requires some approximations. Un-
der the assumption that the rotations connecting neighboring
triads are dominated by the intrinsic twist component ω0, we
derived the following expression for the bending persistence
length (for details, see Appendix C):

1

lB
= a

πm

∫ π/2

−π/2

sin2 my

sin2 y

�q+�q + �q−�q

N
dy, (35)

where we defined �q ≡ Naω0/(2π ) and

�q ≡ 1 − cos(aω0)

2(aω0)2
〈|̃τq|2 + |̃ρq|2〉. (36)

This relation resembles Eq. (31) with the difference that here
the y(q) contributions of the momentum space bending de-
formations (tilt and roll) are replaced by the mean of the
shifted momenta q ± �q. This stems from the fact that to
appropriately connect local bending deformations to the total
deformation of a given multistep segment (say from û0 to
ûm), one needs to rotate the local reference frames to unwind
the intrinsic helical twist. �q is indeed the momentum shift
associated with the DNA intrinsic twist. As we integrate in the
rescaled variable y = πq/N , the momentum shift corresponds
to �y = aω0/2 ≈ π/10.5, e.g., approximately one-tenth of
the y domain (10.5 is the number of base pairs for a full turn
of the double helix). In the limit m → ∞, the q = y = 0 term
is selected from the integral, and the asymptotic persistence
length becomes [using (A3)]

1

lB
= 1 − cos(aω0)

aω2
0N

〈|̃τ�q|2 + |̃ρ�q|2〉. (37)

C. Local perturbations

Repeating the procedure applied to the linear chain model
of Sec. II, we add a local perturbation at a given site of the
DNA. This perturbation is introduced by means of generalized
forces acting on the rotational degrees of freedom associated
with that site —again we choose the site n = 0 but transla-
tional invariance implies that the results are equally valid for
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any given site—so the energy becomes

βEf = βE − βfᵀ�0

= a

2N

∑
q

(
�̃ᵀ

q − β

a
fᵀM̃−1

q

)
M̃q

(
�̃q − M̃−1

q

β

a
f
)

− β2

2Na
fᵀM̃−1

q f, (38)

where βE is the unperturbed energy (25) and �
ᵀ
0 =

(τ0, ρ0,
0). The vector fᵀ = ( fτ , fρ, f
) contains three com-
ponents coupling to tilt, roll, and twist, respectively. These
generalized forces shift the average �̃q to the nonzero value〈

�̃ᵀ
q

〉 = β

a
fᵀM̃−1

q , (39)

which is the equivalent of (17). In the DNA case, the calcula-
tion involves the inversion of the 3 × 3 matrix M̃q,

M̃−1
q = Adj[M̃q]

det M̃q
, (40)

where Adj[.] denotes the adjoint matrix. Combining (39) and
(40) and performing the inverse Fourier transform, we obtain〈

�ᵀ
m

〉 = β

π

∫ π/2

−π/2

fᵀ Adj[M̃q]

det M̃q
e2iym dy, (41)

which is analogous to Eq. (18), derived for the toy model.
As in that case, Eq. (41) gives rise to an exponential decay
for large m: 〈�m〉 ∼ exp(−ma/lA). The characteristic decay
length lA is given by the poles closest to the real axis of
the integrand (see Appendix (B1)). We note that stability of
the energy (25) requires det M̃q > 0 in the real q domain.
Hence poles necessarily have an imaginary component re-
sponsible for the exponential decay. In practice, this integral
can be evaluated numerically from empirically obtained M̃q.

IV. DNA ELASTICITY IN COARSE-GRAINED
AND ALL-ATOM MODELS

We discuss and compare here the elasticity of the coarse-
grained DNA model oxDNA [11] and of an all atom model.
The main focus is the calculation of M̃q from which various
quantities are obtained, following the framework discussed in
the previous section.

A. oxDNA

The oxDNA model treats nucleotides as single rigid ob-
jects that mutually interact via multiple sites representing the
most significant interbase interactions: backbone connectiv-
ity, base pairing, and base stacking. These interactions are
parametrized so as to reproduce thermodynamical, structural,
and mechanical properties of DNA [11]. oxDNA has been
used to study a broad range of processes such as DNA
melting, hybridization, supercoiling, looping, DNA strand-
displacement mechanisms, DNA gels, nanotubes, and origami
[31–37]. Here we focus exclusively on oxDNA2 [38], a ver-
sion of the model with asymmetric major and minor grooves.
We used the procedure outlined in Ref. [16] to map the
oxDNA coordinates to orthonormal triads (̂fn̂vnûn) (Fig. 3).

(a) (b)

FIG. 4. (a) Red dots: Simulation data reporting the entries of the
stiffness matrix in momentum space M̃q for oxDNA2 as obtained
from Eq. (27) for a sequence of length 150. In the analysis, two
nucleotides at the two ends were eliminated, which gives 146 triads
and thus N = 145 deformation vectors �m. The units are in nm.
The entry Ãtr

q has been multiplied by a factor of 10 to facilitate its
visibility. The stiffness matrix has the structure given in (26). All its
entries are symmetric in q, except for the tilt-roll term Ãtr

q which
is antisymmetric. Blue dashed lines: Fits of the data to Eqs. (42)
and (43), with fitting parameters given in Table I. (b) Plots of lB

and lT/2 vs m the relative distance in numbers of base-pair steps
between the considered segments. Green lines are obtained from the
stiffness matrix data using Eqs. (31) and (35). The red line is the
approximation (C19). In this case, the difference between the two
approximations for lB is very small. Black dashed lines are obtained
by direct calculations of correlation functions from simulations. The
oscillatory behavior of the bending persistence length stems from a
light helicity of the traced contour.

This mapping is not unique and a few alternative definitions
have been discussed in Ref. [16]. Differences in triads are car-
ried over to the rotational modes �n, which leads to slightly
different elastic behavior. However, we observe the Fourier
spectra of the couplings to exhibit the same general features.
In particular, alternative triads give the same behavior at small
q (same asymptotic elasticity) and follow the same trend from
small to large q behavior. We will present here the results from
triad2, as defined in Ref. [16].

Using molecular dynamics trajectories of oxDNA2 (details
about simulations can be found in Ref. [16]), we com-
puted the Fourier spectra of the rotational deformations �̃ᵀ

q =
(̃τq, ρ̃q, 
̃q ). The stiffness matrices M̃q were then obtained by
utilizing Eq. (27). The matrix entries versus rescaled momen-
tum y ≡ πq/N are plotted in Fig. 4(a). These matrices indeed
follow the structure (26) as predicted by the symmetry con-
sideration. The antisymmetric components turn out to be very
small, with B̃q virtually zero. The only significant off-diagonal
term in oxDNA2 is the twist-roll coupling G̃q [16]. We note
that Ãr

q, the roll stiffness, is very weakly dependent on q as
compared to the other entries. This weak dependence indicates
that the roll-roll interaction is dominated by the on-site term
ρ2

n . The strong dependence on q for tilt-tilt and twist-twist
terms implies significant contributions from off-site interac-
tions τnτn+m and 
n
n+m, with m > 0.
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TABLE I. Summary of the stiffnesses in oxDNA2. Xm are the
fitting coefficients used in Eqs. (42) and (43). The two rightmost
columns give the stiffnesses at q = 0 and q = �q, as representatives
of the long length-scale behavior [see Eqs. (32) and (37)]. The last
two lines give the persistence lengths as obtained from Eqs. (31)
and (35). We give the local (m = 1) value and the asymptotic one
(m → ∞). All parameters are given in nm.

X0 X1 X2 X3 q = 0 q = �q

Ãt
q 54 17 4.0 1.1 76 69

Ãr
q 38 2 0.8 0.2 41 40

C̃q 78 22 6.5 1.3 108 98

G̃q 23 6.0 1.9 0.4 31 28

Ãtr
q −0.9 0 −0.5

lB 40 (m = 1) 45 (m → ∞)
lT/2 63 (m = 1) 84 (m → ∞)

To quantify these effects, the inverse Fourier transform
of the data in Fig. 4(a) was computed so as to obtain the
couplings in real space [39]. The Fourier series of the elements
of the stiffness matrix which are even or odd in q are given by

X̃ even
q =

∑
m

Xm cos
2mπq

N
, (42)

X̃ odd
q =

∑
m

Xm sin
2mπq

N
, (43)

where Xm is the real-space stiffness associated to couplings
between sites n and n + m [40].

For the even terms, we truncated the series to the first four
components, while in view of the uncertainties of the small
odd term Ãtr

q we used a single term. The best fits to the data
are shown as dashed blue lines in Fig. 4(a). Table I gives
the values of the corresponding coefficients Xm resulting from
the fits. The coefficients decrease rapidly with m, but there
are significant off-site components for C̃q and Ãr

q, reflecting
the strong q-dependence observed in Fig. 4(a). Twist and
bend fluctuations are linked to the elements of the stiffness
matrix via the covariance matrix (27). Neglecting the small
contribution of Ãtr

q and inverting M̃q we get

a〈|
̃q|2〉
N

= 1

C̃q − G̃2
q/Ãr

q

(44)

and
a〈|̃τq|2 + |̃ρq|2〉

N
= 1

Ãt
q

+ 1

Ãr
q − G̃2

q/C̃q
, (45)

Inserting (44) in (31), we can estimate the twist persis-
tence length lT (m) from the stiffness data using the truncated
Fourier series as numerical estimates for Ãr

q, G̃q, and C̃q.
In a similar way, inserting (45) into Eq. (35) allows us to
calculate the bending persistence length. The results of these
calculations are shown in Fig. 4(b) as solid green lines. The
red solid line is the approximation (C19) [41]. Dashed black
lines show the direct calculations of the bending persistence
length as deduced from the decay length of the respective
correlation functions [(28) and (33)]. While there is excellent
overlap between dashed and solid lines for lT, some deviations

of a few nm are visible in lB. The overlap in lT was expected
as (31) is exact, while both expressions (C19) and (35) [red
and green lines in Fig. 4(b)] involve approximations. Note
also that lB as deduced from the correlation function exhibits
damped oscillatory behavior stemming from a light helicity of
the used set of triads.

The last two lines of Table I give the local (m = 1) and
asymptotic (m → ∞) values of the persistence lengths as
obtained from (31) and (35). Both bending and torsional per-
sistence lengths are smaller at short distances as compared to
their asymptotic values, however, the effect is modest for lB,
while much stronger length-dependent variability is observed
in lT. This can be understood from the elements of the stiffness
matrix. Torsional persistence is primarily determined by C̃q

[Eq. (44)] which has a large q dependence, causing strong
length-scale effects in lT. On the other side, the bending stiff-
ness is determined by the harmonic mean of tilt and rescaled
roll stiffnesses (45), which is dominated by the softer roll
component. The weak dependence of Ãr

q on q in Fig. 4(a),
indicating small off-site roll-roll couplings, is the cause of the
modest length-scale dependence of lB.

B. All atom

All-atom simulations of double stranded DNA of two
different lengths were performed. Details of setup, force
fields, methodology, and sequences used can be found in
Appendix D. Tilt, roll, and twist variables were obtained from
simulation data using an implementation of the algorithm
underlying Curves+ [27]. Subtracting the averages, we ob-
tained the excess values �ᵀ

n = (τn, ρn,
n). Local elasticity
in all-atom models of DNA is dependent on the type of base
pairs, as opposed to the homogeneous oxDNA model. Using
the relation (27), we derived an effective stiffness matrix M̃q.
The procedure builds up an equivalent homogeneous model
which shares the same covariance matrix as the original data
set by matching the second moments of the fluctuations in
Fourier space. For a system breaking translational invariance,
in general, the correlator 〈�̃q�̃

†
q′ 〉 is nonzero also for q �= q′.

In constructing the average stiffness matrix, we ignore these
off-diagonal terms, which are expected to have weaker effect
as the system size grows, where effective translation invari-
ance is recovered.

Figure 5 shows the elements of M̃q in function of y =
πq/N as obtained from this procedure (red dots and black
squares). The lengths simulated correspond to (a) 20-mers and
(b) 32-mers, averaged over ten and three different sequences,
respectively. Two nucleotides at each end were removed from
the analysis to mitigate end effects. Hence Fig. 5 shows the
Fourier transforms on (a) N = 15 and (b) N = 27 data points.
Despite the difference in length, the two sets exhibit quantita-
tively very similar stiffnesses. The data share several common
features with the oxDNA simulations of Fig. 4: The tilt Ãt

q

and twist C̃q stiffnesses are strongly q dependent, indicating
considerable contributions from off-site interactions. Just as
for oxDNA, the roll stiffness Ãr

q depends very weakly on q and
again the only symmetric off-diagonal term of the stiffness
matrix is the twist-roll coupling G̃q. Contrasting the oxDNA
results, in the all-atom data the tilt stiffness is larger than
the twist stiffness Ãt

q > C̃q and their values are quantitatively
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(a) (b)

FIG. 5. Red dots and solid squares: Elements of the stiffness
matrix M̃q as obtained from all-atom data for sequences of length
(a) N = 20 (average of 9 seq.) and (b) N = 32 (average of three seq.).
Dashed lines: Fits of the forms (42) and (43).

much larger. In addition, the q-odd tilt-roll coupling Ãtr
q is

much more prominent than in oxDNA. Our results are con-
sistent with other all-atom studies. Lankas et al. [2] observed
that tilt and twist are highly anticorrelated beyond neighboring
steps, while roll is very weakly correlated, which is in agree-
ment with the present work. In addition, various degrees of
correlations have been discussed by other authors [5,23,24].

Table II shows the results of the fits of the elements of M̃q to
Eqs. (42) and (43). The coefficients Xm decrease significantly
with m but more gradually as compared to oxDNA, indicating
more pronounced off-site interactions. Overall, there is only a
small difference between the two data sets, which is indicative
for weak finite-size effects. Using the coefficients Xm of the
N = 27 data set as representatives for the couplings of a long
DNA sequence, we invoked (31) and (35) to estimate the
twist and bending persistence lengths. Results are shown in

TABLE II. All-atom data for 20-mers (N = 15) and 32-mers
(N = 27) averaged over ten and three different oligomers, respec-
tively. All parameters are given in nm.

N = 15 X0 X1 X2 X3 X4 q = 0 q = �q

Ãt
q 82 56 11 5.8 1.3 156 130

Ãr
q 43 5.9 −0.4 0.6 0.3 50 48

C̃q 65 52 21 8.5 1.9 148 112

G̃q 17 11 5.4 2.9 1.4 38 27

Ãtr
q −19 −8.4 0.3 −0.6 0 −21

N = 27 X0 X1 X2 X3 X4 q = 0 q = �q

Ãt
q 75 57 14 6.7 2.6 156 125

Ãr
q 40 4.7 −0.4 −0.2 −0.5 43 44

C̃q 67 53 23 9.3 1.4 154 116

G̃q 17 9.3 5.0 2.9 1.0 35 25

Ãtr
q −16 −8.9 0.4 −1.2 0 −21

lB 42 (m = 1) 61 (m → ∞)
lT/2 43 (m = 1) 125 (m → ∞)

(a) (b)

FIG. 6. (a) Estimated length-scale dependence of the persistence
lengths as obtained from the analysis of the all-atom data in Table II.
Assuming that these data are representatives for the behavior of
very long sequences, we used Eqs. (35) and (31) to calculate lB

and lT (green lines). The red line is the approximation (C19) for
lB. (b) Calculation of the propagation of perturbations induced by
generalized forces acting on the site m = 0. This data is calculated
with Eq. (41) using the data in Table II. Results are given in degrees
(the quantities plotted are 180 aτ/π , 180 aρ/π , and 180 a
/π ).

Fig. 6(a). As in oxDNA lT has a strong length-scale depen-
dence, while for lB this dependence is much more modest.
The variability of lT across different length scales is much
larger in the all-atom data than in oxDNA. This is due to the
much stronger q dependence of the stiffnesses of the former
as can be seen when comparing Fig. 5 to Fig. 4. Interest-
ingly, lT/2 approaches an asymptotic value close to 130 nm,
which is not far from the torsional stiffnesses (120 nm) mea-
sured in magnetic tweezers [42]. This technique probes the
torsional elasticity by tracing the twist fluctuations of the
ends of stretched DNA molecules of several kilobases length.
The recent atomistic simulation study by Velasco-Berreleza
et al. [8] found a similarly strong length dependence of the
torsional fluctuations, although their asymptotic estimate in-
dicates lT/2 ≈ 90 nm. We note here that lT at all length scales
is not only determined by the twist stiffness C̃q, but also
by other stiffnesses. In oxDNA, twist fluctuations are also
influenced by G̃q and Ãtr

q , see Eq. (44). The relation is even
more elaborate if one includes the tilt-roll coupling Ãtr

q , which
is non-negligible in all atom data.

Note that in the context of atomistic simulations, the
ground-state of the chain is generally not straight but ex-
hibits intrinsic curvature brought forward by static bending
components (i.e., the average values of tilt and roll are
nonzero). These static bending components give rise to an ad-
ditional contribution to the decorrelation of distal tangents on
top of the dynamic decorrelation, generated by thermal fluctu-
ations. Accordingly, the persistence length obtained from the
decay of the tangent-tangent correlation functions is usually
decomposed into the dynamic persistence length ld and the
static persistence length ls [43]. To determine the characteris-
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tic decay-length of the tangent-tangent correlation function,
one has to consider both effects. In the present paper, we
average over sequence-dependent effects and omit an analysis
of static bending contributions as this effect has been studied
in detail in the prior literature [44]. Accordingly, the bend-
ing persistence length reported here should be interpreted as
the dynamic persistence length. Mitchell et al. [44] recently
estimated both the static and dynamic components of the
persistence length using cgDNA, a coarse-grained rigid base
model. They report an averaged dynamic persistence length of
58.8 nm, which is in very close agreement with the 61 nm pre-
dicted by our analysis (see Table II). The torsional persistence
length, on the contrary, does not have a static component as it
is defined from the sum of the excess of local twist densities,
see Eq. (28).

Figure 6(b) shows our calculation of the response of a DNA
molecule to a generalized force imposed on a certain base-pair
step, as given by the integral (41). The generalized force
( fτ , fρ, f
) was tuned to shift the average deformations (〈τ0〉,
〈ρ0〉, and 〈
0〉) from zero to some finite angles (20o, 25o, and
−20o for tilt, roll, and twist, respectively). Due to the presence
of nonlocal couplings, neighboring steps are expected to also
be effected by this imposed force. The calculation shows that
the resulting shift in the average values decay very rapidly to
zero, which is the unperturbed value, with angles being negli-
gibly small already at m = 2. Although off-site couplings are
capable of carrying the effect of a local perturbation to distant
flanking sites, the characteristic decay length lA is quite small.
Why are the twist and, to a more limited extent, the bending
elasticity varying so much with the length scale [Fig. 6(a)]
while local perturbations [Fig. 6(b)] decay so rapidly? To
understand this issue, it is useful to go back to the toy model of
Sec. II. At different length scales, the elasticity is governed by
different stiffnesses ranging from K1 to K∞, where the asymp-
totic value is approached as 1/m for large m [see Eq. (14)]. A
local perturbation, on the contrary, decays exponentially with
a length linked to the relative difference between the two local
elastic constants K1 and K2, see Eq. (19).

V. DISCUSSION

In this paper, we investigated the effects of interactions in
DNA models that extend beyond nearest neighbors (off-site
couplings), as discussed in several prior works [5,23,24]. Our
analysis is based on the calculation of the stiffness matrix in
momentum space M̃q for oxDNA and all-atom models. Both
systems show very similar behavior, which is presumably a
consequence of the geometrical structure of the double helix.
The set of matrices M̃q encodes both the asymptotic long
length-scale stiffness q = 0 as well as the short scale behavior
obtained by taking the harmonic mean of the matrices. We
summarize here the main findings.

A. General structure of the coupling matrices

Both oxDNA and all-atom data indicate that the general
form of the off-site coupling matrices can be understood from
symmetry arguments, generalizing those used to describe on-
site interactions [26]. This symmetry requires the functional
form of homogeneous models to be invariant under reversal of
the curvilinear coordinate, such that the first segment becomes

the last and vice versa. The resulting generic form of M̃q is
given by Eq. (26) and contains terms which are either even or
odd in q. As odd terms vanish in the limit q → 0, they have a
weak impact on the asymptotic length scale elasticity but they
turn out to be more relevant at short length scales. Our analysis
confirms the findings of previous studies [16], in showing that
the twist-roll coupling G̃q (even function of q) is the dominant
off-diagonal stiffness coefficient.

B. Length dependence of persistence lengths

Our analysis has shown that of the three rotational modes,
tilt (τ ) and twist (
) exhibit significant off-site couplings.
This can be seen from the strong q dependence of the re-
spective momentum space couplings (Ãt

q and C̃q) as shown
in Figs. 4(a) and 5 or, equivalently, in the appreciable real
space coupling that extend up the fourth neighbor in the
case of the atomistic simulations (see Table II). On the other
hand, the remaining mode roll (ρ) shows but modest off-site
interactions, i.e., a very weak q dependence of the momentum
space couplings (Ãr

q). In all cases, the mode stiffness is softer
locally and becomes increasingly stiffer toward the asymptotic
long-range regime. From the behavior of these three modes,
one can understand the length dependence of the twist and
bending persistence length. The twist persistence length lT
is fully determined by the behavior of the twist degree of
freedom and therefore mirrors its strong length dependence
[see Fig. 4(b)], which is in agreement with previous studies
[5]. For oxDNA2 this manifests in about a 35% increase
in stiffness from the local to the asymptotic elasticity. The
bending persistence length lB is determined by the harmonic
mean of the stiffnesses governing the fluctuations of the two
bending modes τ and ρ, which is dominated by the softer ρ

mode [see Eqs. (37) and (45)]. Accordingly, the weak length
dependence of this mode translates into a likewise behavior
of the bending persistence length. We observed similar ef-
fects in the all-atom data, although the difference in torsional
elasticity at short and very long length scales is much larger
in that case, as illustrated in Fig. 6. This strong length-scale
dependence of the torsional elasticity can potentially explain
the divergence between estimates obtained with different ex-
perimental methods [8]. Studies that employ local probing
methods find systematically lower stiffnesses as compared
to studies in which larger length scales are considered, as
is the case for magnetic tweezers (for a list of different
estimates and methods used, see Supplemental Material of
Ref. [45]).

C. Local perturbations

Our model predicts that local DNA deformations such as an
imposed bending or twist angle at a given site induces struc-
tural changes of the flanking sites up to some characteristic
distance. This distance depends both on the magnitude of the
off-diagonal couplings and the range of the interactions. For
the analyzed models, we find that the effect is rather mod-
est, with the perturbation involving just three flanking sites.
Experiments analyzing DNA-protein interactions have high-
lighted a few cases of distal allosteric effects [46,47], where
the binding of a protein at a given site increases the binding
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affinity to a second protein. This distance is of about 15−20
nucleotides. A more common phenomenon is that of proximal
allostery, which involves the binding of small molecules in the
DNA minor groove altering the corresponding major groove
binding site affinity for a protein (see, for example, the dis-
cussion in Refs. [48,49]). Our analysis indicates that, within
linear elasticity, distal allostery is rather modest as compared
to the distal effects seen in these experiments [46,47]. This
short perturbation range was obtained from the average elastic
behavior of the considered sequences. It remains to be seen if
some specific sequences can exhibit a much more pronounced
effect. Beyond that, it is likely that, to fully account for the ex-
perimentally observed allostery, one would need to go beyond
linear elasticity, see, e.g., Ref. [50].

D. On the origin of off-site couplings

Our analysis indicates that there are off-site couplings in
DNA, confirming prior all-atom simulation data [23,24]. Off-
site couplings are found both in oxDNA as well as in all-atom
simulations, although the effects are generally stronger in the
latter as seen from the comparison in Tables I and II. In both
cases, we map simulation data to a simplified model described
by the three local configuration coordinates tilt, roll, and twist.
This mapping corresponds to a coarsening procedure, a step
which often induces more complex couplings than those of
the original coordinates. Rigorous bottom-up coarse-grained
methods give rise to many body potentials of mean force,
see, e.g., Ref. [51]. Indeed, an analysis of molecular dynamics
simulations of DNA indicated that the nonlocal couplings are
due to the tracing out of some local degrees of freedom [23].
In the all-atom case, the solvent can play a role in inducing
off-site interactions, as also suggested in Ref. [24]. In all-atom
simulations, the couplings extend up to a maximum of four
neighbors, corresponding to a distance of 1.2 nm along the
DNA backbone. The Debye length of the solvent has a com-
parable value of λD = 0.8 nm (see Appendix D), suggesting
that counterions can mediate an interaction over that range of
distances.
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APPENDIX A: ASYMPTOTIC BEHAVIOR OF Km

To estimate the asymptotic behavior of Km, the elastic
constant of the model introduced in Sec. II, as given in (11)
we use the following identity:

sin2 my

sin2 y

1

K + 4K ′ cos2 y

= sin2 my

K + 4K ′ cos2 y
+ 1

4K ′
sin2 my

sin2 y

(
1 − K

K + 4K ′ cos2 y

)
.

(A1)

FIG. 7. Integration contours in the complex y plane used for
the evaluation of the integral (B1). The two cases correspond to
(a) K ′ > 0 and (b) −K/4 < K ′ < 0.

Integrating both sides and dividing by mπ , we find

1

Km

(
1 + K

4K ′

)
= 1

2mK1
+ 1

4K ′ + O(e− m
λ ), (A2)

where we used

1

mπ

∫ π/2

−π/2

sin2 my

sin2 y
dy = 1, (A3)

and

1

mπ

∫ π/2

−π/2

sin2 my dy

K + 4K ′ cos2 y
= 1

2mK1
+ O(e− m

λ ). (A4)

(e−m/λ) denotes a term exponentially small in m and of higher
order with respect to the leading 1/m behavior. Inverting
Eq. (A2) and substituting the value of K1 of (12), one obtains
the asymptotic expansion (14).

APPENDIX B: DECAY OF LOCAL PERTURBATION

We give here further details about the calculation of the
integral in Eq. (18):

I = β f

π

∫ π/2

−π/2

e2iym dy

K + 4K ′ cos2 y
. (B1)

As mentioned earlier, stability of the model requires that either
K ′ > 0 or −K/4 < K ′ < 0. We will discuss these two cases
separately.

1. K ′ > 0

In this case, the integrand has two simple poles in y =
±π/2 + iα with α > 0 the solution of cosh2 α = K/4K ′. We
extend the integration over the contour indicated in Fig. 7(a),
which is closed at infinity. The integral in this domain does
not enclose any singularities hence it vanishes. The integrals
along the two vertical lines cancel each other, due to symme-
try, so one is left with

I + β f

π

∫
γ +

ε ∪γ −
ε

e2iym dy

K + 4K ′ cos2 y
= 0, (B2)

where

γ ±
ε (φ) = iα ± π

2
+ εe−iφ (B3)
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are the two small half-circles around the two poles. The in-
tegrations in these two domains pick up contributions from
the poles and directly yield the expression (18). In partic-
ular, the oscillating behavior stems from the fact that the
poles are in ±π/2, which leads to the appearance of a factor
exp(±imπ ) = (−1)m. The associated decay length is then
simply given by lA = 1/2α.

2. −K/4 < K ′ < 0

In this case, the integrand has a simple pole in y = iα
with α > 0 the solution of the equation cosh2 α = K/4|K ′|.
We extend the integration to the domain shown in Fig. 7(b).
The integration picks up the residue from the pole along the
imaginary axis. Thus, one can again obtain I . Note that, as the
pole is purely imaginary, there are no oscillations but a pure
exponential decay.

More complicated integrands will eventually contain sev-
eral poles, giving rise to a sum of exponentials. The dominant
contribution will be given by the pole in the semi-infinite strip
−π/2 � Re(y) � π/2, Im(z) > 0, which is closest to the real
axis.

APPENDIX C: BENDING PERSISTENCE LENGTH

The rotation operator mapping the triad (̂fk v̂kûk ) into
(̂fk+1̂vk+1ûk+1) can be expressed as

Rk = f̂k+1 ⊗ f̂k + v̂k+1 ⊗ v̂k + ûk+1 ⊗ ûk . (C1)

Here ⊗ denotes the tensor product, which transforms a generic
vector a as follows:

(u ⊗ v)a = (a · v)u. (C2)

From (C1), it follows that Rk̂fk = f̂k+1, Rk v̂k = v̂k+1 and
Rkûk = ûk+1. An alternative axis-angle representation uses a
unit vector γ̂ as rotation axis and a rotation angle θ . For a

counterclockwise rotation around γ̂ , this representation takes
the form

R = cos θ (1 − γ̂ ⊗ γ̂ ) + sin θ (εγ̂ ) + γ̂ ⊗ γ̂, (C3)

where

(εu)a = u × a. (C4)

One can easily verify from (C3) that Rγ̂ = γ̂ and that for any
unit vector â orthogonal to γ̂ the following relations hold:
(a) γ̂ · Râ = 0 and (b) â · Râ = cos θ . This shows that the
rotated vector Râ is orthogonal to the rotation axis and that
it forms an angle θ with â. As mentioned in the main text,
tilt, roll, and twist are the components of the Euler vector with
respect to the local triad

� = aτ f̂ + aρv̂ + a(
 + ω0 )̂u, (C5)

where its length � ≡ |�| gives the rotation angle. It is conve-
nient to define

t ≡ aτ/�, r ≡ aρ/�, w ≡ a(
 + ω0)/�, (C6)

for which t2 + r2 + w2 = 1 holds. Using (C3) with γ̂ =
�k/�k and θ = �k and (C5) one finds

ûk+1 = Rkûk = [
cos �k + (1 − cos �k )w2

k

]̂
uk

+ [(1 − cos �k )tkwk + sin �krk ]̂fk

+ [(1 − cos �k )rkwk − sin �ktk ]̂vk . (C7)
This relation, together with the two relations obtained from
f̂k+1 = Rk̂fk and v̂k+1 = Rk v̂k can be cast in a matrix product
form as ⎛⎜⎝ f̂k+1

v̂k+1

ûk+1

⎞⎟⎠ = Rk

⎛⎜⎝ f̂k

v̂k

ûk

⎞⎟⎠. (C8)

The 3 × 3 matrix Rk is given by

R =

⎛⎜⎝ cos � + (1 − cos �) t2 (1 − cos �)t r + sin �w (1 − cos �)t w − sin � r

(1 − cos �)t r − sin �w cos � + (1 − cos �) r2 (1 − cos �)r w + sin � t

(1 − cos �)t w + sin � r (1 − cos �)r w − sin � t cos � + (1 − cos �) w2

⎞⎟⎠, (C9)

where for simplicity we dropped the index k. Setting k = m −
1, Eq. (C7) reads

ûm = (Rm−1)31̂fm−1 + (Rm−1)32̂vm−1 + (Rm−1)33ûm−1,

(C10)

a relation that can be iterated further using f̂m−1 = Rm−2̂fm−2,
v̂m−1 = Rm−2̂vm−2, ûm−1 = Rm−2ûm−2 and similar relations
for m − 2, m − 3.... In this way, one expresses ûm as a
linear combination of {̂f0, v̂0, û0} with coefficients given as
products of rotation matrices (C9). The tangent-tangent cor-
relator (33) then becomes element 33 of the product of these
matrices

CB(m) = 〈̂u0 · ûm〉 = 〈Rm−1 . . . R1R0〉33. (C11)

Next, we develop two approximations for the calculation
of CB(m). The first one assumes the rotation angle � to be in-
finitesimal. The second one, which is a better approximation,

relies on the fact that for DNA, the rotation from one base
pair attached triad to the next is dominated by the intrinsic
twist component.

1. Infinitesimal rotations

We consider the limit � → 0 and develop cos � and sin �

in (C9) to lowest order in �. Formally, this can also be con-
sidered as the continuum limit a → 0, which gives to lowest
order [using (C6)]:

R33 = 1 − �2

2
(1 − w2) = 1 − �2

2
(t2 + r2)

= 1 − a2

2
(τ 2 + ρ2). (C12)

Likewise, R13 ≈ −R31 ≈ −aρ, R23 ≈ −R32 ≈ aτ and simi-
lar expressions for the other elements. We consider next the
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product between two rotation matrices to lowest order in a.
For instance, for element 13, we get

(R1R0)13 = (R1)11(R0)13 + (R1)12(R0)23 + (R1)13(R0)33

= −a(ρ1 + ρ0) + O(a2). (C13)

We notice that when calculating this product, we can set
(R1)11 = 1 and (R1)12 = 0 as their higher order corrections
in a do not contribute to the lowest order in a to the end result
in (C13). Analogously, when computing (R1R0)23 we can set
(R1)21 = 0 and (R1)22 = 1. Summarizing, if one is interested
in the 33 entry of the product of rotation matrices as in (C11)
to lowest order in a, it is sufficient to approximate a rotation
matrix as

Rn =

⎛⎜⎜⎝
1 0 −aρn

0 1 aτn

aρn −aτn 1 − a2

2

(
τ 2

n + ρ2
n

)
⎞⎟⎟⎠. (C14)

The product of two such matrices (again to lowest order in a)
gives

R1R0 =

⎛⎜⎝ 1 0 −a(ρ1 + ρ0)

0 1 a(τ1 + τ0)

a(ρ1 + ρ0) −a(τ1 + τ0) X0,1

⎞⎟⎠,

(C15)

where we defined

X0,1 =
[

1 − a2

2

(
τ 2

1 + ρ2
1

)][
1 − a2

2

(
τ 2

0 + ρ2
0

)]
− a2τ0τ1 − a2ρ0ρ1

= 1 − a2

2
[(τ0 + τ1)2 + (ρ0 + ρ1)2] + O(a4). (C16)

In conclusion, the product yields again a matrix of the form
(C14) with tilt and roll given as the sum of the tilt and roll of
the two matrices. This can be generalized to the product of m
matrices

(Rm−1 . . . R1R0)33 = 1 − a2

2

⎡⎣(m−1∑
k=0

τk

)2

+
(

m−1∑
k=0

ρk

)2
⎤⎦.

(C17)

Combining this last result and Eq. (34), we get

1

lB
= a

2m

〈(
m−1∑
k=0

τk

)2

+
(

m−1∑
k=0

ρk

)2〉
, (C18)

which, as done for the torsional persistence length (31), in the
limit N → ∞ can be written as

1

lB
= a

πm

∫ π/2

−π/2

sin2 my

sin2 y

〈|̃τq|2 + |̃ρq|2〉
N

dy, (C19)

where as in the main text y = πq/N .

2. Intrinsic twist dominance

An improved approximation scheme uses the fact that the
rotation is dominated by the intrinsic twist component. In-
deed, in DNA one has ω0 � |
|, |τ |, |ρ|, where the difference
is typically one order of magnitude. In degrees (note that aτ ,
aρ, a
 are otherwise given in radians), the intrinsic twist
angle is aω0 ≈ 34◦, while the other angles are a few degrees.
This suggests that one can decompose

Rn = SR̂n, (C20)

as the product of two rotations where R̂n is small and S a pure
twist rotation of magnitude aω0. Setting t = r = 0, w = 1 and
� = aω0 in (C9), we have

S =
⎛⎝ cos(aω0) sin(aω0) 0

− sin(aω0) cos(aω0) 0
0 0 1

⎞⎠. (C21)

The product of two consecutive rotation matrices is

R1R0 = S2(S−1R̂1S)R̂0 = S2R∗
1R∗

0, (C22)

where we defined

R∗
n ≡ (S−1)nR̂nSn = (S−1)n+1RnSn. (C23)

For the product of m matrices, we get

Rm−1 . . . R1R0 = SmR∗
m−1 . . . R∗

1R∗
0 . (C24)

Taking the thermal average of the 33 component of the two
sides of the previous equation, we find

CB(m) = 〈Rm−1 . . . R1R0〉33 = 〈R∗
m−1 . . . R∗

1R∗
0〉33, (C25)

where we used (Sm)3k = δ3k . To calculate the bending persis-
tence length, we will be using the right hand side of (C25).
Intrinsic twist dominance implies that in (C9) w ≈ 1 and
|t|, |r| � 1 and � ≈ aω0. We can use the approximations

w =
√

1 − t2 − r2 ≈ 1 − t2 + r2

2
= 1 + O(t2, r2), (C26)

and � = aω0 + O(t2, r2). This implies that (C9) to lowest
orders in t and r becomes

R =

⎛⎜⎜⎝
cos(aω0) sin(aω0) (1 − cos(aω0))t − sin(aω0)r

− sin(aω0) cos(aω0) (1 − cos(aω0))r + sin(aω0)t

(1 − cos(aω0))t + sin(aω0)r (1 − cos(aω0))r − sin(aω0)t 1 − (1 − cos(aω0))(t2 + r2)

⎞⎟⎟⎠. (C27)
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Note that taking a → 0, one recovers the infinitesimal form
(C14). As in that case, we can ignore terms dependent on τ , ρ

(t and r) in the upper 2 × 2 block as these will not contribute
to the bending persistence length to significant order. Next, we
calculate R∗

n using the above form of Rn (C27) and Eq. (C23).
The matrices Sn and (S−1)n+1 have a block-diagonal form as
(C21) and correspond to a counterclockwise twist rotation of
an angle naω0 and a clockwise twist rotation of an angle (n +
1)aω0, respectively. Equation (C23) gives

R∗
n =

⎛⎜⎝ 1 0 −aρ∗
n

0 1 aτ ∗
n

aρ∗
n −aτ ∗

n 1 − a2

2 [(τ ∗
n )2 + (ρ∗

n )2]

⎞⎟⎠, (C28)

where

τ ∗
n ≡ sn+1 − sn

aω0
τn + cn+1 − cn

aω0
ρn (C29)

ρ∗
n ≡ sn+1 − sn

aω0
ρn − cn+1 − cn

aω0
τn, (C30)

with

cn ≡ cos(naω0) sn ≡ sin(naω0). (C31)

In the limit a → 0, one has cn+1 − cn ∼ O(a2) and sn+1 −
sn ≈ aω0, hence τ ∗

n ≈ τn and ρ∗
n ≈ ρn as expected. The matrix

(C28) is formally identical to (C14) with the fields τ and ρ

replaced by τ ∗ and ρ∗. The bending persistence length is then
given by the analogous of Eq. (C19):

1

lB
= a

πm

∫ π/2

−π/2

sin2 my

sin2 y

〈|τ̃ ∗
q|2 + |ρ̃∗

q|2〉
N

dy. (C32)

Using (C29) and (C30), the Fourier transforms τ̃ ∗
q and ρ̃∗

q
can be expressed in terms of the original fields. The calcula-

FIG. 8. Monte Carlo simulations with positive (left) and negative
(right) off-diagonal couplings. In both cases, couplings between step
parameters up to two steps displaced were included. The black lines
show the bending persistence length as deduced directly from the
tangent-tangent correlation function [Eq. (34)]. Indicated in red is
the expression derived for infinitesimal rotations [Eq. (C19)] and in
green the improved expression [Eq. (C33)].

TABLE III. Parameters, given in nm, used in the Monte Carlo
simulations for the calculation of lB shown in Fig. 8 (Xk indicates the
coupling between site n and n + k). For the intrinsic twist density and
discretization length, ω0 = 1.77 nm−1 and a = 0.34 nm were used,
respectively.

Simulation 1 Simulation 2

X0 X1 X2 X0 X1 X2

At 60 15 5 70 −10 −5
Ar 40 8 4 60 −10 −4

C 80 11 3 100 −20 −5

G 20 2 1 30 −10 −5

Atr 0 −2 0.5 0 0 0

B 0 1 0.5 0 0 0

tion of the averages in (C32) gives

〈|τ̃ ∗
q|2 + |ρ̃∗

q|2〉 = 1 − cos(aω0)

a2ω2
0

〈|̃τq+�q|2 + |̃τq−�q|2

+ |̃ρq+�q|2 + |̃ρq−�q|2〉, (C33)

where �q ≡ Naω0/2π is the momentum shift associated with
the double helix periodicity and originates from the Fourier
transforms of cn and sn in (C29) and (C30). Combining (C32)
and (C33), one obtains the expression of the persistence length
(35) given in the main text.

To compare the quality of these approximations we em-
ployed the Monte Carlo method used in Ref. [52] to generate
canonical ensembles of triads, distributed according to the free
energy (22). In Fig. 8, we compare the direct calculation of
the persistence length, as deduced from the tangent-tangent
correlation function [Eq. (34)], with the two approxima-
tions [Eqs. (C19) and (C33)] for two different sets of model
parameters (parameters given in Table III). In both cases,
the expression that takes the twist dominance into account
[Eq. (C33)], yields excellent agreement with the direct cal-
culation.

APPENDIX D: DETAILS ALL ATOM SIMULATIONS

Using the X3DNA webtool [53], we created an ideal B-DNA
duplex structure for various oligomers of 21 and 32 base-pair
lengths. All sequences used in this paper are listed in Table IV.
The structure was placed in a periodic dodecahedral box with
at least 1 nm distance between DNA and box boundary, fol-
lowed by the addition of water and 150 mM NaCl, resulting
in a charge-neutral system (the Debye length is λD = 0.8 nm).
Preparation of the system consisted of energy minimization
(conjugate gradient with a force threshold of 100 kJ/mol nm)
and a 100 ps position restrained molecular dynamics (MD)
run, with restraints on the DNA heavy atoms using a force
constant of 1000 kJ/mol nm in each direction. We used the
parmbsc1 force field [54] to describe the interactions between
atoms, in combination with the TIP3P water model [55].
Nonbonded interactions were treated with a cutoff at 1.1 nm,
and long range electrostatics were handled by the particle
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TABLE IV. Details of the conducted simulations. N is the amount
of deformation vectors �n considered per snapshot.

Sequence Simulation time (ns) N

cgcattgcatacacttggacg 1000 15
cggtaccggctctggtcgccg 1000 15
cgcgatagcgttgtctcaccg 1000 15
cgagttttgaatataagctcg 1000 15
cgggatcaggaaggtggcccg 1000 15
cgttaaagaacatctacgtcg 1000 15
cgatgggcgcggaggcagccg 1000 15
cgtcgagtaacccctaattcg 1000 15
cggcacgggacgaaatcggcg 1000 15
cgactagcatgactgtgcgcg 1000 15
cgttatgtcattataagctcaatgcttatacg 255 27
cgacgtattaccgtacgattggcactatcacg 254 27
cgaagcactgccggggatctgacatccgcgcg 174 27

mesh Ewald method. After equilibration, we performed unre-
strained molecular dynamics runs at constant temperature and
pressure. The velocity-rescaling thermostat [56] kept the tem-
perature constant at 298 K and the Parrinello-Rahman barostat
[57] kept the pressure constant at 1 bar. All molecular dy-
namics simulations were performed with GROMACS version
2018.6 [58]. Frames were stored every 1 ps. The rotational
degrees of freedom of the inter-base-pair parameter—tilt, roll,
and twist—were then calculated with the Curves+ algorithm
[27]. Figure 9 shows the elements of the stiffness matrix M̃q

for the ten different sequences with N = 15 and the three se-
quences with N = 27 (corresponding to a 21-mer and 32-mer,
respectively), showing some characteristic sample-to-sample
variability. The averages of these data are shown in Figs. 5(a)
and 5(b).

FIG. 9. Entries of the momentum space coupling matrices M̃q for
the full spectrum of rescaled momenta for all individual simulations.
Results of the 21-mer (N = 15) and 32-mer (N = 27) simulations
are plotted in black and red, respectively.
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