
PHYSICAL REVIEW E 103, 042403 (2021)

Scaling of intrinsic noise in an autocratic reaction network
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Biochemical reactions in living cells often produce stochastic trajectories due to the fluctuations of the
finite number of the macromolecular species present inside the cell. A significant number of computational
and theoretical studies have previously investigated stochasticity in small regulatory networks to understand
its origin and regulation. At the systems level regulatory networks have been determined to be hierarchical
resembling social networks. In order to determine the stochasticity in networks with hierarchical architecture,
here we computationally investigated intrinsic noise in an autocratic reaction network in which only the upstream
regulators regulate the downstream regulators. We studied the effects of the qualitative and quantitative nature
of regulatory interactions on the stochasticity in the network. We established an unconventional scaling of noise
with average abundance in which the noise passes through a minimum indicating that the network can be noisy
both in the low and high abundance regimes. We determined that the bursty kinetics of the trajectories are
responsible for such scaling. The scaling of noise remains intact for a mixed network that includes democratic
subnetworks within the autocratic network.
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I. INTRODUCTION

Physiological functions of a living cell are controlled by
networks of biochemical reactions. The complex reaction net-
works act as information processing machinery such that the
cell can respond to various internal and external cues. In
order to maintain the fidelity of diverse cellular responses,
the machinery must perform reliably and robustly. However
chemical reactions inside a cell often involve a finite number
of macromolecular species and their fluctuations cannot be
ruled out. The inherent probabilistic nature of the chemical
reactions with a finite number of molecular species leads to
stochastic trajectories of chemical reactions inside a living
cell. The gene expression noise is the classic example of
the finite number effect of chemical reactions [1–4] and is
responsible for population heterogeneity of various cellular
properties such as cell cycle [5] and cell signaling [6–9] in
a homogeneous population of cells under uniform condition.
The finite number effect is inherent to chemical reactions
[10,11] and it can have beneficial effects to the organism in
the context of adaptation [12,13] and innate immune response
against pathogens [14]. The phenotypic diversity originating
from the intrinsic noise allows single cell organisms to thrive
in under unfavorable environmental conditions [15–17].

The chemical master equation approach and application of
linear noise approximation on the chemical master equation
allowed calculation of steady state moments of the protein
and mRNA in the gene expression models [18–24]. These
models explored the dependence of gene expression noise
on various rate parameters that were found to be critical in
controlling the transcriptional and translational bursts [25].
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More recent studies have explored the epigenetic regulations
of gene expression noise where the nucleosome positioning
[26–29], TATA box binding affinity [30,31], and transcription
factor binding sites [32–36] have been investigated further in
the prokaryotic and eukaryotic systems. Subsequent modeling
studies unraveled the roles of feedback regulations, positive
and negative, in controlling noise in the functional regulatory
networks [37–48].

Although a large number of modeling works have been
carried out to elucidate chemical noise in small networks,
however very little effort have gone into understanding noise
regulation in large scale networks as a function of global ar-
chitecture. Particularly, recent efforts towards determining the
global organization of regulatory networks in prokaryotic and
eukaryotic systems uncovered the hierarchical organization of
these networks [49–54]. These studies have shown that the
transcription factors are organized in a hierarchical fashion
where multiple regulators are present in each hierarchy. In a
hierarchal organization the transcription factors are organized
in a layered fashion. The transcription factors in a particular
layer regulate the transcription factors in other layers and in
addition they may also interact with other transcription factors
in the same layer. Furthermore, there seems to exist a com-
mon principle of organization for the regulators in terms of
their abundance, lifetime, and variability [51]. These studies
highlighted the existence of both pyramidal [50] and nonpyra-
midal [51] architectures of the networks. Furthermore, such
hierarchical networks were also found to be present in the
protein interaction network such as the kinase-phosphatase
network in yeast [54]. The global structure of these networks
have a remarkable resemblance to the social networks exhibit-
ing autocratic, democratic, and a mixture of autocratic and
democratic organization [53]. In an autocratic network a set
of master genes dictate the regulation of a large number of
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FIG. 1. Schematic representation of the autocratic network.

downstream genes through one or multiple layers of inter-
mediate genes. Whereas in a democratic network the genes
mutually interact with each other in response to external stim-
uli.

In this work we have investigated the regulation of intrinsic
noise in an autocratic reaction network consisting of an input
and an output node connected by three layers of nodes in
between (Fig. 1). The nodes in the autocratic network are
connected either by activatory or inhibitory regulatory inter-
actions where a node regulates the expression of a node in the
layer below resulting in unidirectional flow of information.
Based on the proximity of the regulatory interactions, the
direct and indirect regulations on the output node were catego-
rized as proximal and nonproximal regulations, respectively.
Nonproximal regulations via only one and more than one
intermediate nodes were termed as near-nonproximal and far-
nonproximal regulations, respectively. Our objective in this
work was to determine the regulation of intrinsic chemical
noise in the output node by the qualitative and quantitative
nature of the proximal and nonproximal regulatory interac-
tions. We systematically investigated the variation of average
and noise in the output node with a varying number and the
nature of the proximal and nonproximal interactions on it. We
find that both the proximal and near-nonproximal interactions
strongly influence the average abundance of the output node.
The scaling of noise in the output node with the average
strongly depends on the near-nonproximal interaction as com-
pared to far-nonproximal interactions. Most importantly we
uncovered an unconventional scaling of noise with the aver-
age abundance where the noise passes through a minimum
indicating that even with high abundance the system can be
significantly noisy. We determined that such behavior was
due to the bursty nature of the trajectories that occur due
to the increased number or strength of activatory proximal

interactions. We further show that introduction of democratic
interactions among the nodes in a particular hierarchy does
not alter the scaling.

II. MODEL

In an autocratic network information flows only in one
direction and there are no feedback regulations in the network.
The network presented in Fig. 1 consists of nodes arranged in
layers (or hierarchy) where nodes in a particular layer regulate
the nodes in the adjacent layer of the lower level. The nodes
in the lower level do not influence the nodes in the upper level
and the nodes in a particular layer are noninteracting with each
other. We termed the node at the highest and lowest levels
as the input and output nodes, respectively. The three layers
of nodes between the input and output nodes are denoted as
the top, core, and terminal layer. The number of nodes in
each layer, Ni, can be varied to create networks of different
sizes (dN = ∑

i Ni). These nodes generally are representative
of chemical species that include genes, proteins, transcripts,
or metabolites present inside a living cell. The regulatory
influence from one node to the other is denoted by the lines
with a circle on the receiving end and in an autocratic network
all these circles point towards the same direction. Here the
total number of interactions on the jth node in the ith layer
(mi, j) is given by the total number of nodes present in the layer
above it (mi, j = Ni−1). Furthermore, as the regulatory inter-
action could be either inhibitory or activatory, we varied the
number of inhibitory (m−

i, j) and activatory (m+
i, j) interactions,

with the conservation relation m−
i, j + m+

i, j = mi, j , to study the
effect of these interactions on the chemical noise in the net-
work. We define the total number of the inhibitory regulations
across all nodes in a particular layer as M−

i = ∑
j m−

i, j . A
similar definition also holds for the activatory interactions.
In addition to the regulatory influence, each node also has
its unregulated production and degradation/dilution reactions.
In this work we have chosen the following number of nodes
N1 = 1, N1 = 3, N3 = 6, N4 = 8, and N5 = 1 in the input, top,
core, terminal, and output layers, respectively. Consequently
the number of regulatory interactions on each node in the top,
core, terminal, and output layer are given as 1, 3, 6, and 8,
respectively. We define the mean field dynamics of the nodes
by a set of coupled ordinary differential equations as

dni, j

dt
= �κi, j − γi, jni, j + 1

�

Ni−1∑

k=1

ai,kni−1,kni, j . (1)

The equation represents the time evolution of the average
molecular abundance (ni, j) of the jth node in the ith layer.
The first two terms represent gain and loss due to production
and degradation/dilution, respectively. κi, j and γi, j are the as-
sociated rate constants with these two reactions. The last term
represents the bimolecular regulatory interaction from the kth
node in the (i − 1)th layer. The strength and the nature of the
regulation are determined by the value and the sign of ai,k ,
respectively. ai,k < 0 and ai,k > 0 represent inhibitory and
activatory regulations, respectively. The number of inhibitory
and activatory interactions on the jth node are determined
by m−

i, j and m+
i, j . In the autocratic network there are a total

M = ∑
i=2 Ni−1Ni number of regulatory interactions shared
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across dN number of nodes. Throughout this work we have
kept a fixed value of ki, j = 0.012 and γi, j = 0.02 for the
production and the degradation rate constants, respectively.
The strengths of the activatory and inhibitory regulations were
denoted by a+ and a− and were chosen to be equal to ±0.003,
respectively. We chose these parameter sets considering that
the number of molecules per node must be in the realistic
range that is commonly found in a live cell and the system
must reach a stationary state in a finite simulation time. Note
that we have not specifically mentioned the units of the rate
constants, particularly for the time, to make the model ap-
plicable to networks corresponding to different organisms as
timescales can be significantly different from one organism
to another. However, the chosen value of the degradation
constant γi, j represents a half-life of ∼35 time units which
is the most common half-life for many proteins in budding
yeast [55] (in min) and in mammalian [56] (in hour) systems.
� is the scaling factor that scales the population abundance of
the interacting nodes keeping the dynamics of the system un-
changed. Unless specifically mentioned, throughout the paper
we have used � = 100.

We determined the effect of finite numbers in the autocratic
networks by simulating the chemical reactions correspond-
ing to the model (1) using Gillespie’s stochastic simulation
algorithm [57]. The linearity of the reaction rate laws in the
model allowed us to accurately estimate the effect of intrinsic
noise. In an autocratic network of size dN , there are 2dN + M
number of reactions involved corresponding to dN production,
dN degradation, and M regulatory interaction (M). In order to
obtain accurate steady state statistics, we ran an ensemble of
10 000 trajectories for a long time (50 000 time units). The
runtime of stochastic simulation can be extremely long when
the propensity of the chemical reactions becomes large due
to the involvement of the large number of molecular species
and/or large rate constants of the chemical reactions. In order
to avoid a very large runtime of the stochastic calculations we
implemented a cutoff rule of 100 000 molecules/node to stop
the calculation which becomes significantly slower with large
population abundance. We do not include this calculation in
the analysis. This choice of cut-off rule is not completely
unreasonable due to the fact that the finite number effect will
be extremely small with the large abundance.

III. RESULTS

We first determined the dependence of average abun-
dance of the output node on the number of proximal and
nonproximal regulations. The proximal interactions are di-
rect regulatory interactions from the nodes in the terminal
layer to the output node (Fig. 1), whereas the nonproximal
interactions are regulations that indirectly influence the out-
put node and they are the interactions between the nodes
in the input/top, top/core, and core/terminal layers. Here
we categorized the nonproximal interactions into two groups
as near-nonproximal and far-nonproximal interactions. The
regulations on the terminal layer are termed as the near-
nonproximal group and the regulations on the core and top
layer are termed collectively as the far-nonproximal group.
The average abundance of the output node (n5,1) decreases
with the increasing number of proximal inhibitory interac-

FIG. 2. Plot of the average abundance of output node (n5,1) as
a function of the number of inhibitory proximal interactions on
the output node (m−

p ) for the indicated number of inhibitory near-
nonproximal interactions (m−

nnp) on the nodes in the terminal layer.
The value of m−

fnp was kept fixed at 6. The data represent the average
of three independent runs and the sizes of the error bars of n5,1 are
similar or smaller than the sizes of the markers.

tions (m−
p ) for a fixed number of inhibitory near-nonproximal

(m−
nnp = ∑N4

j=1 m−
4, j) and far-nonproximal interactions (m−

fnp =
∑N2

j=1 m−
2, j + ∑N3

j=1 m−
3, j) on the nodes in various layers

(Fig. 2). We increased the number of inhibitory regulations on
each node in the terminal layer m−

4, j by 1 to increase m−
nnp. For

the ease of implementation we have followed a specific order
to assign the inhibitory interactions on a particular node in the
terminal layer from the nodes in the core layer. Specifically
the inhibitory interactions originate from the nodes on the left
of the core layer. For example, for m−

4, j = 1 (m−
nnp = 8), the

node n3,1 inhibits all the nodes in the terminal layer and for
m−

4, j = 2 (m−
nnp = 16), the nodes n3,1 and n3,2 inhibit all the

nodes in the terminal layer. We adopt the similar strategy to
change m−

fnp. With an increasing number of m−
nnp the value of

n5,1 decreases across different values of m−
p (Fig. 2). However

when the proximal inhibitory regulations are proportionately
more than activatory regulations (m−

p > 4) an increased num-
ber of near-nonproximal inhibitory regulations help increase
the abundance of the output node. Therefore both the proximal
and near-nonproximal interactions regulate the abundance of
the output node. Now, in order to determine how the far-
nonproximal interactions in the top and core layer regulate
the abundance of the output node, we plotted n5,1 vs m−

p for
different numbers of m−

fnp for a fixed number of m−
nnp (Fig. 3).

The effect of the far-nonproximal inhibitory interactions on
the output node is quite small across different values of m−

nnp.
Therefore in an autocratic network proximity of the regulatory
interactions are important in dictating the extent of regulation.

The scaling of the noise, measured by the coefficient of
variation (CV) with the average abundance, is an important
aspect of noise regulation in biochemical reaction networks.
In Fig. 4(a) we plot CV of the output node at the steady
state with the average abundance obtained by varying the
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FIG. 3. Plot of n5,1 with m−
p for a different number of far-

nonproximal inhibitory interactions with a particular value of m−
nnp.

Each line type corresponds to a particular value of m−
fnp as indicated

in the figure.

number of proximal inhibitory interactions (m−
p ). We find that

the qualitative behavior of the scaling of noise with the aver-
age depends critically on the near-nonproximal interactions.
For the larger values of m−

nnp the noise decreases with the
average—an expected behavior of the finite number effect.
However, for the smaller values of m−

nnp, with increasing aver-
age the CV initially decreases and passing through a minimum
it increases further [Fig. 4(a)]. The decrease of noise with the
increasing abundance is expected based on the finite num-
ber effect of the stochastic chemical kinetics. However, the
increase of noise with increasing average is nonintuitive in
nature and therefore a nontrivial or unconventional outcome
of the system. In order to determine the generality of the
scaling behavior that is independent of a particular range of
abundance, we repeated these calculations by scaling all the
rate constants systematically such that the abundance of all the
nodes increase in a consistent manner (� = 500). In Fig. 4(b)
we show the scaling of the noise with the average abundance
where the rate constants were scaled to achieve higher average
abundance. We find qualitatively similar scaling behavior of
the noise as was in Fig. 4(a) with � = 100. Note that the
values of CV are now smaller and the turning point of the
CV occurs at the higher average abundance. Therefore these
results indicate that the unconventional scaling is an intrin-
sic property of the autocratic network and it depends on the
number of inhibitory regulations on the terminal layer (m−

nnp).
The comparison of the CV for the different values of m−

nnp
also highlight that a large number of inhibitory regulations on
the upstream layer reduces the variability in the output node.
The plots of Fano factor (FF) with the average [Figs. 4(c) and

FIG. 4. (a) Plot of the CV of output node (CV = σ/n, σ =
standard deviation) with the n5,1 for different values of m−

nnp with a

fixed value of m−
fnp = 6. The dashed line corresponds to 1/

√
n scaling

of the CV. (b) CV vs n5,1 plot for the network with 5× increased
abundance (� = 500). The different color/line type are for different
values of m−

nnp. The plot of Fano factor (FF = σ 2/n) with the average
for low (c) and high (d) abundance regimes. Note that m−

p was varied
to achieve the different values of average abundance in the output
node.

4(d)] indicate that the strength of the noise increases with the
decreasing number of proximal inhibitory regulations. Thus
the direct activatory regulations are responsible for increasing
the amplitude of the intrinsic noise. We next determined the
effect of the far-nonproximal interactions on the scaling of
noise. We find that at a particular value of m−

nnp the scaling of
noise is mostly independent of the number of far-nonproximal
inhibitory interactions (Fig. 5). Therefore the qualitative na-
ture of the scaling of noise in the output node is dictated by
the near-nonproximal interactions on the terminal layer and is
independent of the far-nonproximal interactions originating at
the top and core layers.

The surprising aspect of the stochasticity in the autocratic
network is the increase of variability with increased abun-
dance. As the steady state distribution cannot split in this
network due to the lack of feedback regulation and nonlin-
earity, a possible way the network can exhibit higher noise in
the high abundance regime is via change of the shape of the
distribution. In Fig. 6(a) we plot the steady state distributions
of the population abundance of the output node with an in-
creasing number of proximal inhibitory interactions for a fixed
value of m−

nnp and m−
fnp. These distributions clearly indicate

that the increased noise is not due to the multimodality of the
steady state distributions. Consistent with the CV, the widths
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FIG. 5. CV vs n5,1 plot for different values of m−
fnp with the in-

dicated values of m−
nnp. The different color/line type are for different

values of m−
fnp as indicated in Fig. 3.

of the distributions in the high and low abundance regimes are
higher as compared to the width in the intermediate region of
the average. We further compared these distributions, centered
at the peak, to determine the change in the shapes with m−

p
[Fig. 6(a) inset]. The distribution corresponding to a low value
of m−

p is significantly skewed towards a large value of n5,1

(positively skewed) as compared to the high value of m−
p .

Furthermore, the plot of skewness vs m−
p [Fig. 6(b)] clearly

shows that the increased variability in the output node is due
to the large and rare fluctuations.

In order to find out the origin of such increased variability,
we then looked at the trajectories of the output node for
different values of m−

p (Fig. 7). In the large abundance limit
with m−

p = 1, the stochastic trajectory exhibits a fluctuation
pattern reminiscent of bursty gene expression kinetics. Partic-
ularly, the large and infrequent fluctuations make the system
significantly noisy and the steady state distribution becomes
positively skewed. Whereas in the low abundance limit with
larger values of m−

p , the stochasticity in the time courses
seems to be regular and devoid of any large deviations from
average. We further plot the phase space of the system by
plotting the time course of the output node against the time
course of a representative node in the terminal layer (Fig. 7).
The phase space plot for m−

p = 1 indicates the bursty nature of
the output node as it covered a larger area in the phase space
as compared to the phase space for the larger values of m−

p .
With m−

p = 1 the output node receives only one inhibitory and
seven activatory input signals from the nodes in the terminal

FIG. 6. (a) Plot of steady state population distribution of the out-
put node for a different number of proximal inhibitory regulations.
Comparison of distributions centered at the abundance correspond-
ing to the peak of the distribution (inset). (b) Plot of skewness of
the steady state population distributions as a function of m−

p for the
indicated value values of m−

nnp and a fixed value of m−
fnp = 6.

layer. Due to the larger number of activatory signals, the
production of the output node is accelerated which cannot
be compensated by the small number of inhibitory interac-
tions. The ultimate result of these two opposing interactions
is reflected in the form of bursty kinetics of the output node.
The excitable nature of the output node disappears with an
increasing number of the inhibitory input signals that counters
the production by accelerating degradation of the output node.

The variation of m−
p changes the average abundance on the

output node due to increased inhibitory regulation from the
nodes in the terminal layer to the output node. Therefore, in
order to keep the average abundance unchanged, we increased
the synthesis rate (k5,1) while we changed m−

p . Under this
condition, the average remained the same while we varied m−

p
(inset of Fig. 8). The noise in the output node was found to de-
crease with the increase of m−

p keeping the average unchanged
(Fig. 8). We found similar behavior across different values of
m−

nnp. However, the effect of m−
p is prominent for smaller value

of m−
nnp similar to findings in Figs. 4(a) and 4(b). These results

again indicate that a large number of activatory interactions
(small m−

p ) on the output node contribute to increased vari-
ability. Therefore the high noise in the high abundance regime
is a direct consequence of the increased number of activatory
interactions on the output node.

So far we have kept the strengths of activatory and in-
hibitory regulations (a+ and a−) equal and varied the number
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output node n5,1(t ) is plotted as a function of n4,8(t ), a node in the
terminal layer.

of proximal and nonproximal interactions. We next varied the
rate constants of the activatory and inhibitory interactions to
determine the effect of the strengths of these interactions on
the scaling of the intrinsic noise. We varied the ratio of these
two rate constants by a factor of 2. In Figs. 9(a) and 9(b) we
plot the scaling of the noise for a+/a− = 2 and a+/a− = 0.5,
respectively. The nontrivial scaling of noise becomes more
prominent across the different number of near-nonproximal
interactions when the strengths of activatory interactions were
more than the strengths of negative interactions [Fig. 9(a)].
Whereas for the higher strength of negative interactions
[Fig. 9(b)], the network seems to exhibit usual scaling across
a different number of near-nonproximal interactions. Further-

FIG. 8. Plot of CV vs m−
p for m−

fnp = 6 and different m−
nnp. While

modifying m−
p , the synthesis rate of the output node k5,1 was ad-

justed such that the average remains unchanged (inset). The different
color/line type are for different values of m−

nnp as indicated in Fig. 4.

FIG. 9. CV vs average plots for the output node with a+ =
0.006, a− = 0.003 (a) and a+ = 0.003, a− = 0.006 (b). The phase
space plots for these two conditions (c) and (d). The different
color/line type are for different values of m−

nnp as indicated in Fig. 4.

more, the phase space plots in these two cases indicate the
bursty nature of the output node for a+/a− = 2 [Fig. 9(c)] as
compared to a+/a− = 0.5 [Fig. 9(d)]. We showed in Fig. 7
that the bursty nature of the trajectory is responsible for am-
plifying the noise in the larger abundance limit. This argument
of the bursty kinetics is further supported by the fact that
the higher strength of positive interactions promote the non-
trivial scaling of noise. Furthermore, we also looked at the
scaling under the variation of interaction strengths at each
layer. We performed calculations with different interaction
strengths in each layer to determine the layer-specific regu-
latory role of the interaction strengths on the scaling of the
noise. We carried out two sets of calculations where in one
set we increased the strength of interaction from the input to
the output layer [Fig. 10(a)] and in another set we decreased
the interaction strength [Fig. 10(b)]. In the case of increasing
strength from the input to the output layer, we have chosen
the values of interactions as a2, j = ±0.003, a3, j = ±0.004,
a4, j = ±0.005, and a5, j = ±0.006 for the interaction between
input/top, top/core, core/terminal, and terminal/output lay-
ers, respectively. We used the reverse order for the decreasing
strength of interactions from the input to the output layers. We
find that in both cases the scaling of noise with the average
are similar. However, across different values of m−

nnp the high
noise in the high abundance nature of noise is more prominent
when the strength of interactions were larger in the terminal
layer [Fig. 1(a)].

The autocratic network we have investigated is fully con-
nected in a sense that every node in the network is connected
to all the nodes in the layer above and below. However, in
reality networks may not be fully connected [58]. Therefore
to estimate the noise in such types of autocratic network, we
randomly removed a certain fraction of regulatory interactions
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FIG. 10. CV vs average plots for the output node with an increas-
ing order of interaction strength from top to bottom (a) and bottom
to top (b) layer of the network. The different color/line type are for
different values of m−

nnp as indicated inside the plot.

from the network across all layers except the output layer.
In order to remove a certain number of interactions from
the top, core, and terminal layers of the network, we set the
values of randomly selected ai, j to 0. For example, in order
to remove ∼20% interactions, we set 1, 6, and 8 numbers of
randomly selected ai, j from the top, core, and terminal layers,
respectively. Note that in the fully connected network the total
number of interactions is 69 in these three layers. We doubled
these numbers in the case of ∼40%. We find that with the
removal of ∼20% and ∼40% regulatory interactions from the
network do not alter the scaling of the noise (Fig. 11) indicat-
ing the universality of the scaling behavior in the autocratic
network.

FIG. 11. Comparison of the scaling with ∼20% (solid lines) and
∼40% (dashed lines) reduction of the interactions, at random, in the
top, core, and terminal layers of the network. The different color/line
type are for different values of m−

nnp as indicated in Fig. 4.

(c)

(d)

(a) (b)

FIG. 12. (a)–(c) Scaling of noise in the output node with an
average abundance for the indicated values of m−

nnp and m−
fnp. For

each combination of m−
nnp and m−

fnp, plots for five different net-
works having randomly chosen mutual interactions are presented.
(d) Scaling of noise for the networks (m−

nnp = 8 and m−
fnp = 6) with

all the rate parameters distributed log-normally having 10% (square
blue) and 20% (circle black) variation about the mean. The mean of
these parameters are 〈κi, j〉 = 0.012, 〈γi, j〉 = 0.02, 〈a+〉 = 0.003, and
〈a−〉 = −0.003.

In the autocratic network we have chosen the regula-
tory interactions in a specific manner to create a network
with a certain number of inhibitory near-nonproximal and
far-nonproximal interactions. However, different mutual com-
binations of interactions can satisfy a given number of m−

nnp

and m−
fnp (macrostate), thereby creating many other possi-

ble equivalent networks (microstate). In order to determine
whether our conclusions are dependent on the specific choice
of the mutual interactions (i, j), we generated five equivalent
networks with randomly selected mutual interactions all hav-
ing the same values of m−

nnp and m−
fnp. In Figs. 12(a)–12(c) we

show that the qualitative nature of the scaling is independent
of the specific choice of mutual interactions. Furthermore, the
entire network is symmetric in a sense that the rate parameters
are the same from one node to another. Therefore, in order to
estimate the effect of variation of the parameters from one
node to another, we calculated the scaling of noise for the
asymmetric network where the rate parameters were sampled
from log-normal distributions with the average values used for
the symmetric network. We show that the scaling is indepen-
dent of the variation of the parameters of the individual nodes
[Fig. 12(d)].

Finally we determined the scaling of noise in a mixed
network where the nodes in a particular hierarchy are con-
nected with each other resulting in a democratic architecture
within the hierarchy. Therefore the nodes in the top, core, and
the terminal layer regulate each other forming a democratic
subnetwork within themselves [59]. The resulting network
therefore becomes a conglomeration of autocratic and demo-
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FIG. 13. (a) Schematic representation of the mixed network.
The nodes in the top, core, and terminal layers form democratic
subnetworks within themselves. The mutual interactions within a
democratic subnetwork are represented by the edges with filled cir-
cles at both ends (red lines). (b) The scaling of noise in the output
node with its average. The values of a+ and a− were chosen as
+0.0025 and −0.0025, respectively. In the democratic subnetworks
activatory and inhibitory interactions were equally distributed with a
strength of 0.001 for both interactions.

cratic networks [Fig. 13(a)]. We find that the democratic
mutual interactions in the three layers do not alter the scaling
of intrinsic noise with the average [Fig. 13(b)]. Similar to the
purely autocratic network, the mixed network also exhibits
high noise both in the low and high abundance regimes.

IV. CONCLUSION

Population heterogeneity is an integral aspect of cellular
physiology owing to the gene expression noise originating
from the fluctuations of a finite number of molecular species
inside a microscopic cell volume [10,11]. The cell-to-cell
variability of various cellular attributes can have a detrimen-
tal effect on the survival and fitness of the organism in the
altered environment conditions. Therefore understanding the
means of regulating chemical noise is a crucial aspect. A
large volume of work have investigated the various facets
of gene expression noise modeled by the simple reaction
schemes involving a gene, mRNA, and protein. These models
have unearthed a wealth of information about the origin of
observed variability in protein levels due to transcriptional and
translational bursting [25]. Subsequent models investigated
the role of network topology in regulating intrinsic noise in
small regulatory motifs [18,20,25] and system level regulatory
networks [60,61]. However, investigation of chemical noise

in a network with global architecture is lacking. Particularly,
recent studies established the global architecture of regulatory
networks highlighting a hierarchical nature of system level
networks with a close resemblance to the social networks such
as democratic, autocratic, or a mixture of both democratic and
autocratic networks [49–51,53,54]. In this context we investi-
gated the chemical noise propagation in an autocratic network
in which the nodes in a particular layer regulate the nodes in
the layer below. Our objective was to establish the role of the
qualitative (activatory/inhibitory) and quantitative (strength)
nature of regulatory interactions in dictating the variability in
the autocratic network. We used the mass action rate law of
chemical reaction to model the network such that we can use
the stochastic simulation algorithm [57] to accurately estimate
the intrinsic chemical noise in the network.

We determined that the steady state statistical properties
of the output node are regulated strongly by the qualitative
nature of the proximal (direct) and near-nonproximal (indi-
rect) interactions. Whereas the far-nonproximal regulations do
not influence such properties significantly. Our calculations
reveal that the noise passes through a minimum as a function
of the average abundance, particularly when the network con-
sists of more activatory near-nonproximal regulations than the
inhibitory near-nonproximal regulations. The consequence of
this scaling is that the variability of the output node is large
both in the low and high abundance regimes. This scaling of
noise with the average is unconventional in a sense that the
system exhibits more variability even though the average is
large. We showed that the nontrivial scaling of noise with
the average was due to the bursty kinetics of the system
under the regulatory influence of a large number of direct
activatory interactions from the nodes in the adjacent layer. By
varying the strengths of activatory and inhibitory interactions,
we show that the increased strength of activatory regulation
promotes the nontrivial scaling of the variability. We demon-
strate that the activatory regulations either in number or in
strength cause increased variability in the system by produc-
ing bursty trajectories. We also find that the qualitative nature
of scaling remain intact with the introduction of democratic
mutual interactions among nodes in a particular layer. We
have previously investigated regulation of chemical noise in a
purely democratic network and we showed a biphasic scaling
of noise [59]. In contrast to the purely democratic network, the
fully autocratic and mixed networks both exhibit a nontrivial
scaling of noise in which the downstream node becomes noisy
both in the low and high abundance regimes.
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