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Power grid networks, as well as neuronal networks with synaptic plasticity, describe real-world systems of
tremendous importance for our daily life. The investigation of these seemingly unrelated types of dynamical
networks has attracted increasing attention over the past decade. In this paper, we provide insight into the
fundamental relation between these two types of networks. For this, we consider well-established models based
on phase oscillators and show their intimate relation. In particular, we prove that phase oscillator models with
inertia can be viewed as a particular class of adaptive networks. This relation holds even for more general classes
of power grid models that include voltage dynamics. As an immediate consequence of this relation, we discover
a plethora of multicluster states for phase oscillators with inertia. Moreover, the phenomenon of cascading line
failure in power grids is translated into an adaptive neuronal network.
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I. INTRODUCTION

Complex networks describe various processes in nature
and technology, ranging from physics and neuroscience to
engineering and socioeconomic systems. Of particular inter-
est are adaptive networks, where the connectivity changes in
response to the internal dynamics. Such networks can model,
for instance, synaptic neuronal plasticity [1–5] or, generally,
learning, memory, and development in neural circuits. Adap-
tive networks have been reported for chemical [6], epidemic
[7], biological, and social systems [8]. A paradigmatic ex-
ample of adaptively coupled phase oscillators has recently
attracted much attention [9–18] and it appears to be useful
for predicting and describing phenomena in more realistic and
detailed models [19–22].

A different class of network models describing power
systems as well as micro- and macro-power grids has been
analyzed intensively [23–27]. It was shown that simple low-
dimensional models capture certain aspects of the short-time
dynamics of power grids very well [28–31]. In particular, the
model of phase oscillators with inertia, also known as swing
equation, has been widely used in works on synchronization
of complex networks and as a paradigm for the dynamics of
modern power grids [32–49]. The phenomenon of converse
symmetry breaking, predicted by this model, was demon-
strated experimentally [50].

In recent years, studies on both types of models, oscilla-
tors with inertia and adaptively coupled oscillators, revealed
a plethora of common dynamical scenarios including soli-
tary states [42,45,46,51], frequency clusters [15,16,52,53],
chimera states [11,13,54], hysteretic behavior, and nonsmooth
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synchronization transitions [10,55–57]. Moreover, hybrid sys-
tems with phase dynamics combining inertia with adaptive
coupling weights have been investigated, for instance, to ac-
count for a changing network topology due to line failures
[58], to include voltage dynamics [59], and to study the emer-
gence of collective excitability and bursting [60].

Despite the apparent qualitative similarities of the two
types of models, so far nothing is known about their quantita-
tive relationship. In particular, the following question arises:
Is there a relation between phase oscillator models with inertia
and models of adaptively coupled phase oscillators?

In this paper, we show that dynamical power grid mod-
els have deep relations with adaptive networks. In particular,
phase oscillators with inertia are a special subclass of phase
oscillators with adaptive couplings. For this, we introduce the
so-called pseudocoupling matrix. To emphasize the strong im-
plications of our findings, we provide different examples. The
paper is organized as follows. In Sec. II, we introduce the two
classes of phase oscillator models that are used throughout this
paper. In the subsequent section, Sec. III, we establish an an-
alytic relation between these oscillator models and introduce
the concept of the pseudocoupling matrix. In order to show
the opportunities offered by this viewpoint, three examples are
provided in Secs. IV–VI. The first example in Sec. IV shows
a type of multicluster for oscillators with inertia. Second, in
Sec. V, we show how the concept of pseudocoupling weights
can be used to study solitary states in realistic power grid
networks. As a third example, in Sec. VI, we propose that the
line failure effect known for power grids might have its coun-
terpart in adaptive neural networks, with short-term synaptic
depression being a short-time equivalent to the failure of a
power line. In addition to the examples, we generalize the
result in Sec. III to power grid models with voltage dynam-
ics in Sec. VII A and to second-order consensus models in
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Sec. VII B. Finally, in Sec. VIII, we summarize the results and
give an outlook.

II. PHASE OSCILLATOR MODELS

We begin this study by introducing the two classes of
phase oscillator models that are considered throughout this
paper. The first class describes N adaptively coupled phase
oscillators and reads [11,15]

φ̇i = ωi +
N∑

j=1

ai jκi j f (φi − φ j ), (1)

κ̇i j = −ε[κi j + g(φi − φ j )], (2)

where φi ∈ [0, 2π ) represents the phase of the ith oscillator
(i = 1, . . . , N), ωi is its natural frequency, and κi j is the cou-
pling weight of the connection from node j to i. Further, f and
g are 2π -periodic functions where f is the coupling function,
g is the adaptation rule, and ε � 1 is the adaptation time
constant. The connectivity between the oscillators is described
by the entries ai j ∈ {0, 1} of the adjacency matrix A. Note that
the phase space of Eqs. (1)–(2) is (N + N2) dimensional.

The second class of models is given by N coupled phase
oscillators with inertia [42,44]

Mφ̈i + γ φ̇i = Pi +
N∑

j=1

ai jh(φi − φ j ), (3)

where M is the inertia coefficient, γ is the damping constant,
Pi is the power of the ith oscillator (related to the natural
frequency ωi = Pi/γ ), h is the coupling function, and ai j is
the adjacency matrix as defined in Eq. (1). We note that the
phase space of (3) is 2N dimensional, i.e., of lower dimension
than that of Eqs. (1)–(2).

III. DYNAMICAL RELATION BETWEEN THE PHASE
OSCILLATOR MODELS

In the following, we show that the class of phase oscillator
models with inertia is a natural subclass of systems with adap-
tive coupling weights where the weights denote the power
flows between the corresponding nodes. We first write Eq. (3)
in the form

φ̇i = ωi + ψi, (4)

ψ̇i = − γ

M

(
ψi − 1

γ

N∑
j=1

ai jh(φi − φ j )

)
, (5)

where ψi is the deviation of the instantaneous phase velocity
from the natural frequency ωi. We observe that this is a system
of N phase oscillators (4) augmented by the adaptation (5)
of the frequency deviation ψi. Similar systems with a direct
frequency adaptation have been studied in Refs. [61–64]. Note
that the coupling between the phase oscillators is realized in
the frequency adaptation which is different from the clas-
sical Kuramoto system [65]. As we know from the theory
of adaptively coupled phase oscillators [11,15], a frequency
adaptation can also be achieved indirectly by a proper adapta-
tion of the coupling matrix.

In order to introduce coupling weights into system (4)–
(5), we express the frequency deviation ψi as the sum ψi =∑N

j=1 ai jχi j of the dynamical power flows χi j from the nodes
j that are coupled with node i. The power flows are governed
by the equation χ̇i j = −ε[χi j + g(φi − φ j )], where g(φi −
φ j ) ≡ −h(φi − φ j )/γ are their stationary values [44] and ε =
γ /M. It is straightforward to check that ψi, defined in such a
way, satisfies the dynamical equation (5).

As a result, we have shown that the swing equation
Eqs. (4), (5) can be written as the following system of adap-
tively coupled phase oscillators:

φ̇i = ωi +
N∑

j=1

ai jχi j, (6)

χ̇i j = −ε[χi j + g(φi − φ j )]. (7)

The obtained system corresponds to (1) and (2) with coupling
weights χi j and coupling function f (φi − φ j ) ≡ 1. The cou-
pling weights form a pseudocoupling matrix χ . Note that the
base network topology ai j of the phase oscillator system with
inertia Eq. (3) is unaffected by the transformation.

With the introduction of the pseudocoupling weights χi j ,
we embed the 2N-dimensional system of (4) and (5) into a
higher dimensional phase space. In the following, we show
that the dynamics of the higher dimensional system of (6) and
(7) is completely governed by the system of (4) and (5) on a
2N-dimensional invariant submanifold.

We introduce the following notation:

ai = (ai1, . . . , aiN ),

χi = (χi1, . . . , χiN ),

and the N × N2 matrix

B =

⎛
⎜⎜⎜⎝

a1 0 . . . 0

0 . . .
. . .

...
...

. . .
. . . 0

0 · · · 0 aN

⎞
⎟⎟⎟⎠.

Define further the N variables (ζ1, . . . , ζN )T =
B(χ1, . . . ,χN )T . The kernel of the matrix B is given by

ker(B) =
{

χ ∈ RN2
:

N∑
j=1

ai jχi j = 0, ∀i ∈ {1, . . . , N}
}

and is N2 − N dimensional in case ai �= 0 for all i = 1, . . . , N .
Let the N2 − N variables ξm (m = 1, . . . , N2 − N) define a
coordinate system of ker(B). Then Eqs. (6) and (7) can be
written as

φ̇i = ωi + ζi, (8)

ζ̇i = − γ

M

(
ζi − 1

γ

N∑
j=1

ai jh(φi − φ j )

)
, (9)

ξ̇m = − γ

M
ξm + hm(φ1, . . . , φN ), (10)

where hm are functions determined by the particular choice
for the variables ξm. The functions hm depend only on the
variables φ j . Thus, Eq. (10) describes the dynamics of N2 − N
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slave variables governed by the dynamics of the 2N dimen-
sional system of (8) and (9).

With the previous arguments, the dynamical equivalence
between systems Eqs. (4)–(5) and Eqs. (6)–(7) means the fol-
lowing: For any solution φi(t ), χi j (t ) of Eqs. (6) and (7) there
is a corresponding solution φi(t ), ψi(t ) = ∑N

j=1 ai jχi j (t ) of
Eqs. (4) and (5). Conversely, any solution φi(t ), ψi(t ) of
Eqs. (4) and (5) leads to the solution φi(t ), χi j (t ) of Eqs. (6)
and (7) such that

∑N
j=1 ai jχi j (t ) = ψi(t ). The remaining de-

grees of freedom from χi j are driven by φi(t ), ψi(t ).
Let us discuss a physical meaning of the coupling weights

χi j . For this, we consider the power flows Fi j from node j
to node i given by Fi j = −g(φi − φ j ) [44]. Then each χi j

is driven by the power flow from j to i. In particular, for
constant Fi j , χi j → Fi j asymptotically as t → ∞. Therefore,
χi j acquires the meaning of a dynamic power flow.

The obtained result suggests that the power grid model is a
specific realization of adaptive neuronal networks. Indeed, in
Sec. VII A, we proceed one step further and show that more
complex models for synchronous machines like the swing
equation with voltage dynamics [45,59] can be represented
as adaptive network as well.

In the following, we provide three examples where the
established relationship is used to find dynamical scenarios in
phase oscillator models with inertia and adaptive networks by
the transfer of known results from one paradigm to the other.

IV. MIXED FREQUENCY CLUSTER STATES IN PHASE
OSCILLATOR MODELS WITH INERTIA

In the first example, we provide insights into the emergence
of multifrequency cluster states and report on the diversity of
multicluster states for the phase oscillator model with inertia.
In a frequency multicluster state, all oscillators split into M
groups (called clusters), each of which is characterized by a
common cluster frequency �μ. In particular, the temporal be-
havior of the ith oscillator of the μth cluster (μ = 1, . . . , M)
is given by φ

μ
i (t ) = �μt + ρ

μ
i + sμ

i (t ), where ρ
μ
i ∈ [0, 2π )

and sμ
i (t ) are bounded functions describing different types of

phase clusters characterized by the phase relation within each
cluster [15]. Various types of multicluster states including
the special subclass of solitary states have been extensively
described for adaptively coupled phase oscillators [11,16,51].
For phase oscillator models with inertia, however, only one
type of multicluster state is known so far, which is the in-phase
multicluster [42,53,57]. Moreover, little is known about the
characteristic features that stabilize the cluster.

In Figs. 1(a) and 1(c), we present a four-cluster state of
in-phase synchronous clusters on a globally coupled network.
As we know from the findings for adaptive networks, (hierar-
chical) multicluster states are built out of single-cluster states
whose frequency scales approximately with the number Nμ

of elements in the cluster. We find that in the zeroth-order
expansion in γ the collective cluster frequencies are given
by �μ ≈ −σNμ sin α; see also Ref. [15] and Appendix A.
Employing the theory developed for adaptive networks [15],
we find that multicluster states exist in the asymptotic limit
(γ → 0) also for networks of phase oscillators with inertia if
the cluster frequencies are sufficiently different, meaning the
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FIG. 1. Hierarchical multicluster states in networks of coupled
phase oscillators with inertia. The panels [(a), (b)], [(c), (d)], and
[(e), (f)] show the temporally averaged phase velocities 〈φ̇ j〉, phase
snapshots φ j (t ), and the pseudocoupling matrices χi j (t ), respec-
tively, at t = 10 000. In panel (e), the oscillator indices are sorted
in increasing order of their mean phase velocity. The states were
found by numerical integration of (3) with identical oscillators Pi =
0, h(φ) = −σγ sin(φ + α), and uniform random initial conditions
φi(0) ∈ (0, 2π ), ψi(0) ∈ (−0.5, 0.5). The parameter α is a phase lag
of the interaction [66]. Parameters are [(a), (c), (e)] globally cou-
pled network, M = 1, γ = 0.05, σ = 0.016, α = 0.46π ; [(b), (d),
(f)] nonlocally coupled ring network with coupling radius P = 40,
M = 1, γ = 0.3, σ = 0.033, α = 0.8π , N = 100.

clusters are hierarchical in size. Remarkably, the pseudocou-
pling matrix displayed in Fig. 1(e) shows the characteristic
block-diagonal shape that is known for adaptive networks. In
particular, the oscillators within each cluster are more strongly
connected than the oscillators between different clusters.

In order to extend the zoo of possible building blocks for
multiclusters, we consider a single splay-type cluster where
φ j = 2πk j/N with wave number k ∈ N. Splay states are
characterized by the vanishing local order parameter Rj =
| ∑N

k=1 a jk exp(iφk )| = 0 [67–69]. Taking this latter property
into account, we find that the cluster frequency is � = 0.
Hence, the cluster frequency cannot be scaled by scaling the
cluster size. In order to overcome this, we use the findings on
local splay states on nonlocally coupled networks where each
node is coupled to all nodes within a certain coupling range P;
i.e., ai j = 1 if 0 < (i − j) mod N � P and ai j = 0 otherwise.
As was shown in Ref. [51], splay states on nonlocally coupled
rings might lead to a nonvanishing local order parameter, and
hence, to scalable cluster frequencies.
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FIG. 2. Temporal evolution of the pseudocoupling matrix χi j for
the phase oscillator model with inertia. The pseudocoupling matrix is
shown at (a) t = 100, (b) t = 1750, (c) t = 5000, and (d) t = 10 000
and the color code is chosen as in Fig. 1. Starting from an incoherent
state in panel (a), the largest cluster is formed first (b), and the other
clusters are then successively formed depending on their size. All
parameters and the initial condition as in Figs. 1(a), 1(c) and 1(e).

In Figs. 1(b), 1(d) and 1(f), we present a hierarchical
mixed-type multicluster on a nonlocally coupled ring of phase
oscillators with inertia. It consists of one large splay cluster
with wave number k = 2 and a small in-phase cluster. The
emergence of such a multicluster state breaks the dihedral
symmetry of the nonlocally coupled ring network. This sym-
metry breaking causes a slight deviation from the ideal phase
distribution of a splay state φ j = 2πk j/N and of an in-phase
state φ j = const [Fig. 1(d)]. We note that to the best of our
knowledge this type of multicluster state has not yet been
reported in networks of coupled phase oscillators with inertia.

Another observation for multicluster states in networks of
phase oscillators with inertia is their hierarchical emergence.
As reported in Ref. [11] for adaptive networks, the clusters
emerge in a temporal sequence from the largest to the small-
est. In Fig. 2, we show that this particular feature is also found
in phase oscillators with inertia.

Summarizing the first example, we have shown that the
findings for multicluster states for adaptively coupled phase
oscillators can be transferred to networks of phase oscillators
with inertia. Note that the systems considered above are ho-
mogeneous. However, heterogeneous real-world networks can
be treated with the methods established in this paper as well.
To show this, in the next section, we analyze the dynamical
characteristics of solitary states in the German ultra-high-
voltage power grid network [70].

V. SOLITARY STATES IN THE GERMAN
ULTRA-HIGH-VOLTAGE POWER GRID NETWORK

In this section, we show that multifrequency-cluster states,
as discussed in Fig. 1, may also occur in real-world power
grid networks. For the simulation, we consider the Kuramoto
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FIG. 3. (a) Map of the German ultra-high-voltage power grid
consisting of 95 net generators (green squares) and 343 net con-
sumers (red dots) connected by 662 bidirectional transmission lines
(black lines). (b) The histogram shows the distribution of the net
power Pi for each generator (green) and consumer (red). The data
displayed in panels (a) and (b) are taken from the ELMOD-DE data
set reported in Ref. [70].

model with inertia given by Eq. (3), where we set the coupling
function as h(φ) = −σ sin φ. The network structure and the
power distribution are taken from the ELMOD-DE data set
provided in Ref. [70].

In Fig. 3, we provide a visualization of the German ultra-
high-voltage power grid. In order to determine the net power
consumption and generation Pi for each node in Fig 3(a),
the individual power generation and consumption for each
unit are compared. We get Pi = (Ptotal/CTotal )Coff,i − Poff,i

where PTotal = 36 GW and CTotal ≈ 88.343 GW are the off-
peak power consumption and generation of the whole power
grid network, respectively, and Coff,i and Poff,i are the off-
peak power consumption and generation for each individual
unit, respectively. We further fix the parameters in model
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FIG. 4. (a) Mean phase velocity 〈φ̇i〉 for each node in the Ger-
man power grid network presented in Fig. 3(a). (b) Mean phase
velocity 〈φ̇i〉 vs natural frequency ωi = Pi/γ for each node in the
German ultra-high-voltage power grid. The dashed line shows the
relation 〈φ̇i〉 = ωi. (c) Temporal evolution (time in seconds) of two
typical elements from the pseudocoupling matrix χ introduced in
(7). One element corresponds to a link between a solitary node
and a node from the synchronous cluster (blue) and the other ele-
ment corresponds to a link between two nodes of the synchronous
cluster (orange). Setup: α = 0, σ = 800 MW, t = 600 s, uniformly
distributed random initial conditions φ ∈ (0, 2π ), φ̇ ∈ (−1, 1).

(3) as follows: M = IωG with I = 40 × 103 kg m2 and ωG =
2π50 Hz, γ = Ma with a = 2 Hz. For details regarding the
realistic modeling and the restrictions, we refer the reader to
Refs. [37,45].

In Fig. 4, we show a solitary state obtained by the simula-
tion of model (3) with the parameters as described above for
t = 600 and uniformly distributed random initial conditions

φ ∈ (0, 2π ), φ̇ ∈ (−1, 1). Solitary states are special cases of
multifrequency cluster states [51]. For phase oscillators, the
frequency clusters are characterized by a common frequency
�μ (μ = 1, . . . , M), where M is the number of clusters.
Within the cluster the oscillators’ temporal behavior is the
same up to some bounded variations, i.e.,

φ
μ
i (t ) = �μt + sμ

i (t ),
μ = 1, . . . , M,

i = 1, . . . , Nμ,
(11)

where the bounded function sμ
i (t ) describes the ith oscillator

of the μth cluster that has a total number of Nμ oscillators.
The temporal averages of the oscillators’ phase velocities
are obtained by neglecting the transient period t ∈ [0, 500).
Figure 4(a) shows a solitary state where five solitary nodes
have a significantly different mean phase velocities than all
the other oscillators from the large coherent cluster, which is
synchronized at �0 ≈ −0.407 Hz. Similar results have been
recently obtained in Refs. [45,46]. Remarkably, the mean
phase velocities of the solitary nodes are very close to their
natural frequency; see Fig. 4(b). This means that the soli-
tary states decouple on average from the mean field of their
neighborhood, i.e., φ̇Solitary = ωSolitary + ∑

j ai jχi j with tem-
poral average 〈∑ j ai jχi j〉 small compared to ωSolitary.

In order to shed light on further characteristics of the soli-
tary states, we consider the power flows, i.e., the elements of
the pseudocoupling matrix χi j introduced in (7). In Fig. 4(c),
we display the temporal evolution of two typical elements
of the coupling matrix. In both cases, the coupling between
two nodes from the coherent cluster (orange) and between a
node from the coherent cluster and a solitary node (blue), the
average coupling value between the nodes is nonzero. Both
coupling weights vary periodically in time but with different
amplitudes. For the coupling between two nodes of the coher-
ent cluster, the small variations stem from the small difference
in their individual bounded temporal dynamics which depends
on their natural frequencies and the individual topological
neighborhoods. Due to the realistic setup, the dynamical net-
work is very heterogeneous. In contrast to the case of two
nodes of the coherent clusters, the coupling between the soli-
tary node and a node from the coherent cluster possesses a
much higher temporal variation and changes periodically. To
understand this observation, we derive an asymptotic approx-
imation for the dynamics of the solitary states.

Using an approach similar to that of Ref. [15], we ap-
ply a multiscale ansatz in ε = 1/K � 1 to a two-cluster
state. By the two-cluster state, we model the interaction of
a solitary node with the coherent cluster, where φ1 repre-
sents the phase of the solitary node with natural frequency
ω and φ2 represents the phase of the coherent cluster with
natural frequency �0. The pseudocoupling weights between
the two clusters are denoted by χμν (μ, ν = 1, 2, μ �= ν).
The ansatz reads φμ = �μ(τ0, τ1, . . . ) + ε(φ(1,μ) ) + · · · and
χμν = χ (0)

μν + εχ (1)
μν + · · · with τp = ε pt , p ∈ N.

Omitting technical details, in the first-order approxima-
tion in ε we obtain φ1 = ω − (K/ω2) cos(ωt ) and φ2 = �0 +
(K/ω2) cos(ωt ). Additional corrections to the oscillator fre-
quencies appear in the third and higher orders of the expansion
in ε and depend explicitly on ω. The latter fact is consistent
with the numerical observation in Fig. 4(b) that solitary nodes
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FIG. 5. Panels (a) and (b) show a map of the German ultra-high-voltage power grid as given in Fig. 3. The solitary nodes presented in Fig. 4
are displayed in blue. For each transmission line, we display in panels (a) and (b) the normalized absolute value of the average pseudocoupling
weight |〈χi j (t )〉| and the normalized amplitude of χi j (t ), i.e., max(χi j (t )) − min(χi j (t )), respectively. The bar denotes the normalization for
each value to the maximum for all i, j = 1, . . . , N . The temporal evolution is evaluated over an averaging window of 100 time units. All values
for each line are displayed in the color code given by the color bars above the figures. Panels I (a) and I (b) provide enlargements of panels
(a) and (b) for the solitary node i = 235 [red shading in panels (a) and (b)], respectively. Panels II (a) and II (b) provide enlargements of panels
(a) and (b) for the solitary node i = 214 [blue shading in panels (a) and (b)], respectively. The black nodes in the enlargements represent the
consumer and generator of the power grid network. All parameters are as in Fig. 4.

with a lower natural frequency may differ more strongly from
their own natural frequency than the solitary oscillators with a
higher natural frequency. For more details on the perturbation
method, we refer to Appendix B.

From the approximation, we additionally obtain that the
coupling weights between the solitary node and the coher-
ent cluster oscillate with the amplitude K/ω (up to the first
order in ε). Using the values obtained by the numerical simu-
lation, we obtain χ220,214 ≈ χ̄220,214 + 3.76 cos[(16.9/2π )t],
which agrees with Fig. 4(c). The offset χ̄220,214 is not
captured by the perturbative ansatz. Qualitatively, however,
the offset stems from the present high degree of hetero-
geneity in our real power grid setup with regard to the

network topology as well as the frequency distribution. More-
over, the observation φ̇i ≈ ωi for all solitary nodes i yields
〈∑ j ai jχi j〉 = ∑

j ai j χ̄i j ≈ 0.
In Fig. 5, we provide an overview of the pseudocoupling

matrix for the results obtained in the simulation of the German
ultra-high-voltage power grid; see also Fig. 4. Note that we
omit plotting nodes of the network in Fig. 5 (locations of the
generators and consumers) in order to focus on the distribution
of coupling weights. We present the average coupling weights
as well as their temporal variations in Figs. 5(a) and 5(b),
respectively. As we know from the discussion in Sec. III, the
coupling weights correspond to the dynamics of the power
flow of each transmission line. We further know from the
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asymptotic theory given above that the average value of the
power flow between a solitary node and a node from the
coherent cluster is small but not necessarily zero. This in
fact is supported by Fig. 5(a); see also the enlargements.
More insightful are the temporal variations of the power flow.
Here, only a few lines in Fig. 5(b) show significant temporal
variations. In particular, these lines are between solitary nodes
and the coherent cluster, which is in agreement with the results
from the asymptotic approach and Fig. 4(c). The enlargements
to Fig. 5(b) support the latter observation by showing the
highest values of the temporal variation of the power flow
for lines from and to the solitary nodes. Besides, Fig. 5(b)
shows how far into the network power fluctuations are spread
in the presence of solitary states. It is visible that even between
nodes of the coherent cluster high power fluctuations exist.
These fluctuations would not be present if all oscillators were
synchronized.

As we have seen, the pseudocoupling approach allows
for a description of the power flow for each line. It shows
the emergence of high power fluctuations at the solitary
node and the spreading of those fluctuations over the power
grid. In the next example, we show how phenomena known
from power grid networks can be transferred to adaptive
networks.

VI. WHAT POWER GRIDS TEACH US ABOUT
NEURAL BREAKDOWNS

In the third example, we show that the dynamical cascading
of line failures, which has been observed in power grids, may
also occur in adaptive networks of phase oscillators (1) and
(2). We also propose a possible interpretation with respect to
neuronal networks.

We use the following setup that has been already em-
ployed in the context of power grid networks [44]. Let
us interpret the power flow on a line in a power grid as
the (localized) synaptic input Fi j (t ) = κi j (t ) f (φi(t ) − φ j (t ))
from oscillator j to oscillator i. We say that a line fails if
the corresponding synaptic input exceeds a certain threshold
K ∈ R, i.e., |Fi j (t )| > K at some time t . Correspondingly,
the link is cut off, i.e., ai j = a ji = 0. A possible neuronal
interpretation of such a temporal cutoff may be related to
the presence of short-term synaptic plasticity [71,72]. In-
deed, when the signal between neurons or neuronal regions
exceeds a certain critical level, then the corresponding con-
nections can be affected by short term activity-dependent
depression. As a result, such an activity implies an effective
cutoff, at least temporarily. Hence, allowing for a line to fail
temporarily can be regarded as including short-term activity-
dependent synaptic depression into the adaptive network
model.

For the simulation presented in Fig. 6, we integrate (1)
and (2) numerically with f (φ) = −2 sin φ and a Hebbian-
like adaptation rule g(φ) = − cos φ for a five-node net-
work. The natural frequencies are chosen as (ω1, . . . , ω5) =
(−1.2, 1.8,−1.2,−1.2, 1.8), where we interpret nodes 2
and 5 as highly active neuronal units (hubs) due to
their positive frequency. Note that in (1) and (2) all
frequencies are relative, and they can be considered as
deviations from some mean value. As initial condition
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FIG. 6. Cascading line failures in a network of five adap-
tively coupled phase oscillators (1) and (2) with f (φ) = −2 sin φ,
g(φ) = − cos φ, (ω1, . . . , ω5) = (−1.2, 1.8, −1.2, −1.2, 1.8), and
ε = 0.01. Panel (a) shows the connectivity structure of the nodes
before (left inset) and after the cascading line failures (right inset),
and the number of line failures occurring during the numerical sim-
ulation is presented vs time. The line which is cut off due to an
abrupt line failure at t = 0.5 is indicated by a lightning symbol. Panel
(b) shows the transient dynamics of the absolute value of the local
synaptic input Fi j during the cascading line failures. The colors of
lines correspond to the colors of the links displayed in panel (a). As
initial condition, we choose a stable equilibrium of (1) and (2) with
connectivity structure as shown in the left inset of panel (a). The
dotted horizontal line indicates the threshold K = 1.04 above which
the lines fail. The dashed horizontal lines correspond to the stable
equilibria after the link between 2 and 4 is cut off.

for the simulation we choose a locally stable equilib-
rium that solves 0 = ωi − 2

∑5
j=1 ai j cos(φi − φ j ) sin(φi −

φ j ), i = 1, . . . , 5. The corresponding initial coupling ma-
trix takes the form κi j = cos(φi − φ j ). Hence, Fi j (t ) =
Fji(t ) at any time due the symmetry preserving adaptation
rule.

We run the simulation first for 0.5 time units for the
chosen initial conditions and with the initial connectivity
structure in Fig. 6(a), left. At t = 0.5, we introduce an abrupt
line failure between nodes 2 and 4. Figure 6(b) displays
the transient dynamics of |Fi j (t )|, which shows the dynamic
occurrence of cascading line failures after the topological
perturbation of the network. As a result, almost all lines fail.
Moreover, the line failures lead to complete isolation of the
hubs.

It is important to note that the failure results from
the dynamical properties of the network. In fact, there
exists a locally stable equilibrium for the initial net-
work without the connection between nodes 2 and 4.
This equilibrium would meet the requirement |Fi j | < K ;
see dashed lines in Fig. 6(b). However, this equilibrium
is not reached during the transient phase after the initial
perturbation.
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VII. GENERALIZATION TO THE EQUATION WITH
VOLTAGE DYNAMICS AND SECOND-ORDER

CONSENSUS MODELS

In the previous three sections, we have provided evidence
that the new perspective on power grid dynamics and adap-
tive networks lead to insights for both classes of systems.
To broaden the scope of applications further, this section is
devoted to two generalizations of the approach established in
Sec. III toward more realistic power grid dynamics and the
dynamics of social systems.

A. Swing equation with voltage dynamics

The obtained results in Sec. III suggest that the power
grid model is a specific realization of adaptive neuronal net-
works. Now, we proceed one step further and show that more
complex models for synchronous machines like the swing
equation with voltage dynamics [45,59] can be represented
as adaptive network as well. The model reads

Mφ̈i + γ φ̇i = Pi +
N∑

j=1

EiEjai jh(φi − φ j ), (12)

miĖi = −Ei + E f ,i +
N∑

j=1

ai jE jv(φi − φ j ), (13)

where the additional dynamical variable Ei is the voltage
amplitude. The functions h and v are 2π periodic, and mi

and E f ,i are machine parameters [45,59]. All other variables
and parameters are as in (3). Rewriting these equations as
an adaptive network yields the same system of (6) and (7)
supplemented by Eq. (13) where g(φ) ≡ −EiEjh(φ)/γ and
ε = γ /M. We note that the phase space of (12)–(13) is 3N
dimensional.

By using the technique developed in the Sec. III, we may
rewrite (12) and (13) as

φ̇i = ωi +
N∑

j=1

ai jχi j, (14)

χ̇i j = − 1

Mi
[γχi j − EiEjh(φi − φ j )], (15)

miĖi = −Ei + E f ,i +
N∑

j=1

ai jE jv(φi − φ j ), (16)

where we introduce the coordinate changes χi j → χi j + Pi/γ ,
Ei → Ei + E f ,i, and set ωi = Pi/γ . Due to the voltage dy-
namics (13), the adaptation function g(φ) = Ei(t )Ej (t )h(φ)
in (15) possesses additional adaptivity. This kind of meta-
adaptivity (metaplasticity) has been shown to be of impor-
tance in neuronal networks [73,74] as well as for neuromor-
phic devices [75].

B. Second-order consensus models

In this section, we show that a second-order consensus
model can be formally written as a dynamical network with
adaptive complex coupling scheme. Consensus describes the
result of a decision-making process of autonomous mobile
agents with positions xi and velocities vi. The decision-

making process is described by the consensus protocol that is
given as a dynamical system on a complex network structure.
Consensus is achieved if the agents synchronize as time tends
to infinity. Consensus models have a wide range of applica-
tions and are of particular importance in social science and
engineering [76].

Let us consider the following second-order consensus
model [77]:

ẋi = vi, (17)

v̇i = ρ

N∑
j=1

li jv j + σ

N∑
j=1

ai jh(xi − x j ), (18)

where the dynamical variables xi, vi ∈ Rd , ai j are the entries
of the adjacency matrix of the network, li j the entries of the
Laplacian matrix of the network, i.e., li j = ai j for i �= j, lii =
−∑N

j=1, j �=i ai j , and ρ, σ ∈ R are coupling constants. Let us
introduce the vector-valued pseudocoupling matrix χi j ∈ Rd

by vi = ∑N
j=1 ai jχi j . Then the model of (17) and (18) can be

written as

ẋi =
N∑

j=1

ai jχi j, (19)

χ̇i j = −ρliiχi j + ρ

N∑
k=1

a jkχ jk + σh(xi − x j ). (20)

By using the same arguments as given in Sec. III, the dynam-
ical equivalence between both model (17) and (18) and model
(19) and (20) can be proved. With this, we have shown that a
second-order consensus model can be written as a dynamical
network with a complex adaptive coupling scheme rather than
a fixed coupling matrix. Note that the elements of the complex
dynamical coupling scheme χi j are not uniquely defined, but
might be chosen according to their physical meaning.

VIII. CONCLUSIONS

In conclusion, we find a striking relation between phase
oscillators with inertia, which are widely used for modeling
power grids [32,33,35,37,39,43,44,46], and adaptive networks
of phase oscillators, which have ubiquitous applications in
physical, biological, socioeconomic, and neuronal systems.
The introduction of the pseudocoupling matrix allows us to
split the total input from all nodes into node i into power flows.
Thus, the frequency deviation ψi = φ̇i − ωi in the phase oscil-
lator model with inertia corresponds to the adaptively adjusted
total input which an oscillator receives. This gives insight into
the concept of phase oscillator models with inertia, which ef-
fectively takes into account the feedback loop of self-adjusted
coupling with all other oscillators. Additionally, our theoreti-
cal framework allows for a generalization to swing equations
with voltage dynamics [59] and to a large class of second-
order consensus models [76,77].

In the theory of dynamical networks, it is common to
search for a low-dimensional representation in order to under-
stand the system’s dynamics. For instance, reduction methods
are used to understand the functional resilience against sys-
tem perturbations [78], the spreading dynamics on complex
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networks [79], and the interplay between topology and dy-
namics [80]. By introducing the pseudocoupling matrix, our
approach seems to be in contrast to those approaches. On
the one hand, this is true. In particular, the enlarged phase
space is used to reveal the adaptive nature of second-order
dynamical systems. On the other hand, as outlined in the intro-
duction, both phase oscillator models either with second-order
dynamics or on an adaptive network share common dynamical
behavior. In fact, we prove that there is a certain class of adap-
tive phase oscillator models that can be rigorously reduced to
a 2N-dimensional system. Moreover, recent work on adaptive
networks suggests that reductions to lower dimensional sys-
tems may exist even for more complex adaptive systems [81].

Our first example shows that the theory of building blocks
developed for adaptively coupled phase oscillators can be
transferred to explain the emergence of a plethora of known
and novel multicluster states in networks of coupled phase
oscillators with inertia. These findings are of crucial impor-
tance for studying power grid models with respect to emergent
multistability and dynamical effects that lead to desynchro-
nization [82–85]. In fact, a properly functioning real-world
power grid should be completely synchronized, i.e., cluster-
ing into different groups with different frequencies would
be undesirable. However, multicluster states can still have
practical relevance, since they influence the destabilization of
the synchronous state. Thus, it is important to study when
they occur, in order to be able to take control measures to
prevent them. For instance, recent works [45,46] have shown
that the solitary states, which are a subclass of multicluster
states, arise naturally in the desynchronization transition of
real-world power grid networks (German and Scandinavian
power grid) and that this knowledge is essential for an efficient
power grid control. For the German power grid, we provide an
additional example and show analytically how the techniques
developed for adaptive networks are used to characterize the
emergent solitary states.

In the third example, motivated by previous findings on
the dynamical cascading of line failures in power grid net-
works, we demonstrate an analogous effect in networks of
adaptively coupled oscillators. While the implications of
this effect have already been known for years in the con-
text of power grids, cascading patterns have just recently
been considered to be important for pathological neuronal
states like Alzheimer disease [86,87] or for the informa-
tion processing in neuronal systems [88]. Our insights might
trigger new modeling approaches to obtain a better under-
standing of the function and the dysfunction of the human
brain.
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APPENDIX A: CLUSTER FREQUENCIES IN GLOBALLY
COUPLED PHASE OSCILLATOR MODELS WITH INERTIA

In this section, we give an approximation of the cluster
frequencies in multicluster states for N globally coupled phase
oscillators with inertia. Let us consider the model used in

Fig. 1. Then the corresponding adaptive network of (6) and
(7) is as follows:

φ̇i = σ

N∑
j=1

χi j, (A1)

χ̇i j = −γ (χi j + sin(φi − φ j + α)), (A2)

with γ � 1 separating the timescales between the fast dy-
namics of the phase oscillators and the slow adaptation. We
have further used the transformation χi j �→ σχi j . For sim-
plicity, we assume that the whole set of oscillators divides
into two phase-locked groups of oscillators φ

μ
i with μ = 1, 2,

i = 1, . . . , Nμ, N1 + N2 = N . In the same way, χ splits up
into four blocks χ

μν
i j describing the coupling between (μ �= ν)

and within the clusters (μ = ν). Note that this ansatz can be
generalized to any number of clusters M. Assume further that
the motion of the phase oscillators is approximately given
by a common cluster frequency, i.e., φ

μ
i ≈ �μt + ϑ

μ
i with

ϑ
μ
i ∈ [0, 2π ). Substituting this ansatz, we find

�μ = −σNμR(φμ) sin(φi − ψ (φμ) + α) + σ

Nν∑
j=1

χ
μν
i j ,

where we have used that χ
μμ
i j = − sin(φμ

i − φ
μ
j + α) within

the cluster and the definition of the complex mean field Z (φμ)
and the real order parameter R(φμ) for a vector of phases
φμ = (φμ

1 , . . . , φ
μ
Nμ

)T :

Z (φμ) =
Nμ∑
j=1

eiφj = R(φμ)eiψ (φμ ). (A3)

It can be shown that if the relative motion between the clusters
is sufficiently large, i.e., �1 − �2 
 γ , then the coupling
weights between the clusters χ12

i j , χ21
i j scale with γ and can

be approximately neglected. For rigorous results, we refer to
Ref. [15]. Finally, we find

�μ = −σNμR(φμ) sin(φi − ψ (φμ) + α)

as the zeroth approximation in γ . Hence, in-phase clusters
[R(φμ) = 1] have a collective frequency �μ = −σNμ sin(α).
Thus, the frequency difference can be controlled by scaling
the size of the individual clusters. In the case of a splay
configuration within each cluster, i.e., φ

μ
i = 2πkμi/Nμ with

wave number kμ ∈ N, the order parameter vanishes [R(φμ) =
0] and hence �μ = 0. Therefore, it is not possible to intro-
duce a frequency difference due to scaling with the cluster
size.

APPENDIX B: PERTURBATIVE APPROXIMATION FOR
TEMPORAL POWER FLOW VARIATIONS

In this section, we show how the large variations of the
power flow on lines connecting a solitary node can be un-
derstood by using a perturbative approach. For the sake of
simplicity, we consider the interaction of a solitary node rep-
resented by phase φ1 with the coherent cluster represented by
a single node with phase φ2. For this setup and the parameters
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as given in Sec. V, the dynamical equations (6) and (7) can be
written as

θ̇ = ω1 − �0 + Kχ, (B1)

χ̇ = −αχ − 2 sin θ, (B2)

where ω1 = p1/(γ M ) is the natural frequency of the solitary
node, �0 is the common frequency of the coherent cluster,
θ = φ1 − φ2 is the relative phase, and Kχ = (χ12 − χ21) is
the relative coupling weight with K = σ/M. With the pa-
rameter values chosen in Fig. 4, we find that K 
 1. By
introducing ε = 1/K � 1 and the time rescaling t → Kt , we
get

θ ′ = εω + χ,

χ ′ = −ε(αχ + 2 sin θ ),
(B3)

where ω = ω1 − �0 and the prime denotes the derivative with
respect to t ′ = t/K . We note that χ ∈ [−α/2, α/2] due to
the boundedness of the sin function. Consider the follow-
ing perturbation approach with multitimescale ansatz θ =
ϑ (τ0, τ1, . . . ) + εθ (1) + · · · and χ = χ (0) + εχ (1) + · · · with
τp = ε pt ′, p ∈ N. Let us further define ϑ (τ0, τ1, . . . ) This ap-
proach is similar to the one used in Ref. [15]. Substituting this
ansatz into (B3) yields the following hierarchy of differential
equations:

{
(χ (0) )′ = 0,
∂ϑ
∂τ0

= χ (0),{
(χ (1) )′ = −αχ (0) − 2 sin(ϑ (t ′)),
(θ (1) )′ + ∂ϑ

∂τ1
= ω + χ (1),{

(χ̇ (2) )′ = −αχ (1) − 2 cos(ϑ (t ′))θ (1),

(θ (2) )′ + ∂ϑ
∂τ2

= χ (2),⎧⎪⎨
⎪⎩

(χ̇ (3) )′ = −αχ (2) − 2[cos(ϑ (t ′))θ (2)

− sin(ϑ (t ))(θ (1) )2]
,

(θ (3) )′ + ∂ϑ
∂τ3

= χ (3),

... (B4)

By solving these equations iteratively, we obtain{
χ (0) = χ

(0)
0 ,

ϑ = χ (0)t ′ + ϑ (τ1, . . . ),⎧⎪⎪⎨
⎪⎪⎩

χ
(0)
0 = 0,

χ (1) = 2
�

cos(�t ) + χ
(1)
0 ,

θ (1) = 2
�2 sin(�t ),

ϑ = εωt ′ + χ
(1)
0 + ϑ (τ2, . . . ),

⎧⎪⎪⎨
⎪⎪⎩

χ
(1)
0 = 0,

χ (2) = − 2α
�2 sin(�t ) + 1

�3 cos(2�t ) + χ
(2)
0 ,

θ (2) = 2
�3 cos(�t ) + 1

�4 sin(�t ),
ϑ = ω + χ

(2)
0 + ϑ (τ3, . . . ),

...

where χ
(0)
0 , χ

(1)
0 , · · · = 0 follows from the boundedness of χ

and for given order p in ε we define ϑ = �t + ϑ (τp+1, . . . ).
Rescaling time t → εt and the coupling weights up to the first
order in ε, we find

θ ≈ ωt − 2K

ω2
cos(ωt ), (B5)

(χ12 − χ21) ≈ 2K

ω
cos(ωt ). (B6)

This result supports our numerical finding that on average
the frequency of solitary nodes is close to their natu-
ral frequency, i.e., 〈φ1 − φ2〉 ≈ (ω1 − �0); see Fig. 4(b).
In fact, this is true up to the second order in ε. Small
changes may occur only for the third order and higher; see
(B4). Due to the skew symmetric adaptation function, i.e.,
h(φ) = −σ sin(φ), we know (χ12 − χ21) → 2χ12 for t →
∞. Hence from (B5), we obtain φ1 = ω − (K/ω2) cos(ωt )
and φ2 = �0 + (K/ω2) cos(ωt ). Additional corrections to the
oscillator frequencies appear in the third and higher or-
ders of the expansion in ε and depend explicitly on ω.
The latter fact is congruent with the numerical observation
in Fig. 4(b) that solitary nodes with a lower natural fre-
quency may differ more strongly from their own natural
frequency than the solitary oscillators with a higher natural
frequency.

As above, we know (χ12 − χ21) → 2χ12 for t → ∞.
Hence from (B6), we get that the coupling weights between
the solitary node and the coherent cluster oscillate with the
amplitude K/ω (up to the first order in ε). Using the values
obtained by the numerical simulation, we obtain χ220,214 ≈
χ̄220,214 + 3.76 cos((16.9/2π )t ), which agrees with Fig. 4(c).
The offset χ̄220,214 is not captured by the simplified approach
used here. Qualitatively, however, the offset stems from the
high degree of heterogeneity in our real power grid setup
with regard to the network topology as well as the frequency
distribution.

In this section, we have given a perturbative description
for the characteristics of solitary states in power grid net-
works. The emergence and stability of the solitary nodes are
beyond the scope of the analysis and might be not accessible
analytically due to the high degree of heterogeneity in the
realistic setup. However, a numerical approach can be found
in Ref. [45], where the authors used a Lyapunov method
to describe various partial synchronization patterns and their
emergence.
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