PHYSICAL REVIEW E 103, 042314 (2021)

Elastic moduli of body-centered cubic lattice near rigidity percolation threshold:
Finite-size effects and evidence for first-order phase transition

Sepehr Arbabi®!-* and Muhammad Sahimi?f
' Department of Chemical Engineering, The University of Texas Permian Basin, Odessa, Texas 79762, USA
2Mork Family Department of Chemical Engineering and Materials Science, University of Southern California,
Los Angeles, California 90089-1211, USA

® (Received 10 November 2020; revised 22 March 2021; accepted 2 April 2021; published 19 April 2021)

Extensive numerical simulations of rigidity percolation with only central forces in large three-dimensional
lattices have indicated that many of their topological properties undergo a first-order phase transition at the
rigidity percolation threshold p... In contrast with such properties, past numerical calculations of the elastic
moduli of the same lattices had provided evidence for a second-order phase transition. In this paper we present the
results of extensive simulation of rigidity percolation in large body-centered cubic (bcc) lattices, and show that
as the linear size L of the lattice increases, the elastic moduli close to p.. decrease in a stepwise, discontinuous
manner, a feature that is absent in lattices with L < 30. The number and size of such steps increase with L.
As p. is approached, long-range, nondecaying orientational correlations are built up, giving rise to compact,
nonfractal clusters. As a result, we find that the backbone of the lattice at p,., is compact with a fractal dimension
Dy, = 3. The absence of fractal, scale-invariant clusters, the hallmark of second-order phase transitions, together
with the stairwise behavior of the elastic moduli, provide strong evidence that, at least in bec lattices, many of
the topological properties of rigidity percolation as well as its elastic moduli may undergo a first-order phase
transition at p... In relatively small lattices, however, the boundary effects interfere with the nonlocal nature of
the rigidity percolation. As a result, only when such effects diminish in large lattices does the true nature of the

phase transition emerge.

DOI: 10.1103/PhysRevE.103.042314

I. INTRODUCTION

Rigidity percolation (RP) was introduced by Thorpe [1]
and Feng and Sen [2]. In its simplest version the RP represents
percolation on elastic networks with central (stretching) forces
(CFs), which is described by the following Hamiltonian:

H=%Ze,-,»[(u,»—u,-)-k,-,-]2, (1)
Jjeti}

where u; is the displacement of site i, ¢;; is the force constant
of bond ij, R;; is a unit vector from i to j, and the sum is
over all sites j that are nearest neighbors of site i. Thorpe
[1] and Feng and Sen [2] showed that the rigidity percolation
threshold p?, for bond disorder is much larger than p?, the
connectivity threshold of scalar percolation. For example, for
a d-dimensional cubic network one has p?, = 1. Thus, study
of the RP in lattices with only nearest-neighbor connections
has been restricted mostly to those for which p8, < 1, e.g.,
the triangular and body-centered cubic (bcc) networks. For
brevity, we delete the superscript B and refer to the bond-
percolation threshold in the RP as p... Rigidity percolation
may also include bond-bending forces [3—6], but the focus of

the present paper is on lattices with only CFs.
An effective-medium approximation (EMA) for the elastic
moduli of a network in the RP model predicted [7-13] that
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Pee = 2d/Z, where d and Z are, respectively, the dimension-
ality and coordination number of the lattice. The same result
is obtained when one uses the constraint-counting method
[1]. Note that p..Z is the average coordination number of a
d-dimensional lattice at p... Thus, the EMA indicates that the
coordination number of such a lattice must be greater than 2d
in order for it to have nonzero elastic moduli.

Rigidity percolation in two-dimensional (2D) lattices has
been studied [14-20] extensively, although the nature of the
phase transition in 2D RP is still to some extent controversial.
In a d-dimensional CF lattice, no element of the structure
can be moved in any direction with respect to the rest of
the lattice, nor can it be rotated along %d(d — 1) independent

axes [21], implying that there are %d (d + 1) constraints on the
possible motion of each element of the rigid lattice. Therefore,
there are long-range, nondecaying orientational correlations
in rigidity percolation.

The existence of such long-range correlations provides
an important hint about the nature of phase transition in
the sample-spanning rigid cluster at p.., because such cor-
relations give rise, in the thermodynamic limit, to clusters
that, after averaging, are translationally, but not scale, invari-
ant [22,23]. Since scale-invariant structures at a transition
point represent the signature of second-order phase transi-
tions, the conclusion is that the RP transition may be first
order.

Using large-scale simulations, Moukarzel et al. [24] pro-
vided further numerical evidence in support of the conclusion.
Moreover, by solving the problem on the Bethe lattices, which
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corresponds to the mean-field limit of percolation at its upper
critical dimension, they found [25] that, at least in some cases,
the percolation transition in the sample-spanning rigid cluster
at p.. is first order, and that some variations of the problem are
similar to bootstrap percolation [26,27] that, in certain limits,
also gives rise to a first-order phase transition. Earlier, Sahimi
and Ray [28] had suggested that bootstrap percolation may
be relevant to describing mechanical properties of disordered
lattices.

But if the topological properties of a sample-spanning rigid
cluster with CFs undergo a first-order phase transition at p.,,
then interpretation of the power laws that govern the elastic
moduli of the CF percolation networks that are characteristic
of second-order phase transitions becomes problematic. A
possible resolution of the contradiction may be as follows:
Although the sample-spanning CF cluster may be compact
(and, hence, the phase in transition in its properties may be
first order), its backbone is not [24], and may in fact be
a fractal object with a well-defined fractal dimension [24],
Dy, = 1.78, for 2D CF clusters. Due to the fractality of the
rigid backbone, the RP transition, defined as the point at which
the elastic moduli vanish, is also second order.

Jacobs and Thorpe [14,29] computed the critical exponents
v, and f, that characterize, respectively, the divergence of the
RP correlation length &, near pc., &, ~ (p — pc.)~", and van-
ishing of the percolation fraction P(p) (the fraction of bonds
in the sample-spanning cluster) near p.., P(p) ~ (p — pee)e,
as well as the fractal dimensions Dy and Dy, with Dy being
the fractal dimension of the rigid sample-spanning cluster at
Pce- Their estimates for 2D networks were v, >~ 1.21, 8, ~
0.175, and Dy ~ 1.86, consistent with a geometrical second-
order phase transition at p... Their estimate, Dy, ~ 1.8, was
consistent with that of Moukarzel et al. [24]. However, there
are still 2D cases for which the RP transition at p.. is be-
lieved to be first order, such as the random-bond model [30]
and networks with chemical order [31], but Chubynsky and
Thorpe [32] still contended that, “up to now, there have been
no cases where it [first-order transition] would be observed for
a regular randomly diluted network.”

In contrast to the RP with CFs in 2D lattices, as well
as those with the CF and bond-bending forces in both two
and three dimensions that have been studied extensively
[3-6,33-35], RP with the CFs alone has not been extensively
studied in three-dimensional (3D) lattices. In fact, the only
studies that the authors are aware of are their own [17] and
that of Chubynsky and Thorpe [32]. The latter stated that “the
rigidity percolation transition on such networks [BCC lattices]
is first order, in contrast to bond-bending networks in 3D and
central-force networks in 2D. In fact, the transition is actually
first order geometrically, but second order physically, as it is
known from previous work that the elastic constants change
continuously at the transition [point].”

Chubynsky and Thorpe [32] studied only the connectivity
of the bec lattice, and did not compute its elastic moduli.
On the other hand, the present authors’ results for the elastic
moduli of the bec lattice [17], which had been obtained with
relatively small lattices, had indicated that the elastic moduli
undergo a second-order phase transition. Therefore, given the
results and contention of Chubynsky and Thorpe, it is still an
open question whether the elastic moduli of bec lattices in the

RP with only the CFs undergo a first- or second-order phase
transition at p,.

The purpose of the present paper is, therefore, to study the
RP with the CFs in a bec lattice by simulating systems much
larger than what had been done in the past, and to examine
whether the elastic moduli of the lattice undergo a second- or
first-order transition at p... In particular, we study finite-size
effects as the size of the lattice increases, and how they affect
the elastic moduli.

The rest of this paper is organized as follows. In Sec. II
we describe how the force distribution is used to compute
various quantities of interest, followed in Sec. III by the de-
tails of the numerical simulations. The results are presented
and discussed extensively in Sec. IV, while the paper and its
results are summarized in Sec. V.

II. FORCE DISTRIBUTION

As first pointed out by Sahimi and Arbabi [33], a fruitful
approach to investigating the RP is by studying the force
distribution (FD), the distribution of the forces that the in-
tact (uncut) bonds of a network withstand. To determine the
FD, one imposes a given boundary condition on the network
and determines the nodal displacements u; by minimizing the
elastic energy given by Eq. (1), from which the total force F;
exerted on a bond i and, thus, its distribution, are calculated.
Of particular interest are the moments of the FD defined by

My = ngpF/, @

where np, is the number of bonds that suffer a force with
magnitude F;. If the rigidity transition with the CFs is second
order, then, near p.., the moments M, should follow the power
law,

My~ (p— pee) ~ &', 3)

where all the 7, are distinct [33]. For length scales L < &, one
should replace £, by L and, therefore,

M, ~L7%, 4)

where T, = 7,/v,. Only nonzero values of F; contribute to M,
and, therefore, M) is simply the total number of bonds in the
backbone of the lattice. As a result, —% is simply the fractal
dimension Dy, of the backbone of the sample-spanning rigid
cluster. On the other hand, M is the average force that a bond
withstands, and M, is proportional (and, depending on the
type of the lattice, is exactly equal) to the elastic moduli of the
network. Thus, if the rigidity transition for the elastic moduli
G of the lattice is second order, so that we can write

G~ (p—pe). ®)

then f = 7,. One main goal of this paper is to check whether
power law (5) holds for bcc lattices, and whether it is unam-
biguously valid as the size of the lattice increases.

III. DETAILS OF NUMERICAL SIMULATIONS

To compute the FD we minimized the elastic energy H
with respect to the displacement u;; i.e., we set dH /du; = 0.
Writing down this equation for every interior node of the
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network results in 3N simultaneous linear equations for the
nodal displacements u; of the network of N internal nodes.
We computed the shear modulus . = Cy4 of the lattice, where
Cyy refers to the entry of the stiffness tensor C and, there-
fore, imposed shearing boundary condition in one direction
and periodic boundary conditions in the other directions. The
resulting set of linear equations was solved by the adap-
tive accelerated Jacobi-conjugate gradient method that uses
an acceleration parameter optimized for each iteration. The
convergence criterion was that for all the sites i, |[u§k) —
ugk_l)] /ufk_l)l < €, where ugk) is the displacement of site i
after the kth iteration; we set € = 1072,

Since a main goal of the study is to understand finite-size
effects, we simulated L x L x L lattices with L = 10, 12, 14,
16, 18, 20, 30, 40, 50, 56, 60, 62, 64, 66, 68, and 70, where
L is the number of nodes in a direction at the corner of the
elementary cubes in the lattice. In our previous study [17] we
had simulated bcc lattices with up to L = 16. For each L a
large number of realizations were generated and simulated,
ranging from 10° for L = 10 to 50 for L = 70. The lattice with
L = 70 has 328 509 nodes, almost three times larger than the
largest lattice simulated by Chubynsky and Thorpe [32] and
the largest 3D lattice that we are aware of simulated in such
studies.

IV. RESULTS AND DISCUSSION

We carried out extensive numerical simulation of RP with
CFs on a bece lattice. In what follows we present the results
and discuss their implications.

A. The percolation threshold

As is well known [15,17], if the transition of the elastic
moduli of rigid lattices with CFs at p.. is second order, then
accurate estimates of the scaling exponents that characterize
the power-law behavior of the elastic near p.., Eq. (3), depend
sensitively on precise estimates of p... Although constraint
counting and the EMA do provide estimates of p,., they are
not accurate enough for use in the present analysis. We had
previously proposed [17] a method for obtaining precise esti-
mates of p.., which was based on the moments of the FD and
is as follows. If, in a network of linear size L with a fraction
p of intact springs, one calculates the ratio r, | = M, /M, for
various values of L and p, with M| and M, being the first two
moments of the FD distribution, then at the true value of p., a
plot of In ;| versus In L should be a straight line. In principle,
this should be true for any ratio, r, 4,1 = M,/M,_, but for

q > 2, the moments of the FD are subject to large fluctuations.
This method was tested [17] for the triangular network with
network sizes L = 25, 35, 45, and 55 and a few values of
p, 0.636 < p < 0.65. The plot of Inr,; versus InL turned
out to be a straight line only if 0.640 < p < 0.642. Thus,
the estimate, p.. >~ 0.641 £ 0.001, was obtained, in complete
agreement with the most accurate estimate of p.,.

A bcc lattice of CF springs is also rigid with respect to a
transverse shear, as well as a volume change and, therefore,
it should possess a well-defined p.. < 1. Note, however, that
with pure elongational shear along the cubic axis, the bcc
lattice would have no restoring elastic constant. Thus, the
moment method was also used [17] to study bond percolation
on the bec lattice with CFs. It turned out that the plot of
Inrp; versus InL would be linear only if p. >~ 0.737, but
not for p < 0.735 or p > 0.739. To check our old results, we
carried out new computations with L = 10, 20, 30, and 40.
The number of realizations varied from 2000 for L = 10 to
40 for L = 40. Figure 1 presents the results. The three plots
indicate that the data for In(M,/M;) versus p are most accu-
rately on a straight line for p ~ 0.737. Linearity of the plot for
p =~ 0.741 is also very close to p >~ 0.737, whereas the data
do not form a straight line for p >~ 0.733. Thus, this confirms
our earlier result: for bond percolation on a bcc lattice with
CFs, p.. =~ 0.737 & 0.004, much larger than p. ~ 0.1795 for
scalar bond percolation on the same network.

Chubynsky and Thorpe [32] estimated that p., >~ 0.7485.
They acknowledged, however, that their lattice is different
from a bcc lattice, stating that the difference “is probably due
to the fact that their [our] simulations were on undistorted
nongeneric lattices.” Since their estimate of p,, is larger than
our estimates, the results that are described and discussed
below also include lattices at their particular value of p,.
Despite this, we also carried out some computations with the
estimate of p., that Chubynsky and Thorpe [32] reported. But,
aside from the decrease of the shear modulus p with the size
L at their p.., we found no particular feature in the behavior
of p(L) at that point.

B. Finite-size effects: Stairwise variation of the elastic modulus

Let us point out that the EMA and our earlier numeri-
cal simulations with L = 16 had provided no hint about the
possibility of a first-order phase transition for the elastic mod-
ulus u at p,.. Figure 2 compares the numerical results (for
L = 16) with the predictions of the EMA, both of which
indicate a continuous phase transition at p,.

-4 4 -4
p=0.741 p=0.737 p=0.733
s | R2=0.9991 = R2=0.9999 =5 L R2=0.9630
S b3 3
~ ~ ~
~-6 | ~-6 ~-6

2 2 2
c-7r c -7 c-7r
= - - .

8 L L 1 8 L L L -8 L L 1

2 25 3 35 4 2 25 3 35 4 2 25 3 35 4
In(L) In(L) In(L)

FIG. 1. Logarithmic plot of M,/M,, the ratio of the first two moments of the force distribution, versus the linear size L of the bcc lattice,
for three values of p, together with the associated values of the goodness of the fit R?. Note the deviation from linearity for p = 0.733.

042314-3



SEPEHR ARBABI AND MUHAMMAD SAHIMI

PHYSICAL REVIEW E 103, 042314 (2021)

1.0

09 t
0.8
0.7
06
u 05
04
03

02

01 r /
0o L, A

0.7 0.75 0.8 0.85 0.9 0.95 1

p

FIG. 2. Comparison of the calculated shear modulus of the bcc
lattice (circles) with a linear size of L = 16 with the predictions of
the effective-medium approximation (straight line).

Figure 3 presents the computed shear modulus p versus p,
the fraction of intact bonds, for ten realizations of the lattice
of size L = 16, the largest lattice simulated in our previous
study [17]. u was normalized by its value at p = 1. There
is no indication of a discontinuous phase transition as p., is
approached, hence confirming the previous results.

Figure 4 presents a plot of In i versus In L for L < 20 at
P = pece- We fitted the numerical results to

pw~ L7 +ai/In(L) + a» /L], (6)

where § = f/v,, and a; and a, are two constants. The terms in
[ ] represent correction to scaling that is particularly important
when L is relatively small [34]. We obtained the estimate § =
f/ve = 1.97 (with a; >~ —0.12 and a, ~ 0.03) with a good-
ness of fit, R? ~ 0.99. These results are in complete agreement
with our earlier results [17], although in the present work
we used a much larger number of realizations, and added the
results for lattices of size L = 20 that had not been simulated
in our earlier study.

0.12
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0.08
|10.06
0.04 [

0.02 |

0.00 “
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0.742 0.744 0.746 0.748 0.75

Y

FIG. 3. Shear modulus p of ten realizations of BCC lattice with
linear size L = 16.

0.738 0.74

2 2.2 24 26 2.8 3 3.2
In(L)

FIG. 4. Scaling of the shear modulus p with the linear size L of
the bec lattice, with L < 20.

To further check the estimate of § obtained by fitting the
data to Eq. (6), we also fitted them to two simpler equations:

w~ L%+ bL™®), (7

w ~ L%[a+ b(InL)™], ®)

where o is a correction-to-scaling exponent. Let us define
x% = Y [(data — model)/data]?, where “model” refers to the
predictions of Egs. (6)—(8) fitted to the numerical data. The
fit of the data to Eq. (6) was obtained with x2~6x107;
Eq. (7) yielded § ~ 1.97, o ~ 1.36, and X2 ~ 44 %x 1074,
whereas we obtained § ~ 1.97, o ~ 1.62, and x2 ~ 4.9 x
10~*. Thus, the three equations yield identical estimates for
8, but with a smaller x2 for Eq. (6). Interestingly, we obtained
a =~ 1 for both Egs. (7) and (8), consistent with Eq. (6).

The “trouble” begins to emerge when much larger lattices
are simulated. We show in Fig. 5 the results for two sets of
realizations. For 0.75 < p < 1 the shear modulus of all the
realization decreases smoothly with p and, therefore, need
not be shown, while for p < 0.75 we computed the elastic
modulus in steps of size Ap = 1.3 x 1073. Figure 5(a) com-
pares the computed p for ten realizations of the lattice of size
L =170, the largest one simulated in the present work. The
ten realizations are nonpercolating at p = 0.737, indicated in
the figure by not crossing the horizontal axis. Figure 5(b)
presents the results for an ensemble of percolating realizations
over exactly the same range of p. They have an essentially
zero modulus with & < 107 and show up as touching the
horizontal axis. As both figures indicate, when and only when
the size of the lattice is large enough do the discontinuous
steps in the functional form of u(p) emerge. Note that the flat
part of the steps implies that it costs no energy to deform the
lattice for the lower values of p until the next step is reached,
which is due to free rotation of the bonds in the lattice. Note
also that the length and position of the steps vary significantly
among realizations, implying that averaging the results over
the realizations is very difficult, and unreliable, regardless of
the method used. We return to Fig. 5 shortly.

Note that the stairs in Fig. 5 should be completely hori-
zontal, i.e., over the length of the stairs the change in the
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FIG. 5. Shear modulus of ten realizations of the bcc lattice of size L = 70 in the interval p., = 0.737 < p < 0.75. (a) Nonpercolating and

(b) percolating realizations.

backbone should occur at no cost to the elastic energy of the
system and, therefore, no change in the shear modulus, due
to the (energetically) free rotations of the clusters of bonds.
Numerically, however, the stairs do have a very small slope
due to the convergence criterion used in the simulations. In the
numerical simulations the solution of the governing equations
for the nodal displacements at a given p is used as the initial
guess for determining the solution at p — Ap. Given the very
small value of A p, over the length of a stair the nodal displace-
ments change extremely slightly from p to p — Ap, less than
1073, well within the numerical tolerance. The overall effect
is that the shear modulus is lower at p — Ap over a given stair
by a negligible amount. For example, in one realization of
the L = 70 lattice, u = 2.1935 x 10~* at p = 0.741, whereas
w=12.1919 x 10~*at p = 0.7397.

To understand these results better and to provide numerical
evidence in support of the above argument, we note that the
total number of bonds, Ny, in the intact lattice (at p = 1) is
No=Z({L -1 with Z=38 being the coordination number.
Thus, for the results shown in Fig. 3 with L = 16 we have
No = 27000 bonds, and the number of bonds removed at each
step is n, = NgAp = 27000Ap. With Ap = 1.3 x 1073 for
p < 0.75, each step of decreasing p by Ap removes about 35
bonds from the lattice. When 35 bonds are removed from the
lattice, the decrease in the number of bonds in the backbone
is larger than 35, because more bonds gain free rotation (at no
cost to the elastic energy). Thus, by removing more bonds the
nonlocal effect of the spatial distribution of the CFs is propa-
gated, and a sample-spanning cluster with a larger number of
freely rotating bonds emerges.

Figure 6(a) presents the variation of M, the number of
bonds in the backbone, with p for p < 0.75 and L = 16, in
one realization of the lattice. As expected, M decreases more
or less smoothly with decreasing p. Figure 6(b) shows the
change AMy = My(p) — My(p — Ap) in number of bonds in
the backbone at each step change of Ap = 0.0013, indicating
that removing 35 bonds from the lattice at each step affects up
to 204 bonds in the backbone in the same realization. Next,
consider Figure 6(c), in which we plot the normalized variable
AMy/(NyAp) versus p. Close to p = 1 the change in My is
about the same as the number of removed bonds at each step.
Thus, removal of the bonds at high values of p has only a local

effect. As lower values of p are approached, however, the ratio
exceeds 1, implying that the effect of removal of the bonds on
the backbone becomes far reaching and nonlocal. Moreover,
for p < 0.75 the ratio has a strong nonmonotonic behavior,
signaling that the backbone is very sensitive to bonds’ re-
moval.

To better demonstrate the significance of large lattice sizes
to the emergence of the stepwise decrease of shear modulus
with decreasing p, we compare in Fig. 7 the shear modulus
u(p) for three lattice sizes. These results are for a single
realization of the lattice for each L. For L = 30 only one
step emerges very close to p... When the size is increased to
L = 50, two steps are developed, whereas for L = 70 multiple
steps emerge over the entire range of p that we consider.
Thus, we may expect that if we extrapolate the behavior of the
lattice of size L = 70 to larger ones, we will have continuous
increase in the frequency and length of the steps, which would
provide strong evidence that the steps connect for p < 0.75
and emerge as a large one, signaling a possible first-order
transition. We will come back to this point shortly.

Further evidence for the possible first-order transition is
presented in Fig. 8. Figure 8(a), which shows the average of
w for all the lattice sizes that were simulated at p., with the
average taken over the number of realizations generated for
each L, indicates clearly that the slope changes for L > 60.
Note that there is an upward jump in the data from L = 56 to
L = 60 (the first solid circle in the figure). To further validate
the data for L = 60, a separate set of simulations with 50
realizations was carried out. The average modulus p for the
first set at p. was 0.00544, whereas it was 0.00537 for the
second set. The close agreement confirms the accuracy of the
results for L = 60. The change in the slope is further verified
by the data from larger sizes.

Another way of looking at the issue is provided in Fig. 8(b),
where we compare w(p) versus p — p. for two sizes L
near p.. One is for L = 16, indicating smooth power-law
vanishing of w(p), consistent with Fig. 4. The second one
presents the averaged w(p) for L = 70. Since in this case u(p)
decreases in a stepwise manner, we used the middle of the
steps for each p — p.. and performed the averaging. In con-
trast with the results for L = 16, there is a large jump in
the value of u(p) right before it vanishes at p = p.., hence

042314-5



SEPEHR ARBABI AND MUHAMMAD SAHIMI

PHYSICAL REVIEW E 103, 042314 (2021)

1.80 ¢ 250
178 E(a) 225 F (b)
176 200 F
L 174 J175 F
S i E =150
[=) E < E
S 170 ¢ 125 f
168 100 E
166 F 75 E
1.64 :IIIIIIIIIIlIllllllllllllllIllllllllllll 50 Bl sl i s i i g iitsi sl s it iixitliaid
0.736 0.738 0.74 0.742 0.744 0.746 0.748 0.75 0.752 0.736 0.738 0.74 0.742 0.744 0.746 0.748 0.75 0.752
p p
6
; c
s f (c)
o4
d
=4d F
<2 .
S5 E
S
9, f
0:JlllllllllllllllllllllljllIAJ
07 075 08 08 09 095 1
p

FIG. 6. (a) Dependence of the number of bonds, M), in the backbone on the fraction p of the bonds. (b) The change in the number of
bonds, AMy = My(p) — Mo(p — Ap), in the backbone versus p. (c) Normalized change in the number of the backbone bonds, AM,/(NoAp)
versus p, where Ap is the change in p between two successive steps, and N is the number of bonds at p = 1. All the results are for a lattice of

linear size L = 16.

providing another indication for the possibility of a first-order
phase transition.

A third way of studying the order of the phase transition
at p. is by studying the decrease in the modulus p with
smaller Ap intervals of 0.0002, instead of the 0.0013 used
so far, which demonstrates clearly that as the size L increases,
the steps in u combine and a larger final jump to no rigidity
is formed at p... This is shown in Fig. 9 where we compare
the results for one typical realization with L = 30 and L = 70

0.06
r e 1=30
0.05 o
0-1=50 e
[ o
0.04 -A-L=70
003 |
002 |
001 f
0 7\ L g L L L L L L L L L L L L L L L L L L L L L L L L L
0.735 0.738 0.740 0.743 0.745 0.748 0.750
p

FIG. 7. Emergence of discontinuous steps in the dependence of
the shear modulus p on p as the size L of the lattice increases.

very close to the threshold. We note that the small steps for
L =30, which are detectable only at the higher resolution
(smaller Ap), combine and form a large horizontal step for
L =70. The final step at p = 0.736 for L = 70 has grown in
size relative to that for L = 30. Thus, Fig. 9 provides further
evidence for the proposed phase-transition picture, namely,
that as L increases, the bcc lattice with only CFs undergoes
a first-order transition.

C. The backbone

As already pointed out, the moment M of the force distri-
bution represents the total number of bonds in the backbone,
the stress-transmitting part of the sample-spanning rigid clus-
ter. Therefore, for ¢ = 0 the exponent %, is equal to the fractal
dimension Dy, of the backbone. To obtain a precise estimate
of Dy, and taking into account the finite-size effects, we write

My o< L™P%[1 4+ a;/In(L) + ay/L]. )
Figure 10 presents the results. Admittedly, the range of L is
small, with only a factor of about 2.5 variations. It is, however,
not currently possible, for us at least, to simulate any lattice
with a linear size L > 70. The fit of My to Eq. (9) yielded
Dy, >~ 3.02 £ 0.08, implying that the backbone is completely
compact. A compact backbone implies a first-order phase
transition for the elastic moduli at p... Thus, this provides
further evidence that the transition in the elastic moduli at p..
may be first order.
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FIG. 8. (a) Dependence of the average shear modulus p on the size L of the bec lattice at the rigidity threshold p... Observe the change
of slope for L > 60, as well as the behavior of u for the largest L. (b) Comparison of the dependence of the averaged shear modulus x(p) on
P — De. for a lattice of linear size L = 16 (open circles) and L = 70 (solid circles). Observe the large jump in p(p) for L = 70 at the last point

before p — p.. = 0 and compare it with that for L = 16.

D. Bimodality and first-order phase transition

In studies of liquid-gas phase transitions it was suggested
[35,36] that bimodality of the distribution of the order param-
eter near a critical point is a signature of a first-order phase
transition in finite systems, although counterarguments [37]
and counterexamples [38] have also been suggested. Bimodal-
ity in the context of the present problem means that if the
transition at p.. is first order, then there is a region in the
vicinity of p. in which both percolating and nonpercolat-
ing lattices are possible. In other words, if we generate an
ensemble of realizations at, for example, p = 0.739, perco-
lation has already occurred in a fraction of the realizations,
whereas in the remaining fraction percolation has not oc-
curred.

0.018

0.016 =1=30

0.014 -e-L=70
0.012

0.01

H 0.008

0.006

0.004

0.002

0 1 1 @ 1
0.730 0.732 0.734 0.736 0.738

0.740
p

FIG. 9. Comparison of the stepwise decrease in the shear modu-
lus p very near the rigidity threshold p,. for two lattice sizes L. Note
the single step in the lattice of size L = 70, after which u sharply
drops to zero, and compare it with the multiple steps for L = 30.

This is indeed what the simulations indicate. We already
pointed out that the two sets of results shown in Fig. 5 rep-
resent ensembles of percolating and nonpercolating lattices
over the same interval of p. At p = p. about 20% of the
realizations are percolating, while the rest are not.

E. Scaling of the average step size

The last evidence for the possible first-order phase transi-
tion of the elastic moduli at p,, is provided by the scaling of
the mean step size S with the linear size L of the lattice at p.,.
Figure 11 presents the results, which indicate that the mean
step size increases with L at the rigidity percolation threshold.
Thus, as L becomes very large, so also does the step size,
implying that an eventual large jump in the elastic moduli
from a nonzero value to zero emerges, hence supporting a
first-order phase transition.

18
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[=}
T

M, X 106

02 F
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FIG. 10. Scaling of the mass M, with the linear size L of the bcc
lattice at its rigidity threshold p...
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FIG. 11. Scaling of the average step size with the linear size of
the bcec lattice at its rigidity threshold p,..

The results presented in Fig. 11 may be used to obtain
a rough estimate of the minimum size L to observe a clear
step in the value of the shear modulus of the lattice. The
straight line in the semilogarithmic plot of Fig. 11 is de-
scribed by L >~ 86.71n(S) + 471. The size (height) of the
step is the value of the shear modulus for a particular value
of p. Thus, for example, for p = 0.7485 (the numerical es-
timate of p. suggested by Chubynsky and Thorpe [32]),
=~ 0.033, which means L ~ 175, about 2.5 times larger than
the largest lattice size that we can currently simulate. For
p = 0.737 (our estimate of p.), u =~ 0.012 and, therefore,
L~ 90.

V. SUMMARY

Rigidity percolation with central forces is a nonlocal phe-
nomenon. As the rigidity percolation threshold is approached,
long-range, nondecaying correlations are built up. Such cor-
relations give rise to compact, nonfractal structures. The
absence of fractal, scale-invariant clusters, the hallmark of
second-order phase transitions, implies that both the topolog-
ical properties of rigidity percolation and its elastic moduli
should undergo a first-order phase transition at p... The results
presented in this paper support this for at least bcc lattices,
but we emphasize that one should study still larger lattices.
In addition, whether this is true for other regular 3D lattices
remains to be studied.

In small systems, however, the boundary effects interfere
with the nonlocal nature of the rigidity percolation. As a
result, only when such effects diminish in large lattices does
the true nature of the phase transition emerge. This explains
the earlier results [17] with relatively small bcc lattices that
had indicated a second-order phase transition for the elastic
moduli at p... The results presented in this paper support this
picture, although simulations with larger lattices would still be
desirable. The results are also in agreement with the previous
theoretical analysis [21] and numerical simulation [24,25].
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