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Mean encounter times for multiple random walkers on networks
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We introduce a general approach for the study of the collective dynamics of noninteracting random walkers on
connected networks. We analyze the movement of R independent (Markovian) walkers, each defined by its own
transition matrix. By using the eigenvalues and eigenvectors of the R independent transition matrices, we deduce
analytical expressions for the collective stationary distribution and the average number of steps needed by the
random walkers to start in a particular configuration and reach specific nodes the first time (mean first-passage
times), as well as global times that characterize the global activity. We apply these results to the study of mean
first-encounter times for local and nonlocal random walk strategies on different types of networks, with both
synchronous and asynchronous motion.
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I. INTRODUCTION

The study and understanding of dynamical processes tak-
ing place on networks have had a significant impact with
important contributions in science [1–3]. In particular, the
dynamics of a random walker that visits the nodes of networks
following different strategies is a challenging theoretical prob-
lem where the relation between network topology and the
way the walker hops between nodes is explored [4–7]. Local
strategies, where random walkers move from a node to one
of its nearest neighbors, include normal random walks [8]
and degree biased random walks [9], among others [10–14].
In contrast, nonlocal random walks use global information
of the network structure with a dynamics that allows long-
range transitions, like the Google random walker [15], Lévy
flights on networks [16–19], fractional diffusion [20–24], and
random walks with reset [25]. Different developments in the
understanding of random walkers on networks have led to
valuable tools in searching processes on the internet [15,26],
algorithms for data mining [27,28], the understanding of hu-
man mobility in cities [29–32], epidemic spreading [33,34],
algorithms for image analysis [35,36], and unsupervised
classification algorithms [37,38], just to mention a few appli-
cations.

Most of the above-mentioned studies explore the dynam-
ics of a single random walker; the dynamics of multiple
walkers moving simultaneously have been less extensively
considered [39]. Multiple walkers (agents) are commonly
found in real processes on complex systems; for example,

*aperezr@fisica.unam.mx
†dpsanders@ciencias.unam.mx

in encounter networks in human activity [30,40], epidemic
spreading [34,41], ecology [42,43], extreme events [44],
among others. Despite these potential applications, a com-
plete theoretical framework for the analysis of simultaneous
random walkers is still missing. Some of the recent advances
consider the searching efficiency of multiple walkers on net-
works, exploring the mean time required to find a given
target by one or some of the walkers [45], universal laws
governing the search time [39,45,46], analytical results for en-
counter times for many random walkers [47], and the expected
time searchers take to capture moving targets specified in
advance [48,49]. Figure 1 illustrates some of the possible sit-
uations that arise when we consider the activity of two agents
visiting nodes following edges represented by lines. Even if
the two walkers never interact with one another, it is important
to know if these walkers coincide, or encounter one another,

FIG. 1. Two random walkers visiting places represented by
nodes in a street network. Alice visits sites by hopping between nodes
with probabilities defined by a transition matrix W(A), whereas Bob
visits locations with a different strategy defined by W(B).
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the average time to reach for the first time particular nodes or
to meet at a particular target node. All these cases are highly
influenced by the network structure, the initial conditions, and
how each random walker movement is defined. A theoretical
understanding of the collective dynamics of simultaneous ran-
dom walkers would have applications in human mobility and
urban planning, epidemic spreading, ecology, among others.

In this work, we develop a general framework to study
the collective movement of R synchronous and asynchronous
noninteracting random walkers, each defined by its own tran-
sition matrix, finding general, exact expressions describing the
global activity of the random walkers. We analyze the station-
ary distribution and the average time to reach a particular set
of nodes from given initial conditions. The analytical results
are expressed in terms of the eigenvalues and eigenvectors
of the individual transition matrices defining each random
walker. We explore results for two walkers following local
(normal, degree biased) and nonlocal (Lévy flight) random
walk strategies on different networks, including trees, combs,
rings, and random networks. We also explore the effect of
the initial conditions on mean first-encounter times for path
and ring graphs for up to five walkers. Finally, the results
are applied to study the activity of the bike-sharing system
Citibike in New York City, where we explore encounter times
of two and three bikes at each station; this example illustrates
possible applications of our formalism in the context of trans-
portation systems and human mobility.

II. GENERAL THEORY

A. Master equation

We study the activity of R random walkers on a general
connected network (graph) with N nodes, V = {1, 2, . . . , N},
given by an adjacency matrix A with elements Ai j , i.e., such
that nodes i and j are joined by an edge if and only if Ai j = 1.
Walker r is defined by an N × N transition matrix W(r), where
the element (W(r) )i j = w

(r)
i→ j determines the probability to

hop from node i to j (with r = 1, 2, . . . , R). At discrete times
t = 1, 2, . . ., walkers hop independently. We study two pos-
sible dynamics: synchronous, where all random walkers jump
simultaneously, and asynchronous, where a single one of the
R walkers is chosen at random to move (i.e., each walker is
chosen with equal probability 1/R).

A matrix W that describes the global activity of these
R noninteracting random walkers is given, for synchronous
motion, by

W S ≡
R⊗

r=1

W(r) = W(1) ⊗ W(2) ⊗ · · · ⊗ W(R), (1)

where ⊗ denotes the tensor product (Kronecker product) of
matrices. For asynchronous motion, in which a single walker
moves at each time step, the dynamics is instead given by

W A ≡ 1

R
[W(1) ⊗ I ⊗ · · · ⊗ I + I ⊗ W(2) ⊗ I ⊗ · · · ⊗ I

+ · · · + I ⊗ · · · ⊗ I ⊗ W(R)]. (2)

It is convenient to introduce the notation �i ≡ (i1, i2, . . . , iR) ∈
V R, with i1, i2, . . . , iR = 1, 2, . . . , N , for a vector describing
the positions of each walker, where ir is the position (node)

of walker r on the network. The probability P (�i, �j; t ) to find
the R synchronous walkers, respectively, at nodes �j at time t ,
starting from initial positions �i at t = 0, is then given by

P (�i, �j; t ) ≡ P(1)
i1 j1

(t ) P(2)
i2 j2

(t ) · · · P(R)
iR jR

(t ), (3)

where P(r)
i j (t ) is the occupation probability to find the rth

walker at the node j at time t , starting from i at t = 0. By
definition, each of these individual occupation probabilities
satisfies the master equation [4,8]

P(r)
i j (t + 1) =

N∑
m=1

P(r)
im (t )w(r)

m→ j, r = 1, 2, . . . , R. (4)

Using the canonical basis of RN , written in Dirac notation as
{|i〉}N

i=1, Eq. (4) leads to P(r)
i j (t ) = 〈i|(W(r) )t | j〉. Therefore, we

have for the probability P (�i, �j; t ) in Eq. (3),

P (�i, �j; t ) =
R∏

r=1

〈ir |(W(r) )t | jr〉 = 〈�i|(W S)
t | �j〉, (5)

where we use the compact notation

|�i〉 ≡ |i1, i2, . . . , iR〉 = |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |iR〉. (6)

The matrix W S describes the collective movement of R syn-
chronous noninteracting random walkers; in this way, the
elements W�i �j ≡ 〈�i|W | �j〉 define the transition probability be-

tween the configuration described by the vector�i to a new state
�j. These transitions have the structure of a stochastic matrix
for a Markovian process, where the possible configurations
are now given by vectors in V R, denoting the positions of
all R walkers on the network. Since the individual transition
matrices W(r) are stochastic, W S satisfies∑

�j∈V R

W S
�i �j =

∑
�j∈V R

〈�i|W S| �j〉 =
R∏

r=1

N∑
jr=1

w
(r)
ir→ jr

= 1. (7)

Similar relations can be found for the asynchronous motion
defined by Eq. (2). Then, the simultaneous dynamics satisfies

P (�i, �j; t ) = 〈�i|W t | �j〉, (8)

for W in Eqs. (1) and (2). Furthermore, from Eq. (8), the prob-
ability P (�i, �j; t ) evolves according to the master equation

P (�i, �j; t + 1) = 〈�i|W t+1| �j〉
=

∑
�l∈V R

〈�i|W t |�l〉〈�l|W | �j〉

=
∑
�l∈V R

P (�i, �l; t )W�l �j . (9)

An equivalent alternative viewpoint is to regard the movement
of the R walkers as a single walker on a particular product
graph [50].

B. Spectral form and stationary distribution

Equations (7)–(9) have an exact parallel with the dynamics
of a single walker. In this way, it is possible to treat the
problem of R noninteracting random walkers analytically; in
particular, to calculate the mean number of steps needed to
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reach a given configuration. To do so, let us firstly introduce a
compact notation for the eigenvalues and eigenvectors of W ,
since these are key quantities in the study of the master equa-
tion in Eq. (9). They can be deduced directly from the analysis
of the matrices W(r). We will suppose that each individual
transition matrix W(r) is diagonalizable. A sufficient condition
for this is that each satisfies detailed balance, Pr,∞

i w
(r)
i→ j =

Pr,∞
j w

(r)
j→i with respect to its stationary distribution Pr,∞

j . We
then have

W(r)
∣∣φ(r)

i

〉 = λ
(r)
i

∣∣φ(r)
i

〉
r = 1, 2, . . . , R, (10)

where {λ(r)
i }N

i=1 denote the eigenvalues of the transition ma-
trix W(r) with the corresponding set of right eigenvectors
{|φ(r)

i 〉}N
i=1 [6]. In terms of these eigenvectors we define

∣∣φ�i
〉 ≡ ∣∣φ(1)

i1

〉 ⊗ ∣∣φ(2)
i2

〉 ⊗ · · · ⊗ ∣∣φ(R)
iR

〉 =
R⊗

r=1

|φ(r)
ir

〉 (11)

and, combining this definition with Eqs. (1), (2), and (10), we
obtain

W |φ�i〉 = ζ�i|φ�i〉, (12)

where, using the definition in Eq. (1) for synchronous random
walkers, we obtain eigenvalues

ζ S
�i ≡

R∏
r=1

λ
(r)
ir

, (13)

of W S. Similarly, for the asynchronous motion with W A

defined by Eq. (2), we obtain

ζ A
�i ≡ 1

R

R∑
r=1

λ
(r)
ir

, (14)

using the fact that the individual operators in Eq. (2) commute
and thus are simultaneously diagonalizable. In addition, the
eigenvalues of W(r) satisfy |λ(r)

ir
| � 1; therefore, |ζ�i| � 1 for

all �i ∈ V R for both cases in Eqs. (13) and (14).
We will also require left eigenvectors. For the individual

transition matrix W(r) we have 〈φ̄(r)
i |W(r) = λ

(r)
i 〈φ̄(r)

i |; for the
full dynamics 〈φ̄�i| ≡ ⊗R

r=1〈φ̄(r)
ir

| satisfies

〈φ̄�i|W = ζ�i〈φ̄�i|. (15)

Each set of eigenvectors of W(r) satisfies δi j = 〈φ̄(r)
i |φ(r)

j 〉
and 1 = ∑N

l=1 |φ(r)
l 〉〈φ̄(r)

l |, where δi j is the Kronecker δ and
1 is the N × N identity matrix [6,23]. Therefore, from the
definitions of |φ�i〉 and 〈φ̄�j |, we have the orthonormalization
condition

〈φ̄�i|φ�j〉 = δi1, j1δi2, j2 . . . δiR, jR ≡ δ�i,�j (16)

and the completeness relation
∑

�l∈V R |φ�l〉〈φ̄�l | = 1⊗R.
In the following, we denote the maximum eigenvalue of

W(r) as λ
(r)
1 = 1; this eigenvalue is unique according to the

Perron–Frobenius theorem and the corresponding eigenvec-
tor defines the stationary distribution of each walker through
the relation Pr,∞

j = 〈i|φ(r)
1 〉〈φ̄(r)

1 | j〉, independent of the initial

node i since 〈i|φ(r)
1 〉 is a constant [6].

We can now express the time evolution P (�i, �j; t ) of the
R-walker system in terms of the eigenvalues and left and right
eigenvectors of W , as follows. From Eq. (8) we have

P (�i, �j; t ) = 〈�i|W t | �j〉
=

∑
�l∈V R

〈�i|W t |φ�l〉〈φ̄�l | �j〉

=
∑
�l∈V R

ζ t
�l 〈�i|φ�l〉〈φ̄�l | �j〉. (17)

Hence, we obtain for the stationary distribution P∞
�j (�i) ≡

limT →∞ 1
T

∑T
t=0 P (�i, �j; t )

P∞
�j (�i) = lim

T →∞
1

T

T∑
t=0

∑
�l∈V R

ζ t
�l 〈�i|φ�l〉〈φ̄�l | �j〉

=
∑
�l∈V R

δζ�l ,1〈�i|φ�l〉〈φ̄�l | �j〉 . (18)

In Eq. (18) it is important to define the degeneracy of the
eigenvalue ζ = 1. Considering the definition of the eigen-
values ζ�i in Eqs. (13) and (14), we see that for synchronous
random walkers it is possible that multiple eigenvectors could
have the maximum eigenvalue max�i∈V R{ζ S

�i } = 1. In contrast,
for the asynchronous case the maximum value of ζ A

�i is 1 and is

unique, a consequence of having only one eigenvalue λ
(r)
1 = 1

for r = 1, 2, . . . , R.
In the following, we denote by κ ≡ ∑

�l∈V R δζ�l ,1 the degen-
eracy of the largest eigenvalue of W . In the case where κ = 1,
all initial configurations can lead to any possible final states
in a finite time, i.e., the system is irreducible. However, when
κ > 1 there are initial conditions that cannot reach specific
final states; in these cases the stationary distribution is zero.
In particular, for a single random walker r, degeneracy of the
largest eigenvalue of the transition matrix W(r) occurs only
when the network has disconnected parts. We denote the set
D ≡ {�l ∈ V R : ζ�l = 1}, and the complement D c ≡ V R \ D .
The stationary distribution in Eq. (18) then takes the form

P∞
�j (�i) =

∑
�l∈D

〈�i|φ�l〉〈φ̄�l | �j〉. (19)

In cases with κ > 1, the stationary distribution depends on the
initial configuration �i, whereas for κ = 1 we have

P∞
�j = P1,∞

j1
P2,∞

j2
· · · PR,∞

jR
, (20)

independent of the initial condition.

C. Mean first-passage time

We now calculate the average time 〈T (�i; �j)〉 ≡
〈T (i1, i2, . . . , iR; j1, j2, . . . , jR)〉 needed by the walkers
to reach simultaneously for the first time the nodes described
by the vector �j if at time t = 0 the initial nodes are �i. The
mathematical formalism necessary to deduce analytically this
quantity is analogous to that for the mean first-passage time
of a single random walker (see Refs. [4,6,16] for details). We
center our discussion on the analysis of a Markovian process
defined by the transition probabilities of R noninteracting
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walkers described by W in Eqs. (1) and (2), satisfying the
master equation in Eq. (9). For this case, the occupation
probability P (�i, �j; t ) can be expressed as

P (�i, �j; t ) = δt0δ�i,�j +
t∑

t ′=0

F (�i, �j; t ′)P (�j, �j; t − t ′), (21)

where F (�i, �j; t ) is the first-passage probability to start in the
configuration �i = (i1, i2, . . . , iR) and reach the configuration
�j = ( j1, j2, . . . , jR) for the first time after t steps. Taking the
discrete Laplace transform f̃ (s) ≡ ∑∞

t=0 e−st f (t ) of Eq. (21),
we obtain

F̃ (�i, �j; s) = P̃ (�i, �j; s) − δ�i,�j
P̃ (�j, �j; s)

. (22)

The mean first-passage time (MFPT) 〈T (�i; �j )〉 is then ob-
tained via a series expansion of F̃ (�i, �j; s) in powers of s

F̃ (�i, �j; s) = 1 − s〈T (�i; �j )〉 + · · · , (23)

and using the stationary distribution P∞
�j (�i ) we define the

moments

R (n)(�i, �j) ≡
∞∑

t=0

t n[P (�i, �j; t ) − P∞
�j (�i )]. (24)

In this way, the expansion of P̃ (�i, �j; s) is

P̃ (�i, �j; s) =
P∞

�j (�i )

(1 − e−s)
+

∞∑
n=0

(−1)nR (n)(�i, �j) sn

n!
. (25)

Substituting this result into Eq. (22) and performing an expan-
sion of F̃ (�i, �j; s), we find

〈T (�i; �j )〉 = 1

P∞
�j (�i )

[R (0)(�j, �j) − R (0)(�i, �j) + δ�i,�j]. (26)

Here the term with δ�i,�j gives the mean return time 〈T (�i;�i )〉 =
1/P∞

�i (�i ) to start in the configuration �i and return for the first
time to this particular state (the Kac lemma).

Now we use the spectral representation of P (�i, �j; t ) in
Eq. (17) and the stationary distribution P∞

�j (�i ) in Eq. (18) to

calculate 〈T (�i; �j )〉. From the definition of R (n)(�i, �j) we have

R (0)(�i, �j) =
∞∑

t=0

[P (�i, �j; t ) − P∞
�j (�i )]

=
∞∑

t=0

∑
�l∈V R

[
ζ t
�l − δζ�l ,1

]〈�i|φ�l〉〈φ̄�l | �j〉.

In terms of the set D = {�l ∈ V R : ζ�l = 1}, and the respective
complement D c, we have

R (0)(�i, �j) =
∑
�l∈Dc

1

1 − ζ�l
〈�i|φ�l〉〈φ̄�l | �j〉. (27)

Finally, the introduction of this result into Eq. (26) gives for
�i �= �j

〈T (�i; �j )〉 = 1

P∞
�j (�i )

∑
�l∈Dc

〈�j|φ�l〉〈φ̄�l | �j〉 − 〈�i|φ�l〉〈φ̄�l | �j〉
1 − ζ�l

(28)

and 〈T (�i;�i )〉 = 1/P∞
�i (�i ).

The approach described in this section applies for both
synchronous and asynchronous random walkers, depending
on the choice of the eigenvalues ζ�l . For synchronous motion
we choose ζ S

�l in Eq. (13), whereas the choice ζ A
�l in Eq. (14)

gives asynchronous motion. The corresponding eigenvectors
are the same in both cases.

III. MEAN FIRST-ENCOUNTER TIMES FOR
SYNCHRONOUS RANDOM WALKERS

In this section we apply the above analytical results to
study different characteristics of synchronous random walkers
described by W S in Eq. (1). Using this formalism, we analyze
the mean first-encounter time, defined as the time to start at
nodes �i and coincide for the first time at node j, by evaluating
Eq. (26) for j1 = j2 = · · · = jR = j, for different numbers
and types of walkers on various graph types.

A. Two normal random walkers

We proceed to apply Eqs. (18)–(28) to calculate the mean
time 〈T (i1, i2; j, j)〉 taken by R = 2 standard (normal) random
walkers that start at t = 0 from nodes i1 and i2, respectively,
to coincide for the first time at the node j1 = j2 = j. Each
walker hops with an individual transition probability matrix
W, given in terms of the elements of the adjacency matrix
Alm by wl→m ≡ Alm/kl , where kl ≡ ∑

m Alm is the degree of
node l; for this dynamics the (individual) stationary distri-
bution is known to be P∞

j = k j∑N
l=1 kl

[8]. For this case, κ =∑N
l,m=1 δλl λm,1, hence we obtain κ = 2 if the transition matrix

has the eigenvalues λ = ±1. For normal random walks this
occurs in bipartite networks [23,51,52], a particular class of
undirected graph having the property that the vertices can be
partitioned into two disjoint sets with each link connecting
only nodes in different sets; examples include cycles with
an even number of nodes, and trees. If the network is not
bipartite, then κ = 1 (associated to λ = 1) and the stationary
distribution in Eq. (17) is P∞

( j, j) = (P∞
j )2, independent of the

initial node. Furthermore, Eq. (26) gives

〈T (i1, i2; j, j)〉

= 1

(P∞
j )2

[
δi1, jδi2, j +

N∑
l,m=1

g(λlλm)
(
X (l )

j j X (m)
j j − X (l )

i1 j X (m)
i2 j

)]
,

(29)

where X (l )
i j = 〈i|φl〉〈φ̄l | j〉 and

g(z) ≡
{

(1 − z)−1, if z �= 1,

0, if z = 1.
(30)

In Fig. 2 we show mean encounter times for two normal
random walkers in a Cayley tree and in a random small-world
network generated with the Watts–Strogatz algorithm [53]. In
the left panels we present numerical results for 〈T (i1, i2; j, j)〉
for two different initial conditions (i1, i2), one in which the
two walkers start from the same node and one in which
i1 �= i2. To illustrate the topology of the networks analyzed
and the encounter times, in Fig. 2 we also show the networks,
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FIG. 2. Mean first-encounter times for two synchronous normal random walkers in connected networks: (a) a Cayley tree, (b) a Watts–
Strogatz network. In the left panels, we show 〈T (i1, i2; j, j)〉 as a function of the node j where the walkers coincide for the first time, for two
different initial conditions. Each node j of the networks is colored according to the mean time 〈T (i1, i2; j, j)〉 for the initial condition i1 = 45,
i2 = 46 for the Cayley tree in panel (a) and i1 = i2 = 1 for the Watts–Strogatz network in panel (b).

with nodes colored according to the encounter time for the
initial condition i1 = 45 and i2 = 46 for the Cayley tree and
i1 = i2 = 1 for the Watts–Strogatz network.

In Fig. 2(a) for a Cayley tree with N = 46 nodes we ap-
ply the general equation in Eq. (26), since this is a bipartite
network. The results reveal the differences between the two
initial conditions; in particular, for i1 = i2 = 1 the average
encounter times are the same for the nodes that are at the
same distance from the central node. This symmetry in the
encounter times changes for the initial conditions i1 = 45
and i2 = 46. Here, the biggest differences are seen in the
encounter times for nodes along the same branch as i1 and
i2 (i.e., j = 4, 9, 10, 19 − 22, 39 − 46). In particular the first-
encounter time at j = 22 is exactly one step. The results in
Fig. 2(b) for the Watts-Strogatz network with N = 40 are cal-
culated using Eq. (29), since in this case κ = 1. Our findings
show the variations when we modify the initial conditions.
However, in this network with the small-world property there
are specific nodes that offer great connectivity to the entire
structure, where the encounter times are shorter, e.g., j = 10
and j = 26, and with little variations with the change of the
initial conditions. The evaluation of the betweenness central-

ity, that gives high centralities to nodes that are on many
shortest paths of other node pairs [3], reveals that nodes 10,
12, 26, and 35 have the highest betweenness centrality. We
also see that in this particular case, the encounter times are
higher in nodes j = 14 and j = 37, nodes with low between-
ness centrality. These results show how two synchronous
random walkers coincide faster in nodes that can be reached
from different routes on the network.

B. Lévy flights on networks

The result in Eq. (29) is general for the encounter times of
two synchronous random walkers when the process is ergodic
(κ = 1). To illustrate the variety of possible situations, let
us explore the dynamics with Lévy flights on rings. Lévy
flights on networks were introduced in Ref. [16] and are the
mechanism behind fractional diffusion on networks [20,23].
In this case the transition probabilities are defined in terms
of the topological distance di j , the number of edges in the
shortest path between nodes i and j [16], and are given by

wi→ j = d−α
i j∑

l �=i d−α
il

for i �= j (31)
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and wi→i = 0. This random walk allows long-range dis-
placements on the network for 0 � α < ∞; transitions to
nearest neighbors have high probability, but hops beyond
local nodes are also allowed, generalizing the dynamics ob-
served for normal random walkers. In the limit α → ∞ we
have limα→∞ d−α

i j = Ai j , so that wi→ j = Ai j

ki
and the Lévy

strategy recovers the normal random walk. When α → 0,
limα→0 d−α

i j = 1 if i �= j and the dynamics reaches any node
with equal probability and equivalent to a normal random
walker on a fully connected graph [16]. The stationary dis-
tribution of a single random walker following Lévy flights is
given by [6,16]

P∞
i = Si(α)∑N

l=1 Sl (α)
with Si(α) ≡

∑
m �=i

d−α
im . (32)

Here Si(α) is the long-range degree that satisfies [16]

Si(α) =
N−1∑
l=1

1

lα
k(l )

i = ki + k(2)
i

2α
+ k(3)

i

3α
+ · · · , (33)

where k(n)
i is the number of n-nearest neighbors of the node

i. The results in Eqs. (32) and (33) show how the stationary
probability P∞

i incorporates information about the network
taking into account nodes at different distances from i.

We proceed to explore encounter times of two walkers
following Lévy flight dynamics on networks. We analyze
the dynamics on a ring (finite cycle with periodic bound-
aries) with N nodes, for which we can deduce analytical
expressions for 〈T (i1, i2; j, j)〉. In this case, the long-range
degree Si(α) = S (α) is the same for all nodes; as a con-
sequence, the transition matrix W for each random walk
strategy has the structure of a circulant matrix, for which
all eigenvalues and eigenvectors are well known [51,54].
In a circulant matrix C of size N × N with elements Ci j ,
each column has real elements c0, c1, . . . , cN−1, ordered in
such a way that c0 describes the diagonal elements and
Ci j = c(i− j)mod N . In this symmetric matrix, the right eigenvec-
tors {|�m〉}N

m=1 have components 〈l|�m〉 = 1√
N

e−i 2π
N (l−1)(m−1),

where i = √−1 (see Ref. [51] for details). These eigenvectors
|�l〉 satisfy C|�l〉 = ηl |�l〉, where the eigenvalues ηl are
given by [51]

ηl =
N−1∑
m=0

cm exp

[
i
2π

N
(l − 1) m

]
(34)

for l = 1, 2, . . . , N . This result defines the eigenvalues of C in
terms of the coefficients c0, c1, . . . , cN−1. However, for Lévy
flights on rings we have the transition probabilities for i �= j

wi→ j = d−α
i j

S (α)
, (35)

where distances di j on the ring satisfy the relation
cos [ 2π

N di j] = cos [ 2π
N (i − j)] [55]. Therefore, we can define

W with the coefficients c0 = 0 and cm−1 = d−α
1m /S (α) for

m = 2, . . . , N . Using this definition and Eq. (34), we have for
the eigenvalues

λl (α) = 1

S (α)

N∑
m=2

d−α
1m exp

[
i
2π

N
(l − 1)(m − 1)

]
. (36)

Having obtained the eigenvalues of the transition matrix W,
we analyze the dynamics of two walkers following the Lévy
flight strategy with 0 � α1 < ∞ for the first walker and 0 �
α2 < ∞ for the second one. In this case, κ = 1 and we can
apply Eq. (29) to calculate the mean first-encounter times
〈T (i1, i2; j, j)〉. Also, for rings the long-range degree is the
same for all the nodes, so that P∞

i = 1/N and using the
eigenvectors of a circulant matrix we obtain

X (l )
i j = 〈i|�l〉〈�l | j〉 = 1

N
exp

[
i
2π

N
(l − 1)( j − i)

]
. (37)

Therefore, Eq. (29) for i1 = i2 = j gives

〈T ( j, j; j, j)〉 = N2. (38)

In other cases

〈T (i1, i2; j, j)〉 =
N∑

l,m=1

g[λl (α1)λm(α2)]

× (
1− ei 2π

N (l−1)( j−i1 )ei 2π
N (m−1)( j−i2 )

)
. (39)

Finally, we can apply an additional simplification considering
the same initial node for the two walkers, i.e., i1 = i2 = i.
Hence, for i �= j,

〈T (i, i; j, j)〉 =
N∑

l,m=1

g[λl (α1)λm(α2)]
(
1 − ei 2π

N ( j−i)(l+m−2)
)
.

(40)
In Fig. 3, we show the results obtained for two random walkers
A and B on a ring with N = 2001 nodes. We calculate the
average times 〈T (i, i; j, j)〉 for walkers starting at node i that
coincide for the first time at node j; these values are presented
as a function of the distance di j . In the cases explored, the
activity of the random walker A is defined by Lévy flights
with different values of α. For the second random walker,
in Fig. 3(a) B is taken to be a normal random walker (limit
α → ∞); in this case the results show that the best strategy
to find the normal random walker is to use Lévy flights with
small values of α, for example α = 0, 0.5, 1. In Fig. 3(b) B
follows Lévy flights with α = 1. In this case, as a consequence
of the nonlocality of the dynamics for α small, for α = 0, 0.5
the encounter times are approximately independent of the dis-
tance; however, when we increase α > 2 the distance between
the initial node and the node where the two synchronous
walkers coincide becomes relevant, as we also observe in
Fig. 3(a).

C. Dynamics on regular combs

Having in hand analytical expressions for the mean first-
encounter time of two random walkers 〈T (i1, i2; j, j)〉, we
explore a global time, obtained from the average of these
quantities over all nodes. One alternative is to define a mean
time giving the average of 〈T (i1; i2; j, j)〉 over all the possible
initial nodes of the two walkers. However, as we mentioned
before, there may exist conditions in which the random walk-
ers never coincide in a node, e.g., for two normal walkers on a
bipartite network. This motivates the introduction of a time T j

giving the average of 〈T (i1, i2; j, j)〉 considering that the two
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FIG. 3. Mean first-encounter times for two synchronous random walkers in a ring with N = 2001. We show 〈T (i, i; j, j)〉/N2 as a function
of di j for a random walker with Lévy flights defined by α = 0, 0.5, 1, . . . 5 (in the colorbar) and a second random walker defined by: (a) a
normal random walker and (b) Lévy flights with α = 1.

random walkers start from the same node, i.e., i1 = i2 = i:

T j = 1

N

N∑
i=1

〈T (i, i; j, j)〉. (41)

T j is an estimate of the number of steps needed to start at the
same node and re-encounter one another at node j. In a similar
way, we define the global time T̄ by

T̄ = 1

N

N∑
j=1

T j = 1

N2

N∑
i, j=1

〈T (i, i; j, j)〉. (42)

We analyze this global time for regular combs [56], i.e.,
branched structures obtained from a ring of size Lx (for sim-
plicity chosen even) by attaching to each node two side chains
of length Ly/2. In addition, the value Ly is defined as Ly =
γ Lx for γ = 1, 2, 3, . . .. The resulting structure is a bipartite

graph with N = Lx(γ Lx + 1) nodes. In Figs. 4(a) and 4(b) we
present some examples of regular combs with Lx = 4, 6 and
γ = 1, 2.

The study of diffusion and random walkers on combs has
been addressed by different authors and recently has been
studied in the context of encounter times [56,57]. Our an-
alytical approach can be used to obtain global times that
characterize the synchronous dynamics of two normal ran-
dom walkers in a regular comb. In Fig. 4(c) we depict the
results obtained for the global time T̄ for different values
of Lx and γ , including networks with several sizes, from
N = 6 (for γ = 1 and Lx = 2) to N = 2054 (for γ = 3 and
Lx = 26). We observe how in the range of values explored,
the time T̄ ∝ L4

x . A similar result was obtained using Monte
Carlo simulations from a different approach explored by
Agliari et al. [56].

FIG. 4. Regular combs with different values of Lx and γ . Networks with (a) Lx = 4 and (b) Lx = 6. (c) Global time T̄ for the average
encounter times of two synchronous normal random walkers on regular combs. For each network we calculate T̄ using Eq. (42) for different
values of Lx and γ that define each network. Dashed curves represent the relation T̄ ∝ L4

x , the inset shows the results in logarithmic scale.
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D. Degree biased random walks

Now, we discuss encounter times of two agents follow-
ing local degree biased random walks. In this case, a single
random walker hops with local transition probabilities wi→ j

depending on the degrees of the neighbors of node i. Degree
biased random walks are defined by [9]

wi→ j = Ai jk
β
j∑N

l=1 Ail k
β

l

, (43)

where β is a real parameter. In Eq. (43), β > 0 describes the
bias to hop to neighbor nodes with a higher degree, whereas
for β < 0 this behavior is inverted and, the walker tends to
hop to nodes less connected. When β = 0, the normal random
walk strategy is recovered. In connected undirected networks,
degree biased random walks are ergodic for β finite, with
stationary distribution

P∞
i =

∑N
l=1(kikl )βAil∑N

l,m=1(klkm)βAlm

. (44)

Degree biased random walks have been studied extensively
in the literature in different contexts as varied as routing pro-
cesses [58], chemical reactions [59], extreme events [60,61],
among others [9,12,62]. Additionally, mean-field approxima-
tions have been explored for diverse cases [9,59,63].

We analyze the synchronous dynamics of two random
walkers on a scale-free network, generated with the prefer-
ential attachment algorithm [2,64]. The random walkers are
independent and defined by Eq. (43) with β = β1 for the first
random walker and β = β2 for the second one. In a similar
way to the cases analyzed before, we define a global encounter
time with the average over all the initial positions; however,
due to the heterogeneity of the nodes in this network, we
weight the values 〈T (i1, i2; j, j)〉 for the initial conditions i1
and i2 with the stationary distributions P1,∞

i1
and P2,∞

i2
(given

analytically by Eq. (44) with β1 and β2, respectively). In this
way, the average encounter time at node j is

T
j ≡

N∑
i1=1

N∑
i2=1

P1,∞
i1

P2,∞
i2

〈T (i1, i2; j, j)〉. (45)

Then, applying the result in Eq. (28), we have for cases with
κ = 1

T
j = 1 + 1

P1,∞
j P2,∞

j

[
N∑

l,m=1

g
(
λ

(1)
l λ(2)

m

)

×
(〈

j
∣∣φ(1)

l

〉〈
φ̄

(1)
l

∣∣ j
〉〈

j
∣∣φ(2)

m

〉〈
φ̄(2)

m

∣∣ j
〉 − 〈

φ̄
(1)
l

∣∣ j
〉〈
φ̄(2)

m

∣∣ j
〉

×
N∑

i1=1

P1,∞
i1

〈
i1

∣∣φ(1)
l

〉 N∑
i2=1

P2,∞
i2

〈
i2

∣∣φ(2)
m

〉)]
. (46)

However, due to the orthogonality between the eigenvec-
tors 〈φ̄(r)

1 | and |φ(r)
l 〉 for each random walker r = 1, 2,

we have
∑N

ir=1 Pr,∞
ir

〈ir |φ(r)
l 〉 = 0 for l = 2, 3, . . . , N and

r = 1, 2. Therefore, Eq. (46) takes the form

T
j =

N∑
i1=1

N∑
i2=1

P1,∞
i1

P2,∞
i2

〈T (i1, i2; j, j)〉 = 1 + T j, (47)

with

T j ≡
∑N

l,m=1 g
(
λ

(1)
l λ(2)

m

)〈
j
∣∣φ(1)

l

〉〈
φ̄

(1)
l

∣∣ j
〉〈

j
∣∣φ(2)

m

〉〈
φ̄(2)

m

∣∣ j
〉

P1,∞
j P2,∞

j

. (48)

In this way, T j is a measure of the average time needed
to reach simultaneously the node j from randomly chosen
nodes on the network and the quantity T −1

j is a random walk
encounter centrality at node j for the simultaneous dynamics.
This is a general form of the random walk centrality of a single
random walker introduced in Ref. [8], where a centrality Cj

combines information of the network and the random walk
strategy implemented to visit nodes and gives a high value to
nodes easy to reach and small values to nodes for which the
random walker takes, in average, many steps to hit the node
for the first time starting from any node of the network [8,16].

Hence, the average of T
j in Eq. (47) allows us to define the

global time

T̄ ≡ 1

N

N∑
j=1

T
j = 1 + 1

N

N∑
j=1

T j . (49)

In Fig. 5 we analyze the global time T̄ in Eq. (49) for
two degree biased random walkers defined by Eq. (43)
with parameters β1 (first random walker) and β2 (sec-
ond random walker) on a scale-free network with N =
5000 nodes. We examine different combinations with β1 =
−2,−1.5, . . . , 1.5, 2. First, in Fig. 5(a) the second random
walker is defined by β2 = β1; in this way, the two random
walkers follow the same strategy. We see that, for the cases
explored, β1 = β2 = −0.5 minimize the global average en-
counter time T̄. This result shows that a small bias to visit
nodes with lower connections favors the encounters reducing
the average first encounter time. In contrast, when β1 = β2 =
2 the walkers prefer to hop to nodes with the highest degree
and, although this can be a good strategy to reach easily these
nodes, at a global scale it is seen that it does not favor fast
encounters on the whole network, increasing the value T̄.

In the results in Figs. 5(b)–5(d), the first random walker
is defined with β1 = −2,−1.5, . . . , 1.5, 2 and the second one
takes the values β2 = −1, 0, 1. The numerical results for each
case show that as β2 increases, the β1 that minimizes T̄

decreases. For example, in Fig. 5(b), while β2 = −1 produces
a bias to nodes with fewer connections, the walker that opti-
mizes T̄ occurs when β1 = 0, that is, when there is no bias. In
addition, in Fig. 5(c), when exploring the cases without bias
with β2 = 0, a better result for T̄ occurs when β1 = −0.5,
we see also that β1 = −1 and β2 = 0 have similar times T̄.
Finally, in Fig. 5(d) with β2 = 1 there is a marked bias of
the second random walker towards highly connected nodes.
In this case, the smallest values of T̄ are found when β1 � 0,
the optimal value is obtained for β1 = −1.
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FIG. 5. Synchronous random walkers on a scale free network
with N = 5000 nodes. We show the average global time T̂ in
Eq. (49) for two degree biased random walkers r = 1, 2 de-
fined by the transition probabilities in Eq. (43) with β = β1 and
β = β2, respectively. We present the numerical results for β1 =
−2, −1.5, . . . , 1.5, 2 and: (a) β2 = β1, (b) β2 = −1, (c) β2 = 0,
(d) β2 = 1. Markers represent the numerical values, continuous lines
are included as a guide and the minimum values of T̂ for the cases
explored are displayed with stars.

E. R random walkers

The result for the average time 〈T (�i; �j )〉 in Eq. (28) is
general and applies for R noninteracting random walkers in
connected networks when each random walker can reach any
node of the network from any initial condition. The formalism
is also valid for a single random walker, in this case, R = 1
and the mean first-passage time 〈T (i; j)〉 expressed in terms
of eigenvalues and eigenvectors of the transition matrix W is
recovered. However, for R = 2, 3 . . ., Eq. (28) gives average
times to start at a particular configuration and reach specific
nodes for the first time. In the following, we extend our anal-
ysis of mean first-encounter times to R synchronous random
walkers. To compare the encounter times of R walkers starting
at t = 0 in the node i and meeting for the first time at node j,

we analyze the scaled time τ (i, j; R) given by

τ (i, j; R) = 〈T (i, i, . . . , i; j, j, . . . , j)〉
NR

. (50)

Here, N is the number of nodes in the network and
〈T (i . . . i; j . . . j)〉 is obtained using Eq. (28). In Fig. 6 we
analyze τ (i, j; R) for R = 1, 2, . . . , 5 synchronous normal
random walkers on different network topologies. The results
are shown as a function of the distance di j between the initial
node i, where all the random walkers start, and the node j
where they coincide. In Figs. 6(a) and 6(b) we have a linear
graph with N = 21 nodes using two initial conditions. In
Fig. 6(a) the walkers start at one end of the network; from
this node, the agents reach the neighboring node in one step,
so that τ (i, j; R) = 1/NR for di j = 1. For 1 < di j < 20 we see
how τ (i, j; R) increases, with a maximum when they coincide
at the opposite end of the line.

In Fig. 6(b) we explore the same linear graph, but now
choosing the initial node at the center of the network; the
results show that the encounter times differ significantly with
the change of the initial condition. In Fig. 6(c) we analyze a
ring with N = 21 nodes. In this regular structure the stationary
distribution for each random walker is P∞

i = 1/N and the time
required to re-encounter in the initial node gives τ (i, j; R) =
1; other results for this case can be explored analytically using
the approach of circulant matrices presented before for Lévy
flights on rings. In Fig. 6(d), we have a Cayley tree with
N = 22 nodes and initial node in the center of the tree. Due
to the symmetry of the structure, random walkers coincide at
the same time in nodes located at the same distance of the
center, independently of the branch. In the results in Fig. 6
we also observe the effect of the degeneracy κ of the highest
eigenvalue ζ = 1. Since the linear graph and the Cayley tree
are bipartite networks, we have the eigenvalue λ = −1 for
each of the matrices W defining the normal random walker.
In this way κ = 2 for two random walkers, as described pre-
viously; in the general case κ = 2R−1. This value modifies
the stationary distribution and also has an important effect on
the average times in Eq. (28). In the case of the ring with an
odd number of nodes, the network is nonbipartite and as a
consequence κ = 1.

IV. MEAN FIRST-ENCOUNTER TIMES FOR
ASYNCHRONOUS MOTION

In this section, we discuss mean first-encounter times for
R asynchronous random walks defined by a transition ma-
trix W A given by Eq. (2). Recall from Sec. II that in the
asynchronous setting at each time t = 1, 2, . . ., one random
walker is chosen randomly with equal probability 1/R and
moves following its particular transition matrix. Although
this motion is completely different from the synchronous dy-
namics, the analytical result for the mean first-passage times
in Eq. (28) has the same form, but now we must use the
eigenvalues ζ�l given by Eq. (14). Important consequences are
derived from this choice. First, the maximum eigenvalue is
ζ A = 1 is unique, i.e., κ = 1; thus the walkers can meet in any
node, independently of the initial condition, defining a global
ergodic process. In addition, the stationary distribution is the
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FIG. 6. Mean first-encounter times for R synchronous normal random walkers. We show the values τ (i, j; R) in Eq. (50) in terms of the
distance di j for R = 1, 2, . . . , 5 random walkers. Here 〈T (i . . . i; j . . . j)〉 is the average time required for the R random walkers to start in the
node i and coincide for the first time in the node j, for R = 1 the 〈T (i; j)〉 is the mean first-passage time. (a) Linear graph with initial node i
at one of the limits of the network, whereas in panel (b) the initial node i is the central node. In panel (c) we explore a ring and in panel (d) a
Cayley tree with initial condition i in the central node. In all these cases we present the network and the distance di j between nodes i and j is
represented in the colorbar.

product of the stationary distributions of each random walker,
given by Eq. (20).

Due to the definition of the asynchronous dynamics, it is
clear that mean first-encounter times will, in general, be longer
than the results obtained for the synchronous motion, since
in the latter case there is much more activity of the walkers,
increasing with the number R, in contrast to the asynchronous
motion, in which only a single walker moves at each step.
Much of the differences between the two forms of movement
will depend on the initial conditions and the types of random
walkers. In this way, to quantify the results for Eq. (28) for
these two types of movements, we introduce the ratio

χ (i, j; R) = 〈T (i, i, . . . , i; j, j, . . . , j)〉A

〈T (i, i, . . . , i; j, j, . . . , j)〉S
, (51)

where 〈T (i, i, . . . , i; j, j, . . . , j)〉A is the mean first-encounter
time for R asynchronous random walkers starting from the
node i and meeting for the first time in the node j, obtained
from Eq. (28) with eigenvalues from Eq. (14). Similarly,
〈T (i, i, . . . , i; j, j, . . . , j)〉S refers to the same quantity but
evaluated for the synchronous case by using the eigenvalues
from Eq. (13).

In Fig. 7 we show the values of χ (i, j; R) for R = 2, . . . , 5
normal random walkers, analyzing the situations explored in
Fig. 6; as a reference we also include the results for R = 1,
giving the horizontal line χ (i, j; 1) = 1.

In Fig. 7(a) we show the case of the linear graph with initial
node i at one of the ends; at this end χ (i, i; R) = 2R−1, due
to the factor κ = 2R−1 in the stationary distribution for the

synchronous motion. However, for di j = 1 in the synchronous
dynamics the random walkers always coincide at the first step;
however, for the asynchronous motion the result is completely
different (for R = 2, 3, . . . , 5), taking a considerable number
of steps to coincide in the first neighbor of this end, especially
when R � 1. For di j > 1 differences between the times for
the asynchronous and synchronous motions are due to the
factor 2R−1, but also depend on the eigenvalue combinations
in Eqs. (13) and (14). In Fig. 7(b) we analyze the linear graph,
but now with the initial condition i at the central node; the
main variations in χ (i, j; R) are associated with the factor
2R−1, a proportion in which the two stationary distributions
differ. In the case of a ring reported in Fig. 7(c), we have
χ (i, i; R) = 1, since the stationary distributions coincide in the
synchronous and asynchronous motions; in contrast with the
results in Figs. 7(a) and 7(b), the values χ (i, j; R) have small
variations, maintaining the results close to one. For the Cayley
tree with an initial condition in the central node analyzed in
Fig. 7(d) we observe a behavior similar to that in Fig. 7(a) for
the linear graph.

V. ENCOUNTER TIMES FOR SYNCHRONOUS MOTION
OF BICYCLES

In this section, we apply the analytical results for encounter
times to the study of synchronous dynamics of bicycles in
the bike-sharing system (BSS) Citibike in New York City.
The term BSS refers to all the infrastructure and provision
of bikes in a system where users pick up and drop off bi-
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FIG. 7. Relation between synchronous and asynchronous motion
of R normal random walkers. We calculate the numerical values
of χ (i, j; R) in Eq. (51) as a function of the distance di j for R =
1, 2, . . . , 5 random walkers. We explore the four cases analyzed in
Fig. 6: (a) a linear graph with initial node i at one of the limits of the
network, whereas in panel (b) the initial node i is the central node,
(c) a ring, and (d) a Cayley tree with initial condition i in the central
node.

cycles at self-serving docking stations [67]. Each station in
the system is represented by a node in a spatial weighted
network, where links represent the number of trips between
stations. By analyzing data on bicycle trips from June 2013 to
December 2016 [68], we obtain an origin–destination matrix,
OD, with elements (OD)i j for i, j = 1, . . . , N , corresponding
to the number of trips starting from station i and ending at
j. A total of N = 421 active stations were considered in the
analysis of this system; see Ref. [31] for details on the data
processing.

We denote by k(out)
i the total number of bicycles that depart

from station i and by k(in)
i the total number arriving at station

i. In terms of the elements of the OD matrix we then have

k(out)
i =

N∑
�=1

(OD)i�, k(in)
i =

N∑
�=1

(OD)�i. (52)

The OD matrix can now be used to define the probability
of transition of a bicycle between two stations. Due to the
characteristics of this system it is reasonable to approximate
it as a Markov process, defined by a stochastic matrix W(OD)

with elements

w
(OD)
i→ j = (OD)i j

k(out)
i

. (53)

The analysis of the Citibike system in Ref. [31] reveals
a particular relation between the probability w

(OD)
i→ j and the

geographical distance li j between stations i and j. The dy-
namics described by the transition matrix classify trips as
local and long-range transitions. In local displacements, the
users travel to stations around a distance L ≈ 1 km from the
departure station. In this case, the probability of moving to
one of the stations in the local neighborhood is approximately
constant. However, long-range transitions appear for users
with displacements to stations beyond the local neighborhood,
for which the transition probabilities decay with distance as
w

(OD)
i→ j ∝ l−2

i j , in the same way as in the gravity-law model for
human mobility [31].

For the N = 421 active stations considered, the dynamical
process is ergodic and all the formalism described before
for simultaneous random walks on networks can be applied.
However, in this case, the eigenvalues of the transition matrix
are complex, since the OD matrix is, in general, not sym-
metric. The difference between the values (OD)i j and (OD) ji

are associated with the accumulation of bikes in particular
stations, requiring the massive relocation of bikes between
some stations to maintain the correct operation of the whole
system, a phenomenon known as re-balancing [69].

In Fig. 8 we present our results for the Citibike system.
In Fig. 8(a) we show the matrix OD, with entries codified as
per the color bar; we use this information to define a random
walk dynamics with transition probabilities w

(OD)
i→ j given by

Eq. (53). The two eigenvalues of W(OD) with the largest real
part are λ1 = 1 and λ2 = 0.7896. In Fig. 8(b) we show the
stationary distribution P∞

i of a single random walker, also
called OD-rank [32]; this gives the importance of a station in
the system. The results P∞

i are obtained numerically from the
left eigenvectors of W(OD) associated to the eigenvalue λ1; in
this way P∞

i ∝ 〈φ̄1|i〉. Also, we have P∞
i > 0 for all i, so that

the random walk dynamics is capable of reaching all stations
in the system. We represent the stationary distribution in terms

of the out-degree k(out)
i ; the results show that P∞

i ≈ k(out)
i∑N

m=1 k(out)
m

.

Now, with the information of the eigenvalues and eigen-
vectors of the transition matrix W(OD), we analyze the
synchronous movement of R vehicles and mean-first en-
counter times. This is an idealized situation that defines a
first approximation to the collective dynamics in the system,
discrete times represent the number of trips made by a bike.
The results from this Markovian approach are a proxy of the
real activity of the system that allows the identification of
stations with potential accumulation of bikes. In Fig. 8(c) we
present the numerical values obtained from Eq. (28) for the
mean encounter times at station j of two synchronous bikes
starting from stations i1 and i2 at the south region of New York
City; we color each station j with the values 〈T (i1, i2; j, j)〉S,
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FIG. 8. Encounter times in the bike-sharing system Citibike in New York City. Analysis of the activity of N = 421 stations: (a) Origin-
destination matrix with entries ODi j representing the number of trips from station i ending at j, the values are codified in the colorbar,
(b) Stationary distribution P∞

i of the transition probability matrix defined by Eq. (53) as a function of the out-degree k(out)
i , the dashed

line represents the relation P∞
i ∝ k(out)

i . Mean-first encounter times for the synchronous dynamics are shown for (c) two and (d) three bikes
represented with different colors in the map of stations. Maps were drawn from base maps of satellite imagery (Source: [65] and the Matplotlib
Basemap package [66]).

codified in the color bar. In Fig. 8(d) we repeat the analy-
sis for three bikes starting from stations i1, i2, i3 to obtain
〈T (i1, i2, i3; j, j, j)〉S for j = 1, 2, . . . , 421. The results show
that bicycles will meet faster at stations in the Manhattan
zone, where we observe the shortest encounter times. Thus,
according to our analysis, stations with the lowest MFET
would require more rebalancing.

In addition, the analysis of different initial conditions
shows that the meeting times of R random walkers are approx-
imated by 〈T (�i; �j )〉 ∝ 1

(P∞
j )R ; the effect of the initial conditions

is to introduce small variations to this relation. This result
is a consequence of the gap between λ1 and λ2 that re-
duces the contribution of the initial conditions in Eq. (28).
In other cases analyzed previously for local random walks
on networks with the large-world property (rings and trees),

this gap is small, assigning major importance to the initial
conditions.

Although our analysis of BSS is an approximation assum-
ing a Markovian dynamics, the results provide a first insight
into the collective dynamics in shared bicycle systems.

VI. CONCLUSIONS

In conclusion, we deduced analytical expressions for the
study of the dynamics of R noninteracting random walks
on networks. Our formalism explores analytically the global
dynamics of synchronous and asynchronous motion in terms
of the spectral representation of the transition matrices that
define independent Markovian random walkers. We illustrate
the general results by calculating mean first-encounter times
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of two synchronous random walkers on different types of
networks. For the synchronous motion, we explore normal
random walks on a Cayley tree and a Watts–Strogatz random
network. Also, we deduce analytical expressions for Lévy
flights on rings, to explore mean first-encounter times for
random walkers following different types of random hopping
between nodes and global times for two walkers on regular
combs. We then analyze encounter times for R = 1, 2, . . . , 5
normal random walkers in a linear graph, a ring, and a Cayley
tree and the relation between synchronous and asynchronous
dynamics.

We applied our methodology to study the activity of the
bike-sharing system Citibike in New York City, where we
explore encounter times of two and three bikes at each station.
This example shows how the methods introduced are general,

and extensions of this work will be useful for applications to
human mobility, encounter networks, epidemic spreading, and
ecology, among many other fields.

This mathematical framework can be applied to other
contexts in human mobility, such as the movement of
taxis [32], or temporal networks generated from encounters
at points of interest in cities [30]. A more detailed treat-
ment of these problems requires extending the formalism
discussed in this work to the case of continuous-time random
walkers.
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