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Pleiotropy enables specific and accurate signaling in the presence of ligand cross talk
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Living cells sense their environment through the binding of extracellular molecular ligands to cell surface
receptors. Puzzlingly, vast numbers of signaling pathways exhibit a high degree of cross talk between different
signals whereby different ligands act through the same receptor or shared components downstream. It remains
unclear how a cell can accurately process information from the environment in such cross-wired pathways. We
show that a feature which commonly accompanies cross talk—signaling pleiotropy (the ability of a receptor to
produce multiple outputs)—offers a solution to the cross-talk problem. In a minimal model we show that a single
pleiotropic receptor can simultaneously identify and accurately sense the concentrations of arbitrary unknown
ligands present individually or in a mixture. We calculate the fundamental limits of the signaling specificity and
accuracy of such signaling schemes. The model serves as an elementary “building block” toward understanding
more complex cross-wired receptor-ligand signaling networks.
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I. INTRODUCTION

Receptor signaling via soluble ligand molecules enables
living cells to communicate with each other and with their
environment, and is the main mode of multicellular coordi-
nation in the immune, nervous, endocrine and other systems,
as well as in complex populations of micro-organisms. In a
typical signaling pathway, binding of a ligand to a cell surface
receptor activates a cascade of intracellular events that even-
tually lead to responses such as cellular differentiation [1–4],
phenotypic change [4–7], or a change in cellular motility
[8–12]. For reliable and precise communication, receptor sig-
naling often needs to be specific, accurate, rapid and robust to
molecular noise and cellular heterogeneity [13–20]. However,
fundamental physical constraints often place these different
signaling goals at odds with each other [17,18,21–24], and
different signaling pathways have evolved to optimize dif-
ferent aspects of information transmission such as molecular
specificity [18,22,25], sensitivity [5,18,26], accuracy of con-
centration sensing [9,27–29], and speed [24,30–32].

Puzzlingly, receptor signaling pathways frequently exhibit
a high degree of cross talk whereby multiple ligands act
through shared cell surface receptors or downstream sig-
naling components [33–44]. Another puzzling feature that
commonly accompanies cross talk is receptor pleiotropy—the
ability of a receptor to produce more than one type of output.
This combination of features commonly results in “hourglass”
shaped input-output networks [40,41,45–48]. This challenges
the classical “one ligand-one signal” paradigm [4], while
raising the question of how signaling pathways are able
to effectively transmit information under such conditions
[22,29,41,49–54].

*zilmana@physics.utoronto.ca

Ligand-receptor cross talk poses a fundamental problem
for effective signal transmission which can be illustrated
through an example of the conflict between two goals: (1)
identification of the ligand out of many others that bind
the same receptors in order to produce a specific response
(which we denote as “specificity”) and (2) quantification of
the amount of the ligand in order to accurately respond to
different concentrations (which we denote as “accuracy”).
In a classical view of ligand-receptor binding, the signal-
ing response is dictated by the average receptor occupancy
P = (c/Kd )/(1 + c/Kd ), where c is the ligand concentra-
tion and Kd is the equilibrium dissociation constant of the
ligand-receptor binding [55]. The ligand concentration and the
dissociation constant enter into this expression only through
their ratio, c/Kd , and identical receptor occupancies can be
realized by a weakly binding ligand present at a high con-
centration, or a strongly binding one at a low concentration.
Hence, based on the receptor occupancy alone, it is gener-
ally impossible to unambiguously determine which ligand is
bound to the receptor while also accurately quantifying its
concentration (see Fig. 1). This example is a manifestation of
a more general inference problem that arises in the presence of
cross talk: the difficulty of unambiguously inferring multiple
input variables—in this case the ligand concentration (“quan-
tity”) and its identity measured as receptor binding affinity
(“quality”)—from one output variable (in this case receptor
occupancy). This problem is exacerbated when multiple lig-
ands that bind the same receptor are present simultaneously
in a mixture, as the number of unknown ligand identities and
concentrations increases. It remains unclear how the cell can
unambiguously determine the composition and the concentra-
tions of the ligands in the mixture.

Several recent works addressed some aspects of this prob-
lem. In particular, Refs. [29,41,50–52] focused on the effects
of cross talk on the accuracy of sensing the concentration
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FIG. 1. Specificity and accuracy for a nonpleiotropic receptor.
(a) Different ligands (shown in different colors) with distinct koff can
bind the receptor. When bound by a ligand, the receptor produces
downstream signaling molecules n at a rate kp. (b) An illustration of
the fundamental specificity-accuracy problem. The same number of
signaling molecules nobs can be produced by a low concentration of a
strongly binding ligand as a high concentration of a weakly binding
ligand. See text. (c) Fluctuations in n resulting from the stochas-
ticity of the binding-unbinding and production events, described
by the probability distribution, P(n|koff ), lead to an uncertainty in
the estimate k∗

off, encapsulated in the distribution P(koff|n). The
width of P(koff|n) is a measure of the uncertainty in the estimate.
(d) Squared relative error of the estimate of x as a function of the
dimensionless ligand concentration and unbinding rate, scaled by
kpt/N with kpt = 102 and N = 102; see Eq. (5). (e) A cross section
of the heatmap in panel (d), holding konc/kp = 1. (f) The posterior
probability P(c, koff|n) does not have a defined maximum in (c, koff )
space but instead has a ridge along the line ( konc

kp
) = ( koff

kp
) n

kpt
1

1−n/kpt ;

n = 103 and kpt = 102, illustrating the impossibility of simultaneous
determination of c and koff by a nonpleiotropic receptor.

of a cognate ligand in the presence of nonspecific ligands.
Such problems commonly arise in the context of cellular
chemotaxis driven by concentration gradients of food or
chemoattractants. Using an extension of the classical Berg-
Purcell framework [13–15,56,57], it was shown that, given
sufficient separation between the affinities of the specific and
nonspecific ligands, detection and accurate sensing of the
concentration of the high-affinity ligand is possible even if it is
outnumbered by the low-affinity ligand [29,51]. Furthermore,
under certain conditions the cell is able to determine the
concentration of the nonspecific ligands as well [51]. In fur-

ther work, it was also shown that the accuracy can in some
cases be increased by a more complicated ligand-receptor net-
work that includes two cross-wired receptors [50]. The results
of these works largely rely on several important assumptions:
(1) only two ligand types (specific and nonspecific) can bind
the same receptor; (2) identity of the cognate ligand, as ex-
pressed via its binding affinity to the receptor, is known;
and (3) the inference of the ligand concentration is based on
the whole sequence of ligand-receptor binding and unbinding
times.

In a related set of problems, inspired by T-cell receptor
(TCR) signaling, the cell needs to efficiently filter out the
weak affinity “self” (nonspecific) ligands but to sensitively
respond to even very low concentrations of the strong affinity
“nonself” (specific) ligand. One proposed solution, relying
on the “adaptive sorting” modification of the classical kinetic
proofreading (KPR) scheme, enables “absolute discrimina-
tion” between different ligands based on their affinities,
unconfounded by their concentrations [18,23]. Kinetically dif-
ferent, but conceptually similar mechanisms are involved in
the absolute ligand discrimination by dimeric receptors [22].
In a different approach to the same problem, Refs. [17,29]
studied the probability of detection of a cognate ligand present
at a low concentration over a background of “wrong” ligands.
However, these works focused on the sensitive detection of the
ligand presence rather than on the identification of different
ligands.

In this paper we consider a general problem of specific
(ligand identification) and accurate (concentration measure-
ment) sensing in the presence of cross talk in signaling
pathways with multiple ligands acting through a single shared
receptor. This problem is motivated by the observation that
in many signaling systems cells are capable of providing
substantially different responses to multiple different ligands
acting through the same pathway (specificity or identifica-
tion) while maintaining dose response sensitivity for each
of them (accuracy or quantification), even if the ligands are
present in complex mixtures. This scenario appears in a num-
ber of signaling pathways such as cytokine and chemokine
signaling, some aspects of T-cell response, G-protein cou-
pled receptor (GPCR) signaling, and others [40,54,58,59].
The ability to specifically and accurately respond to different
cytokine combinations is necessary for cells to respond to
different physiological situations which are encoded by dif-
ferent combinations of signaling molecules [37,60,61]. This
raises the question of how cells are able to sense mixed signals
both specifically and accurately in the presence of cross talk
[40,41].

We show that signaling pleiotropy—the ability of the
receptor to produce several different signals in response to lig-
and binding—provides a solution to the specificity-accuracy
problem both when the ligands are present alone or in mix-
tures. We introduce a minimal, biologically motivated model
of a pleiotropic receptor capable of binding a large number of
ligands, and show that it can unambiguously determine both
the receptor binding affinities and the concentrations of an
arbitrary number of ligands. Furthermore, we calculate the
fundamental limits on the specificity and accuracy of such
sensing in the presence of noise both at the receptor level and
downstream.
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We further show that signaling pleiotropy enables spe-
cific and accurate sensing of the affinities and concentrations
when two ligands are present in a mixture, demonstrating that
the receptor signaling scheme discussed here can serve as a
“building block” for the general problem of signaling cross
talk in mixtures of multiple ligands.

The paper is structured as follows. In Sec. II A we de-
fine the mathematical framework, formulate the problem of
the specificity-accuracy trade-off for a nonpleiotropic recep-
tor and introduce the mathematical definitions of specificity
and accuracy. In Sec. II B we introduce the pleiotropic
receptor, show that it resolves the specificity-accuracy prob-
lem, and calculate the fundamental limits on the sensing
specificity and accuracy. In Sec. II C we show how our
model resolves the cross-talk problem in more complex
cases where multiple ligands are present simultaneously. We
conclude with a discussion and possible generalizations in
Sec. III.

II. RESULTS

A. Nonpleiotropic receptor

The accuracy of concentration sensing by a molecularly
specific receptor that binds a ligand of one type has been
investigated in a large number of works [15,29,51,56,62,63],
starting with the pioneering work of Berg and Purcell [13].
In this section, we extend the framework developed in these
works to address the problem of specificity—the ability of the
receptor to distinguish between different molecularly distinct
ligands.

To investigate the general problem of signaling specificity
and accuracy, in this section we introduce a signaling receptor
capable of binding a large number of ligands, as illustrated in
Fig. 1. Here we confine ourselves to the situation where the
receptor is exposed to a single ligand, out of many possible
ones that bind the same receptor due to ligand cross talk,
at concentration c (see Sec. II C for generalization to ligand
mixtures).

The identity of a ligand is defined by its binding and
unbinding rates to the receptor, kon and koff, respectively. In
general, these rates depend in a nontrivial fashion on the
molecular details of the receptor-ligand interface [36,40,44]
and its surroundings [15,64,65]; for simple monomolecu-
lar binding they combine into the equilibrium dissociation
constant Kd ≡ koff/kon ∝ e−ε where ε is the ligand-receptor
binding energy [66]. For simplicity, we assume that the bind-
ing rate constant kon is independent of the ligand identity,
which is then fully captured by its unbinding rate koff (or,
alternatively, the dissociation constant Kd = koff/kon).

While bound by a ligand, a nonpleiotropic receptor pro-
duces a single type of downstream signaling molecule at a
rate kp, which serves as the readout of the ligand presence
outside the cell. This signaling mechanism is common to a
large number of pathways, e.g., where the active form of
the output molecule is produced via phosphorylation by a
receptor-bound kinase [4,67]. Functionally, this output vari-
able essentially measures the bound time of the receptor [15].
The results which follow are trivially extended to N indepen-
dent copies of the receptor, as explained below.

The state of the system at time t is described by the prob-
ability Pn

i (t ) to be in the occupancy state i (i = 1 when the
receptor is occupied by the ligand, 0 otherwise) and have pro-
duced n output molecules by time t . The ensemble dynamics
of the system are described by the master equation for the
probability Pn

i (t ) [68–70]:

d

dt
Pn

0 = koffP
n
1 − koncPn

0

d

dt
Pn

1 = koncPn
0 − koffP

n
1 + kpPn−1

1 − kpPn
1

(1)

At receptor occupancy steady state, the probability of the
receptor being occupied is p = x/(1 + x) where x = c/Kd .
For simplicity and connection to previous work [29,56], we
currently neglect degradation of the output molecules.

The master equation (1) can be solved using the generating
function Gi(s, t ) = ∑

n snPn
i (t ). The dynamics of the vector

G = (G0(s, t ), G1(s, t )) are then described by the equation
[68,70]:

d

dt
G(s, t ) = M̂G(s, t )

with M̂ =
[−konc koff

konc −koff + kp(s − 1)

]
, (2)

yielding the general solution at time t as G(s, t ) = eM̂t G(s, 0).
Assuming that the receptor is at steady state at the beginning
of the measurement (defined as n = 0), the initial condition
is P0 = (1 − p, p) for n = 0 and Pn = (0, 0) otherwise, and
therefore G(1, 0) = (1 − p, p). Similar results can be ob-
tained if the receptor is initially unoccupied with G(1, 0) =
(1, 0) producing identical results in the limit of large numbers
of binding events, kofft � 1 which is the focus of this paper
(see the Supplemental Material [71] for details).

The mean and the variance of n are calculated as 〈n〉 =∑
i

∂Gi (s,t )
∂s |s=1 and 〈δn2〉 = ∑

i
∂Gi (s,t )

∂s2 |s=1 + 〈n〉 − 〈n〉2. For
kofft � 1, these are

〈n〉 = kpt
x

1 + x

〈δn2〉 = kpt
x

1 + x
+ 2k2

pt

koff

x

(1 + x)3
. (3)

In the long-time limit, defined as min(koff, kp) �
1/t , the probability distribution of n, P(n|c, koff ), tends
to a Normal distribution N (〈n〉, 〈δn2〉), P(n|c, koff ) =
(2π〈δn2〉)−1/2 exp[−(n − 〈n〉)2/(2〈δn2〉)] (see the Supple-
mental Material [71]). Physically, these results reflect the fact
that the receptor produces molecules at rate kp while it is
occupied [on average x/(1 + x) fraction of the time t]. For the
variance, the first term reflects fluctuations in the readout n for
fixed bound time, and the second term reflects fluctuations in
the bound time; see also Supplemental Material [71] Sec. D.
Note that the variance of n scales as kpt , in accordance with
the central limit theorem.

Specificity and accuracy of the nonpleiotropic receptor

The classical problem of accuracy can be stated as the
estimation of the concentration c from the number of signaling
molecules n when koff is known–a situation realized when the
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receptor is highly molecularly specific and can bind only one
ligand type [13,15]. We formulate the problem of specificity
in a similar manner—as the estimation of koff given n. Note
that this specificity definition is different from the common
measure of specificity as the ratio of the mean number of
sensing molecules produced by different ligands. However, it
is impossible to unambiguously estimate both c and koff from
a single measurement of the output variable n—illustrating
the fundamental specificity-accuracy trade-off—because the
same number of output molecules can be produced by a
weaker ligand at higher concentration as by a stronger ligand
at lower concentration. This point is illustrated in Fig. 1(b).
Within this scheme, only the combination x = konc/koff can
be inferred from n.

One useful framework to interrogate these ideas is sta-
tistical inference theory [72]. Here we provide approximate
but intuitive derivations; exact numerical derivations are pro-
vided in the Supplemental Material [71]. To help illustrate
the specificity-accuracy trade-off, we first focus on the de-
termination of the ligand identity through the estimation of
koff. Assuming the concentration c is known, an intuitive es-
timate of koff given n, k∗

off(n), is provided via maximization
of the likelihood P(n|koff ) (or equivalently, the log-likelihood
L = ln P) over koff; this procedure is known as maximum
likelihood estimation (MLE) [56,62]. This is equivalent to
the maximization of the posterior probability P(koff|n) =
P(n|koff )P(koff )/

∫
P(n|koff )P(koff )dkoff for a uniform prior

P(koff ) [62]. In the long time limit, the likelihood P(n|koff )
is well approximated by a Normal distribution, peaked around
〈n〉. Neglecting the logarithmic terms in L(n|koff ), the MLE
k∗

off is given by the condition 〈n〉(k∗
off ) = n [15,72], yielding

k∗
off

konc
= kpt

n
− 1. (4)

For a given n, expanding the likelihood about k∗
off(n)

gives, to lowest order, a Normal distribution whose variance

δk2
off = −

[
∂2 ln P(n|koff )

∂k2
off

|k∗
off

]−1
is a measure of the uncertainty

in the estimate k∗
off [62]. Repeating this over the distribution

P(n|koff ) of possible outcomes n gives the average uncer-

tainty 〈δk2
off〉 = −

〈
∂2 ln P(n|koff )

∂k2
off

〉−1
; the quantity −

〈
∂2 ln P(n|koff )

∂k2
off

〉
is known as the Fisher information matrix (FIM) [72]. In the
saddle-point approximation, accurate for sharply peaked like-

lihoods, this simplifies to 〈δk2
off〉 � −

[
∂2 ln P(n|koff )

∂k2
off

|koff=k∗
off

]−1
�

〈δn2〉/(∂〈n〉/∂koff )2 [15,62,72] (see Supplemental Material
[71]). This expression has a simple intuitive meaning:
fluctuations in n resulting from the stochasticity of binding-
unbinding and production events lead to uncertainty in the
estimate k∗

off, as illustrated in Fig. 1(c). Importantly, although
heuristically derived here on the basis of the MLE, the FIM
formalism applies more generally as a lower bound on the
estimate error [72].

Using the nondimensionalized quantity x = konc/koff, the
relative average error (squared) of the estimate becomes

〈
δk2

off

〉
k2

off

= 〈δx2〉
x2

= 1

kpt

1 + x

x

[
(1 + x)2 + 2

kp

koff

]
. (5)

For N independent copies of the receptor on the cell surface,
the above expression is multiplied by N−1 [14].

These results are summarized in Figs. 1(d) and 1(e), which
show the squared relative error of the estimate x (equivalently,
koff), scaled by kpt/N , as a function of dimensionless quanti-
ties konc/kp and koff/kp. We scale the squared relative error by
kpt/N to present the time-independent part of the cell’s esti-
mation error. The blue region in Fig. 1(d) indicates where the
error in the estimate (i.e.,

√
〈δx2〉/N) is less than 33% the true

value, which we have chosen as a cutoff for “good” estimation
performance. This cutoff is chosen somewhat arbitrarily, as
the cell can improve its estimation accuracy by increasing
the number of copies N of the receptor or by increasing the
signal integration time t . To provide a conservative estimate,
we visualize these results with N = 102, which is at the lower
end of the biological range of receptor expression levels [73].

As expected, the typical error of the estimate of koff di-
verges both for x → 0 and x → ∞ because at very fast
unbinding rates the receptor does not produce enough signal-
ing molecules for a meaningful statistical estimate, while at
very slow unbinding rates the receptor occupancy saturates
independent of either affinity or concentration. The value of x
at which the optimal specificity is achieved increases with the
concentration c and saturates to x = 1/2 for c � 1.

The problem of concentration sensing accuracy can be sim-
ilarly formulated as the problem of estimating c from n at fixed
koff via maximization of the likelihood P(n|c) over c [56].
Following the same approach as in Eqs. (4) and (5), the best
estimate and its variance are again given by konc∗

koff
= n

kpt
1

1−n/kpt

and 〈δc2〉
c2 = 〈δx2〉

x2 = 〈δk2
off〉

k2
off

.

Interestingly, the MLE of the concentration based on n is
mathematically identical to that of Endres and Wingreen [56],
which was based on a more informative likelihood function
containing the whole series of binding and unbinding events.
We return to this point in the Discussion.

In the limit kp � koff the expression for the concentration
sensing accuracy reduces to the classical Berg-Purcell ex-
pression 2(1 + x)/(konct ) = 1/[2Dac(1 − p)t] where 4Da =
kon [13,15], as each binding event in this regime produces
multiple signaling molecules, and the sensing accuracy is
limited by the fluctuations in receptor occupancy considered
in Ref. [13]. Notably, for finite kp/koff, fluctuations in the
production of the output molecule n play an important role, as
they cause the divergence of the estimate accuracy observed
at high x in Eq. (5), a feature absent from the models that
consider only the noise in the receptor occupancy [13,56].
In particular, the concentration at which the best estimate is
obtained changes significantly with kp/koff, and is not neces-
sarily close to x = 1, the point of highest response sensitivity
to concentration changes.

However, crucially for the main question of this paper,
it is impossible to estimate both c and koff simultaneously
because the distribution P(n|c, koff ) does not possess a well
defined peak in the (c, koff ) space but rather a ridge along
the line c

Kd
= n

kpt
1

1−n/kpt , as shown in Fig. 1(f). This could in
principle be resolved by careful selection of a prior on (c, koff ),
which in practice implies additional assumptions regarding
the molecular inference machinery, and lies outside the scope
of the present work.
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FIG. 2. Specificity and accuracy of pleiotropic signaling. (a) The
pleiotropic receptor considered here has the same behavior as in
Fig. 1, except that an additional output molecule, denoted as m, is
produced for each binding event. (b) The scaled squared relative
errors of the estimates for koff (orange) and c (purple) as a function
of konc/kp, holding koff/kp = 1 and kpt = 102; see Eq. (10). [(c) and

(d)] Scaled squared relative estimate errors kpt
N

〈δk2
off〉

k2
off

and kpt
N

〈δc2〉
c2 , for

kpt = 102 and N = 102.

B. Pleiotropic receptor

In contrast to the results of the previous section, it is possi-
ble to unambiguously estimate both koff and c simultaneously
if the receptor is pleiotropic (i.e., produces more than one
output signal on ligand binding). In this section, we extend
the model of the previous section to include a second sens-
ing molecule, inspired by GPCR signaling [58,74], shown in
Fig. 2(a). In this scheme, the G-protein- (GP) like molecule
is pre-bound to the intracellular domain of the receptor and
detaches once a ligand binds. For simplicity, we assume
that on ligand unbinding the receptor quickly rebinds a new
GP-like molecule and is ready for signaling. Although, as
defined, this type of sensing molecule has an unnatural feature
that it can be produced even for infinitesimally short binding
events [50], the model is sufficient to demonstrate the role of
pleiotropy in ligand sensing. Biologically, combined kinase-
phosphorylation and G-protein signaling has been reported
in some cytokine receptors [35] and other immune receptors
[75].

We denote the total number of GP-like molecules produced
by time t as m, which effectively serves as a count of the
number of binding events rather than the total binding time
(which is measured by n, as defined in the previous section)
[29,51,56]. As shown below, this model naturally allows joint
determination of the ligand identity and its quantity (c, koff )
from the two signaling outputs (n, m) (see Fig. 2).

The system is now described by the probability of being in
a given state at time t , Pn,m

i (t ), where i denotes the receptor
state (i = 1 if bound by a ligand, 0 if unbound) and n and m
are the numbers of the sensing molecules accumulated by time
t . Similar to the previous section, the dynamics of the system

are described by the following master equation:

d

dt
Pn,m

0 = koffP
n,m
1 − koncPn,m

0

d

dt
Pn,m

1 = koncPn,m−1
0 − koffP

n,m
1 + kpPn−1,m

1 − kpPn,m
1 .

(6)

This master equation can be solved using the generating
function technique, similar to Eq. (2) in the previous section
(see details in the Supplemental Material [71]). The mean and
the variance of n remain the same as in Eq. (3). The mean of
m, its variance 〈δm2〉 and the covariance 〈δnδm〉 are, in the
kofft � 1 limit,

〈m〉 = kofft
x

1 + x

〈δm2〉 = kofftx
1 + x2

(1 + x)3

〈δnδm〉 = kptx
1 − x

(1 + x)3
. (7)

These results can also be derived using renewal process
theory (see Supplemental Material [71]). Note that at small
x, n and m are correlated because in the low concentration
or weak binding limit the overall bound time is proportional
to the number of events. By contrast, at large x, n and m are
anticorrelated because in this regime a time series with more
binding-unbinding events results in lower overall bound time.
However, for x → ∞, 〈δnδm〉 → 0 because the receptor is
occupied all the time, and the number of binding events is
not correlated with the total bound time.

Specificity and accuracy of the pleiotropic receptor

The crucial feature of Eq. (7) is that the variable m depends
differently on the unbinding rate koff and the concentration c
compared to the variable n of Eq. (3), which allows the esti-
mation of both c and koff. As before, we assume that kp and kon

are fixed constants, hardwired into the molecular machinery of
the cell. In the long-time limit, the likelihood P(n, m|c, koff ) ≡
Pn,m

0 + Pn,m
1 is well approximated by a multivariate Normal

distribution N (μ, Ĉ) with mean and covariance

μ =
[ 〈n〉
〈m〉

]
and Ĉ =

[ 〈δn2〉 〈δnδm〉
〈δmδn〉 〈δm2〉

]
, (8)

so that

P(n, m|c, koff ) = (Z )−1 exp
[ − 1

2 (n − μ)T Ĉ
−1

(n − μ)
]
,

where n = (n, m) and normalization factor Z =
(2π )2 det(Ĉ)1/2.

Estimates for koff and c can be found in the same man-
ner as in the previous section, by maximizing the likelihood
P(n, m|c, koff ) over c and koff, which yields:

c∗ = k∗
off

kon

n/(kpt )

1 − n/kpt
k∗

off = kp
m

n
. (9)

Interestingly, the same MLE is obtained using a more de-
tailed likelihood of binding and unbinding times introduced
in Ref. [56], indicating that the signaling scheme studied here
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might be close to optimal. Despite this similarity, we empha-
size that Ref. [56] did not address the question of specificity,
being focused on the optimality of the concentration sensing.

In a generalization of the one-variable procedure from
Sec. II A, the expected estimate uncertainties are given by the
typical widths of the posterior in the (c, koff ) space, quantified
by the covariance matrix

�̂ ≡
[ 〈δc2〉 〈δkoffδc〉
〈δkoffδc〉 〈δk2

off〉
]
.

Very generally, a lower bound on the covariance matrix of
the estimates is given by the inverse of the FIM Î

Î(c, koff ) ≡ −
[ 〈

∂2L
∂c∂c

〉 〈
∂2L

∂koff∂c

〉〈
∂2L

∂c∂koff

〉 〈
∂2L

∂koff∂koff

〉
]
,

where L is the logarithm of the likelihood P(n, m|c, koff ) [72].
In the long time limit, where the likelihood is sharply

peaked, the approximate squared relative errors of the esti-
mates are

〈δc2〉
c2

= 1

kpt

1 + x

x

(
x2 + kp

koff

)
〈
δk2

off

〉
k2

off

= 1

kpt

1 + x

x

(
1 + kp

koff

)
. (10)

The scaled squared relative errors are plotted in Fig. 2.
In plain language, the cell is not capable of distinguishing
ligands with affinities closer than

√
〈δk2

off〉/N . An important
consequence of this analysis is that signaling specificity is not
determined solely by the differences between ligand affinities
but also depends on the ligand concentrations and is thus
context dependent. The relative error of the concentration esti-
mate behaves qualitatively similar to that of the nonpleiotropic
receptor, diverging in both the low and high x limits. On the
other hand, the error in koff inference remains low even in
the high-occupancy (high x) regime because the knowledge
of both n and m allows accurate determination of the average
bound time [52,56].

The ratio of the concentration sensing error of the
pleiotropic receptor [Eq. (10)] to that of the nonpleiotropic re-
ceptor [Eq. (5)] is (x2 + kp/koff )/[(1 + x)2 + 2kp/koff]. Since
this quantity ranges between (kp/koff )/(1 + 2kp/koff ) at low x
and 1 at high x, pleiotropy always improves the concentration
sensing accuracy. Likewise, the corresponding ratio of the
estimator errors for koff is always less than one, indicating that
pleiotropy not only enables simultaneous estimation of the
concentration and the affinity but generally also increases the
specificity of signaling as well. This improvement is nontrivial
because our pleiotropic model must estimate two variables,
rather than just one variable in the nonpleiotropic case.

C. Discrimination between multiple ligands in a mixture

We now consider the more challenging problem of cross
talk in a simultaneous mixture of multiple ligands distin-
guished by their affinities koff,1 and koff,2. This problem is
common in many signaling contexts such as cytokine and
TCR signaling in the immune system, as well as others (e.g.,
Refs. [37,40,76–79]). In this section, extending the minimal

scheme introduced above, we demonstrate that even in this
more challenging case both the identities and concentrations
of each ligand can be estimated well based on the pleiotropic
receptor outputs.

For simplicity, we confine ourselves here to a mixture of
two ligands. Following the approach of the previous section,
we assume that the goal of the cell is to infer the affinity
koff,i and the concentration ci of each ligand in the mixture.
As there are four quantities to infer, we consider an extension
of the scheme of Fig. 2(a) whereby four different signaling
molecules are produced by the receptor in response to ligand
binding. To achieve this we assume that the receptor can be
in two different bound states (for each ligand) as seen in
Fig. 3(a). Molecularly, these states can be different receptor
conformations, different phosphorylation states, or have dif-
ferent binding cofactors present [4].

As in the previous section, we assume that the binding
of either ligand immediately induces the release of an m-
type molecule m1 from the receptor; and an n-type sensing
molecule n1 is produced with rate kp while the receptor
remains in this first bound state. Transition to the second
state occurs with the rate k f , and releases a different sensing
molecules m2; accordingly, n2 molecules are produced (also
with rate kp) while the receptor is in the second state. From ei-
ther of these bound states, the ligand can unbind with the rate
koff,i. For simplicity, we follow the common assumption that
the transitions from first state to the second are irreversible.
Although commonly assumed to be constant, in general k f

may depend on the ligand identity [80], because the energies
of both states depend on the ligand binding affinity. We choose
the transition rate to be inversely proportional to the affinity
k f = α/koff where α is a constant (see Supplemental Material
[71]); this assumption does not affect the main results of the
paper and can be relaxed. Note that although the resulting ki-
netic scheme resembles the well-known KPR scheme [25,81],
this is incidental to our results, and it is employed here as a
simple model of a multistate receptor. KPR-type approaches
to the cross-talk problem will be investigated in more detail
elsewhere.

The dynamics of the distribution P(n1, m1, n2, m2|c1,

koff,1, c2, koff,2) are described by an appropriate master equa-
tion, similarly to the previous section (see Supplemental
Material [71] for details). For sufficiently long times it is also
well approximated by a Normal distribution similar to Eq. (8).
The means of n1, m1, n2, and m2 are given by

〈n1〉 = kpt

1 + x1 + x2

(
x1

1 + α/k2
off,1

+ x2

1 + α/k2
off,2

)

〈m1〉 = kont
c1 + c2

1 + x1 + x2

〈n2〉 = kpt

1 + x1 + x2

(
x1

1 + k2
off,1/α

+ x2

1 + k2
off,2/α

)

〈m2〉 = kont

1 + x1 + x2

(
c1

1 + k2
off,1/α

+ c2

1 + k2
off,2/α

)
. (11)

The explicit expressions for the second moments and the
covariances are more complicated, and are presented in the
Supplemental Material [71].
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FIG. 3. Schematic of sensing multiple ligands. (a) The cross-talk receptor considered here produces four distinct sensing molecules when
bound. On ligand binding, the receptor enters the first bound state from which it releases one m1 molecule and produces n1 molecules at
rate kp, analogously to the pleiotropic receptor. Depending on the identity of the bound ligand (encoded through koff), the receptor can either
unbind or transition to a second bound state with rate k f = α/koff, from which it releases one m2 molecule and produces n2 molecules with
rate kp. (b) One cross-talk signaling challenge (e.g., cytokines) is to sense two ligands with similar affinities present at arbitrary concentrations.
A second cross-talk challenge (e.g., T-cell antigens) is to accurately sense a high affinity ligand (large arrow) present at low concentrations
while simultaneously sensing a low affinity ligand (small arrow) present at high concentrations. (c) Heatmaps of the diagonal elements of
the normalized estimate covariance matrix, scaled by kpt/N . The affinity and concentration of the stronger binding ligand are fixed and the
affinity and concentration of the weaker binding ligand are varied. (d) Corresponding heatmap of the determinant of the normalized estimate
covariance matrix. The orange (purple) dashed rectangle indicates the region corresponding to the “cytokine” (“T-cell antigen”) type challenge
illustrated in (b). Parameters used are α/kp

2 = 0.2, kpt = 102, N = 102, konc1/kp = 10−1, and koff,1/kp = 10−2.

Following the same prescription as in the previous section,
the estimates of the ligand identities and their concentrations,
c1, koff,1, c2, koff,2 can be obtained based on the measurements
of the output variables n1, m1, n2, m2 using, for instance, a
MLE. As before, the lower bounds on the estimate errors
are provided by the elements of the FIM. In this section, we
restrict ourselves to a numeric analysis of the FIM due to the
added complexity of the resulting expressions compared to
the expressions for the single ligand case (see Supplemental
Material [71] for details).

The results are shown in Fig. 3. The diagonal elements
of Î

−1
shown in Fig. 3(c) provide approximate lower bounds

on the mean errors of the estimates of the affinities and the
concentrations of both ligands. In addition, Fig. 3(d) shows
the determinant of the inverse FIM, det(Î

−1
), which serves

as a global measure of the overall estimation error [50,68].
The blue region in Fig. 3(c) indicates where the error in the
estimate is less than 33% of the true value. Accordingly, the
blue region in Fig. 3(d) indicates where the overall estima-
tion has low error. As koff,2 approaches koff,1 the estimation
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problem becomes ill posed (i.e., Î becomes singular). In this
limit, the receptor outputs are no longer independent and so
four input variables cannot be estimated simultaneously.

It is instructive to focus on two different regions of the
parameter space in Figs. 3(c) and 3(d) which correspond to
two well-known sensing problems commonly encountered in
a number of cell signaling contexts. One problem, illustrated
in the lower part of Fig. 3(b) (orange dashed line), is the
specific and accurate sensing of two ligands in a mixture
when both have similar affinities and arbitrary concentrations.
This type of challenge is commonly present, for example,
in cytokine and chemokine signaling in the immune system
[40,59]. This scenario corresponds to the lower regions of the
plots in Figs. 3(c) and 3(d), indicated by the orange dashed
rectangle (the weaker binding ligand has an affinity that is
relatively close to that of the stronger binding ligand). As
shown in Fig. 3(c), this is a difficult task to perform, and
is possible only in an intermediate range of concentrations
where the blue regions in each panel overlap [roughly be-
tween konc2/kp ∈ [10−2, 100], or within the 104 contour of
Fig. 3(d)]. This finding might be part of an explanation of the
prevalence of dimeric receptors in many signaling pathways,
because ligand induced dimerization enhances the differences
in the effective binding affinities between similar ligands [22].
Overall, there is a trade-off between the two ligands: A spe-
cific estimate of koff,1 implies a less specific estimate of koff,2;
a similar trade-off exists for accuracy of the estimation of
concentrations c1 and c2.

The “T-cell antigen” scenario is illustrated in the upper
region of Fig. 3(b) (purple dashed line). It represents a dif-
ferent sensing problem, whereby the stronger binding ligand
is present at a low concentration on the background of a low
affinity ligand present at a high concentration [18,23,29]. This
scenario corresponds to the upper right region in Figs. 3(c)
and 3(d) (indicated by a purple dashed line). The plots of
the accuracy and specificity for ligand 1 [two upper panels
in Fig. 3(c)] indicate that for sufficiently distinct ligands (i.e.,
koff,2 � koff,1), sensing of the stronger-binding ligand is not
impaired by a wide range of concentrations of the weaker-
binding ligand. Interestingly, in this regime overall estimation
has low error [blue region of Fig. 3(d)]. We discuss the impli-
cations of these results in the next section.

III. SUMMARY AND DISCUSSION

Cross talk is common in many signaling pathways, which
raises the question of how cells are able to sense and thereby
respond appropriately to molecularly similar signals carrying
different information through these cross-wired pathways. In
this paper, we focused on cross talk at the ligand-receptor
level, whereby multiple ligands can act through the same
surface receptor. This situation can be encountered in cytokine
and chemokine signaling in the immune system [40,59,82],
developmental pathways [7,32,37,78] and other physiological
systems [54,83]. Ligand-receptor cross talk entails a fun-
damental problem: it is impossible to discriminate between
different cognate ligands based on receptor occupancy alone
because the identity of the ligand (“quality”) can be con-
founded by its concentration (“quantity”) (e.g., Refs. [23,84]).
Equally important, when multiple different ligands can bind to
the same receptor, it is unclear how the downstream signaling

machinery can distinguish between various combinations of
different ligands based on the receptor activity alone.

In this paper, we have investigated one potential solu-
tion to this problem—signaling pleiotropy—which commonly
accompanies cross talk [40,45], using models of receptor ki-
netics that account for the molecular noise at both the receptor
and the downstream variables. We mathematically confirmed
the intuitive notion that the classical model of a receptor
which binds multiple ligands but produces only one type of
downstream sensing molecule is not able to simultaneously
discern the ligand identity (as defined by its unbinding rate
koff), and its quantity as expressed by its concentration c.

In contrast, a pleiotropic receptor, which produces two
types of downstream signaling molecules, can resolve this
ambiguity. The crucial feature of the model enabling these
properties is that the two output signaling molecules re-
flect physically different features of the ligand-receptor
interaction—in the case studied here, one variable is propor-
tional to the bound time of the ligand, while the other reflects
the number of distinct ligand-receptor binding events.

Importantly, a realistic feature of our model is that the
inference is based only on the numbers of the produced
signaling molecules and not on the knowledge of whole se-
quence of binding-unbinding events that has been a feature
of a number of works [51,52,56,85]. In addition to providing
a solution to the specificity-accuracy dilemma, our analysis
indicates that the noise in the production of the downstream
sensing molecules (on top of the receptor binding-unbinding
fluctuations) can significantly affect the specificity and the
accuracy of molecular sensing compared to the models that
only account for the randomness of the receptor-unbinding
events [15,52,56].

Furthermore, we have shown that with a sufficient num-
ber of downstream receptor sensing molecules, a pleiotropic
receptor can simultaneously determine the identities and
quantify the concentrations of two distinct (and arbitrary)
ligands, even when they are present in arbitrary mixtures.
Namely, four output variables can be used to determine the
four unknown variables—two dissociation constants and two
concentrations of the ligands in the mixture. Due to the ro-
bust nature of this discrimination scheme, we expect it to
generalize to combinations of multiple ligands, whereby a
signaling network with 2L output molecules can be used to
determine the identities and the concentrations of L ligands
in the mixture. One such potential scheme is a KPR-like
signaling chain with 2L bound states of the receptor. This
could provide a foundation for a generic combinatorial signal
recognition system in cross-wired pathways. The estimation
errors are likely to increase with the number of ligands in
the mixture [52], and it remains to be investigated up to what
number of ligands the proposed mechanism remains biologi-
cally relevant. However, the error can always be lowered by
increasing the copy number of receptors or the signaling time.
Investigation of how the sensing error scales with the number
of ligands is beyond the scope of this manuscript and will be
presented elsewhere.

Due to the interplay of molecular and evolutionary con-
straints, cross talk in receptor signaling systems may be
inevitable, and our results indicate that receptor pleiotropy
can provide a general mechanism for specific and accurate
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signaling in such systems. However, signaling cross talk might
not be just undesirable “noise” hampering accurate and spe-
cific ligand discrimination, but rather might have benefits
of its own. For example, the combination of cross talk and
pleiotropy may require fewer types of receptors than multiple
independent receptors for each ligand, which could lead to
lower resource requirements. Additionally, pleiotropic cross-
wired signaling networks may be more robust to genetic or
structural alterations in the molecular components of the path-
way such as the receptors themselves, or the associated the
readout molecules and the signaling enzymes.

Our model is constrained by the assumptions about the
nature of the output variables n and m, which are in-
spired by the observed modes of signaling in cytokine
and GPCR pathways. It is instructive to compare our re-
sults with those based on the inference from the whole
sequence of binding-unbinding events (which requires more
intricate intracellular molecular networks) [17,29,51,52,56].
The likelihood of a sequence of binding and unbinding
events with overall bound time tb and the overall num-
ber of binding events m is given by P(tb, m|c, koff ) ∼
exp(−konct ) exp[tb(−koff + konc)](koffkonc)m [56]. Maximiz-
ing this likelihood over (c, koff ) results in the same estimates
as given by Eq. (9). The corresponding lower bounds on the
estimation errors (found by inverting the FIM) in this case are
〈δc2〉/c2 = 〈δk2

off〉/k2
off = 1/〈m〉, where 〈m〉 = kofftx/(1 + x).

These expressions match Eq. (10) in the limit kp/koff � 1 (at
finite x); the deviation at finite kp/koff is a consequence of the
additional noise in the production of the signaling molecules
on top of the noise of receptor-ligand binding. Thus, our
minimal model with only two readout variables appears to
be able to take advantage of the full information encoded
in the whole sequence of binding-unbinding events. This is
likely due to the fact that the Endres-Wingreen likelihood
effectively only depends on tb and m, which are the physical
variables “measured” by our variables n and m [17,56]. This is
not true anymore for multiple ligands in a mixture where the
likelihood of the time series of the binding-unbinding events
retains the explicit dependence on the specific sequence of
bound times [17,29]. In the future, it will be important to
investigate what molecular mechanisms might enable cells to
access the additional information contained in the sequence of
binding-unbinding events [52].

In this paper we have considered only a minimal “module”
of a cross-wired receptor signaling network—a receptor of
one type capable of interacting with multiple types of lig-
ands. Furthermore, we have assumed that the cell performs

estimates of ligand identity and concentration based on the im-
mediate downstream receptor outputs. The ideas of this paper
can be extended to the more general case of complex networks
of ligands, receptors and downstream signaling molecules
that may include positive and negative feedbacks mediated
by such molecules [18,30,50,52]. The pleiotropic receptor
outputs we considered here may also be used for alternative
sensing goals such as detecting changes in the composition of
a ligand mixture [17]. Functional pleiotropy can alternatively
be achieved by using different stages in the time course of
the signaling as distinct output variables [17,41,86], facilitated
through feedback such as receptor internalization.

Depending on the task that needs to be solved by the
cell, different mathematical frameworks might be more ap-
propriate [17]. Among other approaches, the results of this
paper also provide an interesting outlook on the information
theory approaches to cell signaling [28,41,87–90] via connec-
tions between the channel capacity of a signaling pathway
and the FIM. Further constraints, such as receptor integration
time and energy consumption in the nonequilibrium signaling
cycle [24,67] may be considered in extensions of this work.
These lie outside of the scope of the present work, and will be
studied in the future. Finally, while this paper has focused on
sensing capabilities of single cells, intercellular interactions in
multicellular environments can result in collective responses
to the signaling milieu leading to collective decisions at the
population level [21,91,92].

IV. MATERIALS AND METHODS

All calculations and simulations were performed in Python
3.8.3 using NumPy 1.18.5, and Mathematica 10.4. Compu-
tational details of the results presented here are provided in
the Supplemental Material [71]. The code implementing the
analysis, simulations, and plotting is available at [93].
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