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Role of anaxonic local neurons in the crossover to continuously
varying exponents for avalanche activity
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Local anaxonic neurons with graded potential release are important ingredients of nervous systems, present
in the olfactory bulb system of mammalians and in the human visual system, as well as in arthropods and
nematodes. We develop a neuronal network model including both axonic and anaxonic neurons and monitor
the activity tuned by the following parameters: the decay length of the graded potential in local neurons, the
fraction of local neurons, the largest eigenvalue of the adjacency matrix, and the range of connections of the
local neurons. Tuning the fraction of local neurons, we derive the phase diagram including two transition
lines: a critical line separating subcritical and supercritical regions, characterized by power-law distributions
of avalanche sizes and durations, and a bifurcation line. We find that the overall behavior of the system is
controlled by a parameter tuning the relevance of local neuron transmission with respect to the axonal one. The
statistical properties of spontaneous activity are affected by local neurons at large fractions and on the condition
that the graded potential transmission dominates the axonal one. In this case the scaling properties of sponta-
neous activity exhibit continuously varying exponents, rather than the mean-field branching model universality
class.
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I. INTRODUCTION

Neurons vary in shape and size and can be classified on the
basis of their morphology and function. In particular, spiking
neurons are cells that elicit an action potential along the axon,
according to an all-or-none behavior depending on their mem-
brane potential. However, neurons without an axon also exist.
These neurons, classified as anaxonic, have only dendrites
and can communicate only with their closest neighbors, for
which reason they are often called local neurons [1]. Since
they cannot produce an action potential, these neurons do
not have an all-or-none behavior, but, once stimulated, they
exhibit a graded potential, a membrane potential that varies
in magnitude proportionally to the intensity of the stimulus.
This graded potential leads to a continuous neurotransmitter
release at dendro-dendritic synapses, conveying information
to nearby neurons in all directions and spatially decaying in
amplitude with the distance. The continuous neurotransmitter
release necessarily requires a continuous generation and re-
uptake of vesicles to meet the high demand rate. This kind
of neuron is very complex to study since, because of their
small size, it is very difficult to insert an electrode inside
them. As a consequence, the value of their percentage in
different neuronal systems is still unclear. Although few of the
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molecular mechanisms acting at graded synapses are known,
the fundamental processes characterizing spiking and graded
synapses seem to be similar [2].

Nematodes are an example of animals which have non-
spiking neurons which transmit information only through
electrical and synaptic graded transmission [3]. In arthropods,
each segmental ganglion is formed by a small number of
cells, where local neurons play an important role [4]. In the
olfactory bulb of mammalians like mice, the granule cells, as
gabaergic-type ones, are anaxonic and constitute the largest
population of interneurons in this part of the central nervous
system [5]. In the human visual system, retinal rods cells lack
axons and produce graded potentials [6]. Similar structures
have been observed in the bumblebee visual system [7] and in
the vertebrate and invertebrate retina [2]. Local, nonspiking
neurons have also been found to play a central role in the
motor system of crustacea [8], crabs [9], and insects [10],
where spiking and nonspiking neurons are found to operate
in synergy to modulate the response to stimuli. Because of
their continuous changes in membrane potential, nonspiking
neurons are found to have a higher information transfer rate
than spike-mediated transmission; namely, having a higher
signal-to-noise ratio, they are able to transfer more informa-
tion over short time intervals (∼100 ms) than spiking neurons
[9]. Moreover, they might have an important role not only in
response modulation but also in memory and learning because
of their higher fidelity in encoding information.

Spontaneous brain activity, related to electrophysiological
processes taking place in the absence of specific tasks and ex-
ternal stimuli, has recently revealed a complex bursty behavior
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observed at different scales and in different neuronal systems,
from dissociated neurons to the human brain [11–18]. Bursts
in activity have been named neuronal avalanches and their
statistics has been widely investigated in both experimental
and numerical data sets. Interestingly, a very robust scaling
behavior is observed for the distributions of the avalanche
sizes S and durations D, according to P(z) ∝ z−τz , where
z = S, D, and τz is the corresponding exponent. These assume
consistently the values τS � 1.5 and τD � 2.0 characteriz-
ing the mean-field branching process universality class [19].
However, different exponent values also have been measured
in experiments, like M/EEG recordings [17,20–23]. The role
of local neurons in the scaling behavior of spontaneous ac-
tivity is still an open question, one that is difficult to address
experimentally.

The majority of studies of neuronal models focus on net-
works of integrate and fire spiking neurons. Numerical and
theoretical approaches have investigated both the spontaneous
and evoked activity of such networks, implementing a variety
of physiological ingredients, such as short- and long-term
plastic adaptation or a complex network structure [24–33].
Conversely, the investigation of the functional role of non-
spiking neurons in the activity of a complex network is a
problem which has received little attention in the literature.
Moreover, a model with a continuous transition to a single
absorbing state, where all neurons are off, and no further
symmetries falls into the mean-field branching model uni-
versality class [34,35], also seen for the Linkenkaer-Hansen
critical oscillation (CROC) model at the transition line [36].
The important point is that exponents governing avalanche
distributions in principle depend on various parameters (such
as a local threshold defined to identify the start and end of
an avalanche) and often show high variability [17,20–23].
Recently it was shown that the CROC model shows varying
exponents along the critical line [20]. Therefore exploring
the full variability of the exponents observed experimentally
represents a challenge to any model.

Experimental evidence suggests that the cooperative con-
tribution of spiking and nonspiking neurons can optimize
information transmission in several neuronal systems and
therefore understanding the role of nonspiking neurons in
neuronal activity is an intriguing open question. Furthermore,
the dynamical aspects of graded potential transmission has
been modeled [37,38]; however, its role in the activity of a
neuronal culture has not been analyzed yet. Here we study the
spontaneous activity of a network made of both spiking and
nonspiking neurons and, by tuning a number of parameters as
the fraction of the nonspiking neurons, the decay range of the
graded potential, and the network connectivity, we monitor the
different phases of activity unveiling the fundamental contri-
bution provided by anaxonic neurons. Our approach allows us
to observe a crossover from the mean-field branching process
universality class to varying exponents along the critical line,
opening a way to comparison with experimental results.

II. MODEL

Our model consists of two types of excitable units, global
and local neurons. The global neurons at each instant of time
can be either “on” (active) or “off” (inactive), whereas the

local neurons release graded potentials. Given Nl the num-
ber of local neurons (LoNs) and Ng the number of global
neurons (GlNs), the population is controlled by the fraction
of LoNs ζ ≡ Nl

Nt
where Nt ≡ Nl + Ng is the total number of

neurons. The connection weights are randomly distributed
wi, j ∈]0, 2σ ] where σ tunes the heterogeneity in synaptic
strengths. We recall that for a random network with only
N spiking neurons (ζ = 0), it was shown [39,40] that the
dynamics is controlled by the largest eigenvalue of the ad-
jacency matrix of network λ = σ 〈k〉, where 〈k〉 = qN is the
average node degree, and q is the probability that a given node
establishes a connection with another random node. We gen-
eralize this result to λζ = σqζ Nt , where qζ is the probability
to establish a connection between any pair of nodes. In our
model avalanches are defined only through the GlNs, i.e., the
instantaneous activity x(t ) is defined as the number of firing
GlNs at each time t . On this basis, in our simulations Ng is the
system size, kept fixed, whereas Nt and Nl depend on ζ , i.e.,
Nt = Ng

1−ζ
and Nl = ζ

1−ζ
Ng (ζ < 1). Therefore, for ζ = 0 we

have λζ=0 = σqζ=0Ng. In order to determine qζ , we impose
that the global connectivity of the network is not affected by
the fraction of LoNs which make short-range connections.
Namely, the largest eigenvalue of the adjacency matrix in the
absence of local neurons (ζ = 0) is the same as for a ζ 	= 0,
i.e., we set λζ = λζ=0, leading to qζ = qζ=0

Ng

Nt
. In order to

distribute at random nζ connections between any pair of Nt

nodes, we have

nζ = 1
2 qζ Nt (Nt − 1); (1)

therefore the probability to establish a connection is Pζ = 2nζ

Nt
,

where the factor two is due to the fact that, to make any
connection, two nodes should be selected at random. We find
then that Pζ = qζ (Nt − 1) ∼ qζ Nt , which, according to our
previous condition, leads to

Pζ = qζ Nt = qζ=0Ng = Pζ=0, (2)

meaning that the probability to establish a connection does
not change by varying ζ . We can then construct the network
for a given value of qζ=0 by randomly distributing directional
connections between neurons randomly placed in a sphere of
radius R, with the condition for LoNs that the length of their
outgoing connections cannot be larger than r1, which bounds
the range on local connections; see Fig. 1.

The dynamics of LoNs and GlNs are governed by two
different equations. All neurons in the network are excitatory;
however, we note that the presence of inhibitory neurons can
have a relevant role in the dynamics [41], a question that will
be addressed in future studies. The probability that a global
neuron spikes at time t is given by [39]:

p(Ai(t ) = 1) = δAi (t−1),0F

[∑
j′

wi j′Aj′ (t − 1)

+
∑

j′′
wi j′′Vj′′ (t − 1)e−|ri−r j′′ |

r0

]
, (3)

where ri and Vi are the position in three-dimensional space
and the membrane potential of neuron i and Ai(t ) = 1(0)
characterizes the firing (nonfiring) state of neuron i. The first

042402-2



ROLE OF ANAXONIC LOCAL NEURONS IN THE … PHYSICAL REVIEW E 103, 042402 (2021)

FIG. 1. Upper panel: Three-dimensional network including 500
nodes, 20% of which are local nodes, with output links of local
(green, not exceeding the range r1 = R

3 ) and global (red) nodes for
qζ = 0.02. Lower panels from top to bottom: Temporal signal of
activity for the oscillatory, supercritical, and critical regimes for
ζ = 0.3 and Ng = 10 000.

(second) sum is over the global (local) neurons with F (y) = y
if 0 � y � 1 and F (y) = 1 otherwise [39]. After firing, the
potential of global neurons is set to zero and neurons remain
in a refractory state for one time step. Conversely, the potential
of the LoNs evolves in time according to

Vi(t ) =
∑

j′
wi j′Aj′ (t − 1)

+
∑

j′′
wi j′′Vj′′ (t − 1) exp

[
−|ri − r j′′ |

r0

]
. (4)

Here the first term integrates the membrane potential varia-
tions of LoNs due to the firings of connected GlNs, whereas
the second term represents the contribution of the graded po-
tentials released in the previous time step by the neighboring
LoNs. Note that GlNs have a refractory time, whereas the
LoNs do not, as required by their nonspiking feature. To
avoid the occurrence of very high values of Vi(t ), we define
a threshold Vth to set a cap on Vi(t ) at all neurons. From

the physiological point of view, Vth implements that a neural
cell can support a maximal potential difference. In Eq. (3)
the argument of the activation function represents the neuron
membrane potential resulting from the integrated contribu-
tions of all presynaptic neurons of the considered neuron. If
this argument is larger or equal to one, the neuron fires. To
this extent, the specific value of the voltage threshold does not
affect our final results, and we therefore set Vth = 1. In Eqs. (3)
and (4) the decay factor exp [−|ri − r j′′ |/r0], with the distance
|ri − r j′′ | between two neurons and r0 a characteristic range,
expresses the decay of the graded potential released by a LoN.
In simulations we set qζ=0 = 0.02 and generate about 5 × 105

independent samples for all sets of parameters, λ, ζ , r0, r1,
and Ng, where λ is changed by fixing σ . For each network, we
start from a configuration where all nodes are off, and turn on
a random global neuron, monitoring the activity, x(t ), defined
as the number of firing global neurons, over several thousand
time steps. Moreover, in order to determine the avalanche
statistics, we evaluate the avalanche size and duration as the
number of firing global neurons in a burst and its temporal
extension, respectively.

III. PHASE DIAGRAM AND AVALANCHE ACTIVITY

Once the temporal activity signal is generated, we define
x∗ as the fixed point of the activity dynamics, numerically
determined by taking the average of x(t ) in the long-time
regime. The system becomes critical at λc [39,42], which is
defined as the λ-value above which x∗ becomes different than
zero for the first time. For ζ = 0 and without a refractory pe-
riod [39], the model undergoes a continuous, absorbing-active
(AA) phase transition at λc = 1 [39]. For λ < λc the system
is inactive, i.e., it requires an external drive to be activated,
and the activity value x∗ = 0 is the stable attractor of the
dynamics. Conversely, for λ > λc the system is active with
a fixed point at infinity, or else at x = Nt for finite systems.
When the refractory period is included, the system exhibits a
bifurcation at λ = λbif, identified by an oscillatory behavior,
and the critical regime is extended as claimed in [39]. In this
case, x∗ is identified by taking the average for each of the two
branches separately.

Here we find a ζ -driven (LoN-driven) AA continuous
phase transition and ζ -driven bifurcation, as evidenced by
the three temporal activity signals in the bottom panels of
Fig. 1 corresponding to oscillatory, supercritical, and critical
behavior. In Fig. 2 the bifurcation diagram for two λ values
indicates that, as ζ decreases, the system passes three distinct
phases: the subcritical absorbing state, the supercritical (or
extended critical as claimed in [39]) state, and the oscilla-
tory phase. The reason for using the term supercritical is the
observation of a large fraction of global neurons with high
firing probability, an observation reminiscent of systems with
an imbalance of excitation and inhibition, as in the epileptic
case [28,43]. The behavior of the system in terms of λ for
various ζ -values is shown in the inset: We confirm that for
ζ = 0 the critical behavior is observed for moderate values of
the connectivity level and that an oscillatory behavior sets in
as λ increases. In order to identify the critical points we use
two methods, the Binder cumulant and the branching ratio.
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FIG. 2. The fixed points vs ζ for λ = 4 and λ = 6. The vertical
dashed lines show the critical and bifurcation points for λ = 4. Inset:
The same data vs λ for different ζ , i.e., ζ = 0, 0.2, and 0.4. The
vertical dashed lines show the critical and bifurcation points for
ζ = 0. For all curves Ng = 10 000, r0 = r1

10 , r1 = R
3 .

The Binder cumulant is defined as

BNg = 1 − 〈x4〉Ng

3〈x2〉2
Ng

, (5)

which becomes Ng-independent at the critical point. In this
equation 〈〉Ng

is the ensemble average for system size Ng. By
extrapolating to infinite system size the crossing of succes-
sive pairs of curves with increasing Ng we obtain the correct
value of λc, as shown in the main panel of Fig. 3(a) and its
upper inset. In the lower inset we show the branching ratio
for the same parameters, defined by b(y) ≡ E[ x(t+1)

y |x(t ) = y]
where E[. . . ] is the expectation value. The stable (unstable)
fixed point of the dynamics is obtained by imposing limy→y∗

b(y) = 1 and db
dy |y=y∗ < 0 ( db

dy |y=y∗ > 0). One can detect the

critical point by inspecting the conditions under which y∗ = 0
[39,44], i.e., by imposing limy→0 b(y) = 1.

In order to determine the bifurcation point, we consider
that in the supercritical phase the probability distribution of
x is a Gaussian [see left inset of Fig. 3(b)] and deviates from
Gaussianity when the system enters the oscillatory phase from
the supercritical phase [45]. We exploit this result and use the
kurtosis to identify the bifurcation points, κ = σ−4

y 〈y4〉, where

y = x − 〈x〉, and σy =
√

〈y2〉. Since k = 3 for the Gaussian
distribution, we define the bifurcation point as the point where
the kurtosis deviates from 3 more than 10% for different
system size Ng, as shown in the right inset of Fig. 3(b). Then
by extrapolation, we find the bifurcation points in the thermo-
dynamic limit. We wish to stress that, since all parameters are
extrapolated to infinite system size, finite-size effects on our
results are negligible. We monitor along the critical line the
statistics of avalanches, namely, the distribution of sizes and
durations. In Figs. 4(a) and 4(b) we show the distributions of
the avalanche sizes S and durations D, with the correspond-
ing exponents reported in the upper insets in terms of Ng.
Exponents are evaluated by the maximum likelihood method,
where the range used for the power-law fitting is estimated
by setting a threshold in a R2 test, R2

S = R2
D = R2

γ = 0.985.
We also evaluate the scaling exponent γ from S ∝ Dγ , whose
expected theoretical value for the crackling noise is γth =
τD−1
τS−1 � 2 [46]. The values of the exponents will be evaluated
along the critical lines.

The phase diagrams are shown in Fig. 5, where the tran-
sition lines show the values obtained in the thermodynamic
limit (Ng → ∞). The overall behavior of the system is tuned
by the control parameter r ≡ r0

r1
, namely, the ratio between

the decay range for the graded potential of local neurons and
their connectivity range, controlling the influence of LoNs
with respect to GlNs. We plot the (λ, ζ ) phase diagrams
for three cases corresponding to a decreasing relevance of
LoNs, r = 10, r = 1, and r = 1

10 in Figs. 5(a), 5(b) and 5(c),

(a) (b)

FIG. 3. (a) Binder cumulant vs λ for various values of Ng. Upper inset: The extrapolation of λc(N ) (defined in the text) in the limit Ng → ∞
provides the value 1.179, shown by the vertical dashed line in main panel. Lower inset: The activity-dependent branching ratio b(x) vs x for
λ = 1.179 and Ng = 20 000. For all data ζ = 0.3, r0 = r1, and r1 = R

3 . (b) The extrapolation of λb i.e., the bifurcation point for r0 = r1
10 with

linear fits (dashed lines). Left inset: distribution function of the instantaneous activity x(t ) for λ = 2.50 and λ = 2.65 where the bifurcation
point is λb = 2.55. The red line is Gaussian fit of λ = 2.50. Right inset: The kurtosis in terms of λ for ζ = 0.1 and ζ = 0.4.
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(a) (b)

FIG. 4. (a) The distributions of avalanche sizes S (a) and durations D (b) for various fractions of LoNs ζ along the critical line, Ng = 20 000
and r0 = r1 = R

3 . Inset: Extrapolation to Ng → ∞ of the corresponding exponents with the linear fit (dashed lines).

(a) (b)

(c) (d)

FIG. 5. The two-dimensional (ζ − λ) phase diagram in the thermodynamic limit Ng → ∞ for three r values: (a) r = 10, (b) r = 1, and
(c) r = 1

10 . The red circles are critical points, and the blue circles are the bifurcation points in the thermodynamic limit. The simulations have
been done only on the symbols, and the dashed lines are a guide for the eye. The insets show the corresponding critical exponents in the
thermodynamic limit Ng → ∞. Error bars are of the order of the symbol size. (d) The two-dimensional (λ, r) phase diagram for Ng = 10 000
and ζ = 0.8. The insets are the same in terms of r1 for fixed r0 = R

3 (left) and for r0 = r1 (right).
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respectively. In all cases, the oscillatory behavior exhibits an
amplitude varying continuously from the bifurcation point at
constant frequency. These two features suggest that we deal
with a Hopf bifurcation. For the case r > r∗ ≈ 1 [Fig. 5(a)],
the critical line is robust against ζ . The exponents slowly vary
for ζ � 0.5, whereas they show sharper variations for larger ζ ,
due to the large value of r, which leads us to refer to this phase
as the varying-exponent phase. This behavior is often seen in
experimental results where exponents show high variability
[17,20–23]. For the case r � r∗ [Fig. 5(b)] the critical line
slowly varies with ζ , whereas the bifurcation line is quite
stable. The critical exponents also appear to be quite stable
for ζ � 0.4 whereas they show sharp variations for larger
fractions of LoNs. Finally, for the case r < r∗ [Fig. 5(c)],
the critical and bifurcation lines are sensitive to changes in
ζ and λ, whereas the exponents are robust, in agreement with
the mean-field branching model universality class (τS = 3

2 and
τD = 2). It is interesting to notice that for all values of r the ex-
ponent γ directly measured from data is always larger than the
value obtained from the prediction based on the analogy with
the crackling noise γth. Moreover, γ is always more stable for
varying ζ than the exponents τS and τD but is different from
the expected value 2.0 even when the role of anaxonic neurons
is limited (small r and ζ ). The robust discrepancy between γ

and γth for all parameter values suggests that the crackling
noise analogy could fail in systems with axonic and anaxonic
neurons. To monitor more explicitly the behavior in terms of
r, we plot the (r, λ) phase diagram for large ζ in Fig. 5(d),
where an abrupt change of behavior is seen at r∗: A more
extensive supercritical phase is observed for r < r∗, namely,
in the case that the decay range of graded potential of LoNs
is smaller than the synaptic connectivity range. Conversely,
for r > r∗, when the role of LoNs becomes more relevant, a
dominant oscillatory phase is detected. The upper-right inset
shows the diagram for r = r∗, revealing that the transition
lines are robust with respect to change of ζ .

IV. CONCLUSION

To summarize, we developed a dynamic neuronal model
on a random network which analyzes the role played by lo-
cal neurons on the network activity. Since local neurons do
not follow all-or-none behavior, their contribution is contin-

uous in time and can affect in a relevant way the spiking
activity of global neurons. We tune the relevance of local
neurons in terms of their fraction, decay range of the graded
potential, and connectivity level. Experimental data do not
clearly evidence the percentage of local neurons. In some
systems, such as granule cells in the olfactory bulb, neurons
are anaxonic, forming dendro-dentritic synapses via spiny
processes [5]. Moreover they appear to be a robust subpop-
ulation in severe diseases. For instance, olfactory dysfunction
is an early-stage, nonmotor symptom which occurs in 95% of
Parkinson’s disease patients, and investigations evidenced that
the small anaxonic subpopulation, continuously replenished
by neurogenesis, was moderately reduced in number, much
less compared with other neurons in the midbrain [47]. For
this reason, we explore the phase diagram for a wide range
of parameters identifying the different phases. Concerning the
scaling behavior of avalanche activity, data confirm that for
fractions larger than 50%, LoNs can indeed affect the values
of the critical exponents in the case r � 1, namely, if the
decay range of graded potentials is larger or comparable to the
synaptic connectivity range. Conversely, for r < 1 the influ-
ence of LoNs becomes more localized and does not sensibly
affect the overall network behavior. Moreover, the relevance
of the decay range of graded potentials is confirmed by the
analysis of the (r, λ) phase diagram, suggesting that if graded
potentials decay over an extensive spatial range, LoNs fa-
vor synchronization among neurons enhancing the oscillatory
phase. The observation of a critical line with varying critical
exponents is not a new result in critical phenomena. In the
renormalization group approach, the critical point is a fixed
point determined by relevant scaling variables with critical
exponents independent of irrelevant variables. The presence of
marginal operators makes possible a continuous variation of
critical exponents. This result then suggests that LoNs might
play the role of marginal variables in the scaling behavior of
spontaneous activity.
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