PHYSICAL REVIEW E 103, 042313 (2021)

From one-way streets to percolation on random mixed graphs

Vincent Verbavatz
Institut de Physique Théorique, CEA, CNRS-URA 2306, F-91191 Gif-sur-Yvette, France
and Ecole des Ponts ParisTech, F-77420 Champs-sur-Marne, France

Marc Barthelemy ©
Institut de Physique Théorique, CEA, CNRS-URA 2306, F-91191 Gif-sur-Yvette, France
and CAMS (CNRS/EHESS), 54 Boulevard Raspail, F-75006 Paris, France

® (Received 12 January 2021; revised 18 March 2021; accepted 26 March 2021; published 16 April 2021)

In most studies, street networks are considered as undirected graphs while one-way streets and their effect on
shortest paths are usually ignored. Here, we first study the empirical effect of one-way streets in about 140 cities
in the world. Their presence induces a detour that persists over a wide range of distances and is characterized by
a nonuniversal exponent. The effect of one-ways on the pattern of shortest paths is then twofold: they mitigate
local traffic in certain areas but create bottlenecks elsewhere. This empirical study leads naturally to considering a
mixed graph model of 2d regular lattices with both undirected links and a diluted variable fraction p of randomly
directed links which mimics the presence of one-ways in a street network. We study the size of the strongly
connected component (SCC) versus p and demonstrate the existence of a threshold p. above which the SCC
size is zero. We show numerically that this transition is nontrivial for lattices with degree less than 4 and provide
some analytical argument. We compute numerically the critical exponents for this transition and confirm previous
results showing that they define a new universality class different from both the directed and standard percolation.
Finally, we show that the transition on real-world graphs can be understood with random perturbations of regular
lattices. The impact of one-ways on the graph properties was already the subject of a few mathematical studies,
and our results show that this problem has also interesting connections with percolation, a classical model in

statistical physics.
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I. INTRODUCTION

In most countries a majority of individuals commute by
car [1], and smart monitoring of traffic in cities has become
crucial for enhancing productivity while reducing transport
emissions [2,3]. Historically, a simple and efficient way to
manage traffic is by using dedicated traffic codes, including
the design of one-way streets [4]. The first official attempt to
create dedicated one-way roads is said to date back to 1617
in London [5]. The “No Entry” sign was officially adopted
for standardization at the League of Nations convention in
Geneva in 1931 [4]. To this day, one-way streets are created
in order to smooth motor traffic in cities [6], to reduce driving
time and congestion, or to preserve specific neighborhoods [7]
from traffic.

Mathematically, street networks can be represented by
graphs where the vertices are intersections and the links road
segments between consecutive intersections. Almost all stud-
ies on street networks [8—17] describe the street network as an
undirected graph, but formally a network of both undirected
links and one-way streets (represented by directed edges) is
called a mixed graph [18,19]. Despite their relevance for prac-
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tical applications [20], there are very few results available for
directed street networks, except for the following one: Rob-
bins’ theorem [21] states that it is possible to choose a direc-
tion for each edge—called hereafter a strong orientation—of
an undirected graph G turning it into a directed graph that has
a path from every vertex to every other vertex, if and only if
G is connected and has no bridge (i.e., an edge whose dele-
tion increases the graph’s number of connected components).
Robbins’ seminal result can be extended to mixed graphs [22],
stating that if G is a strongly connected mixed graph, then any
undirected edge of G that is not a bridge may be made directed
without changing the connectivity of G. Hence, it is possible
to turn streets into one-ways as long as their removal does
not disconnect the whole street network. It is thus recursively
possible for any bridgeless network to be turned into a fully
directed graph. In most cities, it should then be possible to find
a street orientation that keeps the network strongly connected.
This theorem however does not say anything about how one-
way streets modify shortest paths. In this respect, very few
results were obtained: for the diameter for example, Chvatal
and Thomassen [23] proved that if the undirected graph has a
diameter d, then there exists a strong orientation with diameter
less than the (best possible) bound 2d + 242, but that it is also
a NP-hard problem to find. It is interesting to note that for
some applications, it is desirable to find a strong orientation
that is not efficient, i.e., does not minimize the diameter in or-
der to discourage people from driving in certain sections [20].
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TABLE I. Empirical fraction (in length) of one-way streets in
five different cities compared to the SCC-percolation threshold in the
corresponding graphs. The percolation threshold is measured when
the probability to have a giant cluster (connecting opposite sides)
crosses 1/2.

City Country One-way share (%) Threshold
Beijing China 37 0.63(2)
Casablanca Morocco 19 0.73(2)
Paris France 66 0.78(2)
New York City USA 55 0.77(2)
Buenos Aires Argentina 71 0.78(2)

Here, we will first discuss some empirical results about the
fraction of one-way streets in cities and their effect on shortest
paths. This will naturally lead us to consider the problem of
percolation in mixed graphs and the corresponding critical
exponents that define a new universality class. We will then
discuss the case of real-world random graphs.

II. EMPIRICAL RESULTS

Information about one-way streets in cities is available
from OpenStreetMap, an open source map of the world [24].
We mined this data set with the open software OSMnx [25]
that allowed us to extract directly the street network from 146
cities defined by their administrative boundaries. The graph
analysis of real networks was done with NetworkX [26], and
the theoretical analysis of regular lattices and computations of
the percolation threshold and of the critical exponents were
done with the C/C++4 network analysis package “igraph”
[27]. The code is available at [28].

A. Fraction of one-ways and detour index

We define the fraction of one-way streets as p = L /L(G),
where L, is the total length of one-way streets and L(G) the
total length of the network G of size N. We observe that
this fraction ranges from very low values such as 8% for
the average of African cities up to 31% for the average of
European ones. We show in Table I the empirical value of
p in five different cities [compared to the strongly connected
component (SCC) percolation threshold in the corresponding
graphs; see below].

We also show in Fig. 1 the distribution of p in different
continents. In particular, we observe that one-way streets are
significantly more common in Europe than in the rest of the
world. The occurrence of one-way streets seems thus to be
connected to more complex street plans [17].

We denote by dg(i, j) the shortest path distance from node
i to node j on the undirected graph G and dg(i, j) the corre-
sponding quantity for the mixed graph denoted by G (when
one-ways are taken into account). The average detour due to

one-ways is then defined as 77 = m 2 jreG Zﬁgﬁ B

Figure 2(a) shows how the average detour increases with the
fraction of one-way streets p in the data set of world cities we
use. We first observe that the detour increases roughly linearly
with the fraction of one-ways (a power law fit gives an expo-

nent of 0.8) and that most cities have an average detour less
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FIG. 1. Distribution of the fraction p of one-way streets for the
five continents (the fraction is defined as the total length of one-way
streets over the total length of the network).

than 10%. We also note that there is a large dispersion of this
detour for a given value of the one-way fraction. For example,
for p ~ 0.6 the detour varies from about 6% for Singapore
up to 15% for Beirut (and even 5% for p = 0.7 for Buenos
Aires), showing that the impact on shortest paths depends
strongly on the precise location of one-ways. Furthermore, we
can separate the impact of one-ways on various distances by
defining the detour profile given by

dg (i, j)
- —1. 1
Z da(i, j) M

(i,)) s.t. d(i, j)=d

n(d) = m

We observe for various cities in Fig. 2(b) that n(d) roughly de-
creases as a power law of the form 7(d) ~ d~? demonstrating
the impact of one-way streets even for large distance (in this
figure, the distance is normalized by its maximum value for
each city). In particular, we note that if on average the detour
due to one-way streets is of the order of 10%, which seems
small, detours at short distances may be significantly higher
(up to the order of 100%). Also, even if 10% is small at an
individual level, this has a non-negligible effect in terms of
time cost and congestion at the city scale when summed over
all car users.

The exponent € does not seem to be universal and ranges
between 0.2 and 0.8 for different cities. We note that we
expect in general 6 € [0, 1], where the upper bound 6 = 1
corresponds to the case where one-way streets create a con-
stant detour in the directed network, implying dg(i, j) =
C +dg(i, j) and therefore n(d) ~ 1/d. The case 6§ = 0 cor-
responds to the situation where the detour is proportional
to the distance traveled: dz(i, j) o dg(i, j) implying n(d) ~
constant. In any case, this slow decrease of 1(d) with d signals
the long-range effect of one-ways on shortest paths.
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FIG. 2. (a) Distribution of the average detour (%) as a function
of fraction p of one-way streets for 146 world cities (R?> = 0.59).
(b) For five selected cities in the world, we plot the average detour
n(d) due to one-way streets for a trip of distance d as a function of
d (normalized by the maximum distance obtained for each city). The
detour can be fitted by a power n(d) ~ d~°. We find that 6 differs
from one city to another and ranges roughly from 0.2 to 0.8. In
particular, small exponent values (such as in the case of New York
City) might be correlated with the presence of very long one-way
streets leading to a large detour even at very large spatial scales. We
have R* = 0.87 for Beijing, R? = 0.25 for Casablanca, R*> = 0.99
for Paris, R?> = 0.12 for New York City, and R*> = 0.90 for Buenos
Aires.

B. Betweenness centrality

Cars have to follow the direction of links and consequently
one-way streets govern the spatial structure of traffic. The
theoretical question is then to understand what happens to the
patterns of shortest paths when we turn an undirected link
into a one-way street. This can for instance be measured by
comparing the betweenness centrality (BC) of nodes (see for
example [16,29] and references therein). We denote by g (i)
the BC of node i on the graph G defined as

oy (i)

. 1
gG(z>=N§ ot )

where oy is the number of shortest paths from node s to node
t and o (i) the number of these shortest paths that go through
node i. The quantity N is a normalization that we choose
here N'= (N — 1)(N — 2). We denote by gz(i) the BC of
node i when we include one-ways, and we analyze the relative
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FIG. 3. Distribution of the relative variation A of the between-
ness centrality (BC) due to one-way streets in the Parisian network
for negative (the BC decreases) and positive values of A (the BC
increases with one-ways). Both distributions can be fitted by a log-
normal and the parameters are u = 0.38, o = 0.25 (negative values)
and u = 1.52 and o = 4.06. The distribution for positive values of
A is much broader with large values of the relative variation of the
BC demonstrating the creation of critical bottlenecks in the network.
(a) For 53% of the nodes, we have A < 0 which correspond to nodes
having a smaller BC due to one-way streets. In this case, 27% of the
nodes have less than half the undirected BC and 3% less than 10%.
(b) For 47% of nodes, the BC is increased by one-way streets. For
31% of these nodes, their BC doubled or more, and for 3% it is ten
times larger.

variation A = [gz(i) — g6(0)]/gc(i). In the case of Paris for
example, we find that 53% of the nodes have a smaller BC
(A < 0) due to one-way streets with 27% of them having less
than half the undirected BC and 3% less than 10%. For the
other 47% with A > 0 the BC is increased, more than doubled
for 31% of them, and the BC is ten times higher in 3% of
cases. We thus observe here the dual effect of one-way streets:
certain nodes are preserved and experience a reduced traffic
while this simultaneously creates bottlenecks where the BC
can be very large. More generally, we observe (see Fig. 3) that
the distribution of A is not symmetric (with a global average
of ~0.59) and skewed toward positive values indicating that
the bottlenecks due to the deviated traffic can be extremely
busy.

C. Strongly connected component

The strongly connected component (SCC) in the directed
graph is the set of nodes such that there is a directed path
connecting any pairs in it [20]. We note that for a weakly
connected graph such as the street network, there is one SCC
only. We first show (see Fig. 4, left column) the distribution
of degrees of nodes (junctions) in five different cities in the
world, whose fraction p of one-way streets ranges from 19%
to 71% (see Table I). As we could anticipate, we note signif-
icant differences in the degree distribution between old cities
like Paris or Beijing and newer cities like New York City,
where important areas are in the form of a square grid. Ex-
cept in the cases of Casablanca and Beijing, one-way streets
represent more than half of the total length of the network. It
is even more pronounced in the case of square-gridded cities
such as Manhattan where the percentage of one-ways is 69%
(with many east-west or north-south oriented avenues and
streets), which probably corresponds to the need for decreas-
ing congestion and for simplifying the navigation in the city.
For each of these cities, we keep the underlying bidirectional
structure of the graph (which we call the substrate of the real
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FIG. 4. Left column: The degree distribution of junctions for 5
different cities from 5 different continents. The average degree for
these cities is (k) ~ 3.4 (Casablanca), ~3.1 (Beijing), ~3.5 (New
York), ~3.4 (Paris), ~3.7 (Buenos Aires). The most common junc-
tion is a 3-point fork in Casablanca, Paris, and Beijing, while 4-point
crossroads are more frequent in New York City and Buenos Aires.
Right column: The blue points are obtained by picking a fraction p
of streets in the underlying bidirectional structure of the city (that
we call the substrate of the real network) and turning them into
one-way streets. In that statistical process, bidirectional streets in the
real world may be turned into one-way streets while one-way streets
may be bidirectional. We then plot the largest strongly connected
component size (§) in the total network normalized by the number
N of nodes as a function of p. Results are obtained for 10 different
disorder realizations.

network) and we vary the fraction p of one-way streets from
0 to 1 by randomly turning a share p of streets into one-way
streets (and 1 — p is therefore the remaining fraction of undi-
rected links representing two-ways streets). In that process,

bidirectional streets in the real world may be turned into
one-way streets while one-way streets may be bidirectional.
Hence, for each value of p, we randomly allocate one-way
streets (with random orientation) and compute the size S of
the strongly connected component, normalized by the number
N of nodes. We construct many realizations of this process
allowing us to compute statistical properties.

This measure of S/N enables us to understand how many
streets can be randomly turned into one-way streets before
parts of the city become disconnected. We compare in Fig. 4
(right column) the resulting curve for the same process on
regular lattices of 3-point junctions (honeycomb lattice) and
4-point junctions (square lattice). For every city, we observe
an abrupt percolation-like transition for the SCC size when
the fraction of random one-way streets increases. We notice
that for each city the real share p,, (represented by the star)
of one-way streets is below the transition threshold and that in
general (S/N)iea & 1, which means that—fortunately—cities
are not disconnected in real life. This is expected for practical
reasons and Robbins’ theorem [21] states the existence of
such a solution whatever the fraction of directed links. We
note, however, that this solution is statistically not frequent
and may be very far from the average of S/N over all random
configurations at share pre,.

III. PERCOLATION ANALYSIS

A. Percolation and digraphs: The model

These empirical results bring us to study in more depth
this percolation-like transition observed for mixed graphs. We
first note that this problem is different from the rare results
available for digraphs (see for example [30-35] and references
therein). For example, similarly to the Erd6s-Renyi transition
[36], adding directed links to a digraph leads to a transition
for the strongly connected component [30]: for M/N > 1,
there is an infinite SCC (M is the number of directed arcs,
and N the number of nodes). The control parameter is then
the number of edges which are all directed. Other studies
generalized percolation in random fully directed—generally
uncorrelated—networks [31-34] but whose results cannot be
directly applied to regular lattices due to the strong degree
correlations and the nonrandom nature of links. Our model is
also different from the well-known model of directed percola-
tion in statistical physics [37,38] where a preferred direction
is chosen for all bonds on a regular lattice and which defines
a universality class different from usual percolation.

This type of percolation model was introduced by Redner
in a series of papers [39-41] as the random resistor diode
percolation, and was studied further in [42,43,45,46]. In the
more general version of this model defined on lattices, bonds
can be absent, be a resistor that can transmit an electrical
current in either direction along their length, or be diodes
that connect in one direction only. The general phase diagram
was discussed in [39,40] using real-space renormalization ar-
guments which predict fixed points associated with standard
percolation, directed percolation, and other new transitions.
The crossover between isotropic and directed percolation was
further studied in [42—45]. In relation to the problem discussed
here, Redner [39] observed a “reverse percolation” transition
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FIG. 5. Average detour 7 as a function of the fraction p of ran-
domly chosen one-way streets in the city of Paris (France). In this
statistical process, the detour increases with the fraction p. We note,
however, that the empirical detour in the real world (indicated by
a star symbol) remains below the result expected from a random
uniform distribution of one-way streets. This indicates that the actual
choice of one-way streets in Paris is far from what would be obtained
by a random choice of one-way streets and favors small detours.
We compare these results to those obtained for a honeycomb lattice,
whose degree distribution is close to the Paris one.

from a one-way connectivity in a given direction to a two-
way (isotropic) connectivity when connected paths oriented
opposite to the diode polarization begin to span the lattice.
This transition from a connected component to a strongly
connected component corresponds to what we observe here.

The model discussed in this paper was previously con-
sidered in [46] where critical exponents are computed on
isotropically directed lattices where bonds can be either ab-
sent, directed, or undirected (in [47] the authors considered
some properties in the critical case). The particular case where
bonds are either undirected or directed (but cannot be absent)
is the specific case that applies to road networks and that we
will focus on. We recall here the precise definition of this
model. We consider a mixed graph G whose edges can be
either directed or undirected. As in the previous section, we
denote by p the fraction of directed edges, and the limits p = 0
and p =1 correspond then to the undirected and the fully
directed graph, respectively. We assume that the directed links
have a random direction without any bias (i.e., each direction
has a probability 1/2). We vary the fraction p and measure
various quantities, and we will consider regular lattices such
as the square and the honeycomb lattices.

B. Detour properties

We will first consider the average detour on the honeycomb
lattice and observe that it increases with p (Fig. 5 for Paris).
We also see in Fig. 5 that the real detour is below the result
obtained for a random distribution of one-way streets (similar
results are obtained for other cities). This demonstrates the
importance of the precise location of one-ways that can affect
in very different ways the shortest path statistics.

For the honeycomb lattice (Fig. 6), the average detour
n(d) due to directed links for a trip of distance d scales
as a power law of d with n(d) ~d~? (the quantity d is
here normalized by its maximum value). We find 6 = 0.5 +
0.1 as shown in the data collapse of Fig. 6(a). More pre-

MO () .
§1() e, ;
X100 !' E:'i;.iio
= L
= .

102 107 100 01 02 03 04 05 06
Distance d P

FIG. 6. Average detour for the honeycomb lattice. (a) We show
the quantity n(d)v/d versus d normalized by its value at d = 0.1.
The curves collapse onto a single one independent from d and the
observed discrepancies for d close to 1 and d small come from
finite-size effects. (b) The collapse suggest a form n(d) = A(p)d~'"/?,
and a power law fit gives A(p) ~ p” with y =~ 2.3 (R?> = 0.94). We,
however, observe discrepancies at large p.

cisely, we also show that the relation is of the form n(d) =
A(p)d~"'/? that remains valid for all p and with A(p) ~ p*3
[see Fig. 6(b)]. This resultin 1/ Jd suggests the possibility of
an argument relying on the sum of random quantities leading

to dg (i, j) — dg(i, j) ~ V/d.

C. Percolation threshold

In the following, we will focus on the size of the SCC and
related properties. In order to distinguish the new transition
from the usual percolation we will use the term “SCC percola-
tion” when needed. Similarly to classical percolation [48-54],
we denote by P, the probability to belong to the strongly
connected component and which will be the order parameter.
We observe numerically (over 1000 runs) that both lattices
exhibit a phase transition (see Figs. 8 and 9) at a percolation
threshold p. above which the size of the SCC is negligible. We
determine the percolation threshold p.(L) for a finite lattice
of linear size L using the method described in [55]. In order
to determine the percolation threshold numerically, we define
the threshold p.(L) for a finite lattice of linear size L as the
fraction of directed graphs for which the probability P(L) to
observe a strongly connected cluster connecting two oppo-
site sides of the system is 0.5 [55]. In practice, we compute
pc(L) as the average threshold between the last time such that
P(L) > 0.5 and the first time such that P(L) < 0.5 when p
increases. Having the threshold p.(L) for different sizes L, we

FIG. 7. Notations: A node of degree k has an incoming link and
k — 1 outgoing links. Among those, we have m outgoing links, n — m
incoming links, and kK — 1 — n bidirectional edges.
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FIG. 8. SCC-percolation transition for the mixed honeycomb lat-
tice and the calculation of critical exponents (too close to criticality,
finite-size effects become important when the correlation length is
of order the system size which reduces the range over which the fit
can be made). (a) The probability to belong to the infinite cluster
P,, drops dramatically when the fraction p of one-way streets is
close to 0.69 in the honeycomb lattice and 1 in the square lattice.
(b) Calculation of p. = 0.6935 £ 0.0005. (c) The regression of the
finite-size percolation threshold as a function of L gives the exponent
v = 1.1 £ 0.2. (d) Below criticality, the behavior of P, with |p — p,|
gives the exponent § = 0.26 &= 0.02. (e) Above criticality, the max-
imal normalized cluster size scales as sy, ~ |p — p.|° and we find
o = 0.56 £ 0.05. (f) At criticality, the number of clusters of sizes s
scales as n; ~ s~ and we find T = 2.14 £ 0.05.

use the classical ansatz [55]
pe(L) = pc(00) —A/LY, 3

where v is the exponent that describes the divergence of the
correlation length & ~ |p — p.|™". Using this method, we find
for the honeycomb lattice p, = 0.6935 & 0.0005, and p, =
0.998 + 0.002 for the square lattice (see Figs. 8 and 9). For
honeycomb lattices we thus observe a threshold p,. < 1 while
for the square lattice we have p. = 1. This means here that
for a degree equal or larger than 4, the number of different
paths between any pair of points is large enough so that the
SCC is always large. In contrast, for the honeycomb lattice
with a degree k = 3, some nodes can more easily consti-
tute “blocking points” with one-way streets ending at it (see
below for a more detailed argument). Interestingly enough,
real street networks have an average degree between 3 and 4
implying a nontrivial threshold and the corresponding curve
to lie between those for the two lattices. The scaling ansatz
also gives the value v = 1.1 £ 0.2 (and the same value for the
square lattice) which is slightly different from the isotropic
percolation value 4/3.

For this model, de Noronha et al. [46] proposed a conjec-
ture for computing the percolation threshold which is based on
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0.0075 —— pe(00) = 0.998 £ 0.002 0.99
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3 o 097
’i 0.9900 e
<
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(a) 095
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0.98 0.94
-~ 0.000 0.002 0.004 0.006 0.008 0.010 0.5 10 15 2.0 2.5 3.0 3.5 4.0
/LM v
—— B =027and R* = 0.99 107 7 =211 and R? = 0.99
6x 107!
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[p—pd s

FIG. 9. (a) The percolation threshold for an infinite square lattice
is calculated as an extrapolation for various finite-size lattices of
side size ranging from L = 100 to L = 1000. We find p. = 0.998 £
0.002. (b) The regression of the finite-size percolation threshold as a
function of the linear size also gives the critical exponent v, and we
obtain v = 1.1 £ 0.2. (c) Below criticality, the behavior of P, with
|p — p¢| gives the exponent B = 0.26. (d) At criticality, the number
of clusters of sizes s scales as a power law of the size with critical
exponent T and we find T = 2.14 £ 0.05.

the idea that it is governed by the probability that the nearest
neighbor can be reached from a given site. Using duality
arguments, this conjecture can be proven to be exact for the
square, triangular, and honeycomb lattices [46]. For the model
where bonds are either undirected or directed (but not absent),
this conjecture reads

pe =2(1-p0), 4

where p? is the corresponding threshold for the usual per-
colation on the lattice. For the honeycomb lattice, p? = 1 —
2sin /18, which implies p. =4sinw /18 ~ 0.6926..., in
agreement with our numerical estimate. This conjecture was
tested on both the honeycomb and square lattices only and
we tested it on real-world random graphs for different cities.
We show the results in Table II. We observe that there is a
good agreement between the value predicted by the conjecture
Eq. (4) and our direct measure for different cities: the conjec-
ture seems to be correct for these random graphs (within our
error bars).

TABLE II. We show here the SCC-percolation threshold for dif-
ferent cities [p.(SCC)], the percolation threshold predicted using the
conjecture Eq. (4) proposed in [46], and the measured threshold.

City p.(SCC) p.=1- % p-(SCC)  p. (measured)
Beijing 0.63 0.685 0.67(3)
Casablanca 0.73 0.635 0.62(3)
Paris 0.78 0.61 0.57(3)
New York City 0.77 0.615 0.57(3)
Buenos Aires 0.88 0.56 0.52(3)
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This conjecture shows that once p° is smaller than 1/2,
there is no transition. For a regular lattice of degree k (which
is k = 2d for a hypercubic lattice in dimension d), we can
then ask what is the value of k above which there is no
transition anymore. The percolation threshold is obviously an
increasing function of the lattice degree k, as it is easier to
find a strongly connected component on graphs with more
neighbors, and there seems to be no transition for lattices
with average degree larger than 4. It is easy to show that
p. = 0 for the one-dimensional lattice (which corresponds to
aregular lattice with degree k = 2). We propose the following
approximation in order to understand how the threshold varies
with the degree k in a regular lattice. We adapt to our case
the argument proposed in [32]: we assume that a node has
an incoming link and we compute its average out-degree (k,)
(which varies from 0 to k — 1; we do not take into account
the incoming link here). The notations used are defined in
Fig. 7. The probability of having the links defined by (n, m) is
given by

pun=(5) 1=yt )

We take into account that the incoming link can be either
undirected (with probability 1 — p) or directed and incom-
ing with probability p/2 leading to a prefactor p/2 + 1 — p.
The out-degree for the configuration defined by n and j is
k —1 —n+ m. Considering also the combinatorial factors,
we obtain

k—1 n

w=g @005
()
x(k—1—n+m)[§+1_p]. -
These sums can easily be computed and we find
)= (1-3) &1 ®)

The percolation condition is then (k,) > 1 which means that a
directed path can go through this node which is a necessary
condition for belonging to the SCC. Writing (k,) = 1 then
gives the percolation threshold

1

pe(k) 2<1 m) ©))
which is valid in the interval [2,5]. This approximate formula
gives the exact result p.(k = 2) = 0 and p.(k > 5) = 1. The
latter is obviously an approximation but it is in agreement,
at least qualitatively with our numerical results. It however
overestimates—as expected for a necessary but not sufficient
condition—the degree above which p. = 1, and it would be
interesting to find how to modify this argument in order to
recover the numerical result p.(k = 4) = 1.0.

D. Critical exponent estimates: A new universality class

The critical exponents for this model were already esti-
mated in [46] and we determine them independently for both
the honeycomb (Fig. 8) and the square lattices (Fig. 9). In
particular, in [46] it is assumed that the exponent v is the same

as in isotropic percolation and given by v = 4 /3. We replaced
here this assumption by the scaling ansatz Eq. (3) form for the
percolation threshold.

Below the percolation threshold, the order parameter scales
as Py, ~ |p— pc|? and a direct fit [Fig. 8(d)] gives B =
0.26 £ 0.02 (0.27 £ 0.02 for the square). Above the percola-
tion threshold, the maximal cluster size scales as spax ~ |p —
pc|? and at the threshold exactly, the probability n; to belong
to a cluster of size s scales as n; ~ s~*. These classical expo-
nents take here the following values (Fig. 8): 7 = 2.14 £ 0.05
(2.11 £ 0.05 for the square lattice) and o = 0.56 £ 0.05 (the
exponent o is not defined for the square lattice where p, = 1).
We note here that too close to criticality however, finite-size
effects become important when the correlation length is of
order the system size which reduces the range over which the
fit can be made. For the square lattice, we obtain the exponents
in a similar way (Fig. 9).

We note that these exponents satisfy the hyperscaling
relations [52] T =dov+ 1 and 8 = (t —2)/0 (where the
dimension is here d = 2), which is expected as these rela-
tions are independent from the fact that links are oriented or
not. From the classical relations dy = d/(r — 1) we get for
the fractal dimension of the SCC at the threshold the value
dr =1.75%0.08.

We summarize these results in Table III. We observe that
the exponents are very different from the ones obtained for the
percolation on regular undirected lattices or for the directed
percolation, in agreement with the results obtained in [46]
and pointing to a new universality class in contrast with the
analysis presented in [44,45] that showed that this model is
in the same universality class as standard percolation. There
are however some numerical discrepancies (for v, o, and dy)
between our results and those of [46] and further work would
be needed for a precise determination of the exponents.

IV. UNDERSTANDING THE TRANSITION IN
DISORDERED REAL-WORLD NETWORKS

Real-life street networks differ from the theoretical square
and honeycomb lattices. In particular, the degree distribution
of vertices (junctions) in city networks can exhibit different
shapes (see Fig. 4, left), either being centered around 3-point
junctions—Ilike in Beijing—and hence closer to the honey-
comb lattice, or being centered around 4-point junctions—as
in Buenos Aires for instance—and closer to the square lattice,
or being a combination of both like in New York City. In order
to test the effect of disorder on the percolation behavior, we
build various graphs starting from regular lattices, and add
or remove randomly edges. Removing links from the hon-
eycomb lattice shifts the SCC-percolation threshold toward
lower values in a linear way [Fig. 10(a)] while the average
degree (k) drops below 3. When the fraction of removed links
is about 35% which corresponds to the standard bond perco-
lation threshold of the regular undirected honeycomb lattice
(the exact value is 2sinw /18 [48]), the giant component
vanishes even without directed links (an obvious necessary
condition for having a SCC is indeed the existence of a weakly
connected giant component). On the contrary, adding random
edges to this graph increases the percolation threshold until
there are too many edges in the system and the transition
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TABLE III. Critical exponents for standard percolation [53,56] compared to directed percolation [57], the results obtained in [46], and our

results for SCC percolation on mixed graphs.

Critical exponent 2d percolation 2d directed percolation Results of [46] This study

v 4/3 1.73 (parallel) 4/3 1.1+0.2
1.09 (perpendicular)

B 0.14 0.28 0.27 £0.01 0.26 £0.02

o 0.40 0.31 0.41+£0.01 0.56 £0.05

dy 1.90 1.84 1.80 £ 0.01 1.75+0.08

T 2.05 1.46 2.12+£0.08 2.14£0.05

does not occur anymore, as there is always a directed path
connecting any pair of nodes [Fig. 10(b)].

As observed above (Fig. 4, right column), underlying
graphs of real-world networks exhibit different nontrivial
SCC-percolation behaviors that result from the disorder in
their structure. We model these graphs by removal and ad-
dition of links in the regular graph. There are several different
ways of generating a random planar graph whose distribution
of degrees is close to a given distribution. To approximate the
degree distribution of real-world cities, we use the following
heuristic algorithm: starting from a regular square lattice, we
delete a certain share o4 of links for which at least one of the
end points has degree 4. We then do the same operation by
removing a certain share of links a3 for which at least one of
the end points has degree 3, then 2. Finally, we add a share of
links B4 between nodes of degree 4 and other nodes. We then
adjust step by step the parameters o, a, o3, @4, and B4 until
we find a distribution of degrees that is reasonably close to
the real one. We test this model on the case of Paris (France)
and we construct a random mixed graph whose distribution of
degrees is close to the real one: starting from a regular square

N > 1.0
15 y =-0.02 2+ 0.7- R* = 0.99 y = 0.07 o+ 0.7- R*=0.99
0.6 (b)
(a)
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S 704 .
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FIG. 10. (a) The SCC-percolation threshold decreases linearly
with the share of edges removed from the honeycomb lattice.
When the fraction of removed links is about 35%, the giant com-
ponent of the undirected honeycomb lattice breaks down and the
SCC-percolation threshold is 0. (b) The SCC-percolation threshold
increases with the number of edges added to the honeycomb lattice.
The behavior is here well fitted by a square root function. (c) Starting
from a regular square lattice, we construct various random planar
graphs by both addition and removal of edges until the distribution
of degrees is close to Paris. (d) On average, we recover the SCC-
percolation transition of the Paris real network.

lattice, we construct various random planar graphs by both
addition and removal of edges until the distribution of degrees
is close to the empirical one (for Paris here). With this theoret-
ical network, we are able to recover the observed percolation
transition of the underlying network of Paris [Figs. 10(c) and
10(d)] not to be confused with the actual choice of one-way
streets in Paris, which was proven to be statistically unlikely.
We retrieve the transition at both the level of the percolation
threshold and the shape of the function (see Fig. 11 for other
cities).

These results suggest that the degree distribution is actually
the main determinant for the percolation behavior on these
real-world graphs. It is important to note that for percolation,
bonds are drawn at random, while as noted above, there are
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FIG. 11. In four cities, starting from a regular square lattice, we
construct various random planar graphs by both addition and removal
of edges until the distribution of degrees is close to the real one (left
panel). On average, we recover the SCC-percolation transition of the
corresponding real network (right panel).
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correlations between one-way street locations in real configu-
rations and the degree distribution is not the only determinant
in this case.

V. DISCUSSION

One-way streets in large cities are of fundamental im-
portance for controlling car traffic with dramatic effects on
neighborhoods in terms of pollution and noise. Urban plan-
ners have achieved to increase the number of one-way streets
in cities while preserving a giant strongly connected compo-
nent, as ensured by Robbins’ theorem: even if it is a very hard
task to do from scratch, adding one-ways by preserving the
strong orientation is a working strategy. How to locate one-
way streets and their effect on the graph structure were already
the subject of a few mathematical studies in graph theory, and
we show here that this problem has in addition interesting

connections with statistical physics. In particular, this problem
naturally leads to a new percolation-like model which belongs
to a new universality class. Understanding better this transi-
tion on both regular lattices and disordered graphs represents
certainly a challenge for theoretical physicists, and might also
shed light on the effects of one-way streets in our cities.
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