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Atomic subgraphs and the statistical mechanics of networks
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We develop random graph models where graphs are generated by connecting not only pairs of vertices by
edges, but also larger subsets of vertices by copies of small atomic subgraphs of arbitrary topology. This allows
for the generation of graphs with extensive numbers of triangles and other network motifs commonly observed
in many real-world networks. More specifically, we focus on maximum entropy ensembles under constraints
placed on the counts and distributions of atomic subgraphs and derive general expressions for the entropy of
such models. We also present a procedure for combining distributions of multiple atomic subgraphs that enables
the construction of models with fewer parameters. Expanding the model to include atoms with edge and vertex
labels we obtain a general class of models that can be parametrized in terms of basic building blocks and their
distributions that include many widely used models as special cases. These models include random graphs with
arbitrary distributions of subgraphs, random hypergraphs, bipartite models, stochastic block models, models of
multilayer networks and their degree-corrected and directed versions. We show that the entropy for all these mod-
els can be derived from a single expression that is characterized by the symmetry groups of atomic subgraphs.
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I. INTRODUCTION

Random graph models are fundamental to understanding
the interplay between topological features of networks and
the effect of topological features on dynamical processes on
graphs. Traditionally, random graph models have concen-
trated on specific features commonly observed in real-world
networks such as community structure [1], heterogeneous
degree distributions [2], and short geodesic path lengths [3].
Although this resulted in a large variety of models, most are
limited in their scope and only aim to replicate a small subset
of features while being unrealistic with respect to others. More
recently, models that combine multiple features have become
more prominent in the field. For instance, the degree-corrected
stochastic block model (DC-SBM) [4,5], which unifies the
stochastic block model (SBM) for community structures and
the configuration model for networks with heterogeneous de-
gree distributions, is a much better fit for many empirical
networks than the SBM [6,7]. The DC-SBM has been further
generalized to various network types [8–11] and has produced
a general framework for the statistical inference of network
communities as well as methods for discriminating between
alternative representations of networks via model selection in
a principled and consistent manner [8,9]. However, modeling
the prevalence of triangles and other motifs [12] observed
in many real-world networks still is a major challenge in
developing realistic random graph models.

In this article we seek to formulate a class of analytically
tractable models that not only can generate graphs with real-
istic subgraph structures but also provide a unified description
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of a large variety of models each aimed at modeling seemingly
unrelated features of networks by showing that they can be
described in terms of atomic building blocks and constraints
placed on their distributions. The statistical ensembles we
obtain are in many instances special cases or generalizations
of previously proposed models which can be solved analyti-
cally for many of their properties, including topological phase
transitions, subgraph distributions, and percolation properties
[13,14]. We focus our efforts on the entropy and likelihood
due to their relevance to statistical inference. In doing so, we
seek to provide a general class of models that can be used to
infer statistically significant features of networks and for dis-
criminating between alternative representations of networks
via model selection.

Maximum entropy models [15] offer a general and prin-
cipled approach for obtaining models that can in principle
model any combination of network features. In this approach,
a certain collection of graph features {ti} are constrained to
their observed values and the graph is otherwise assumed to
be maximally random where the randomness of the model is
measured in terms its Shannon entropy [16]. In reference to
equilibrium statistical mechanics, we will refer such models
as canonical and microcanonical ensembles [17] for the cases
where constraints are satisfied in expectation and exactly, re-
spectively. In canonical ensembles the distribution over graphs
is given by an exponential of the constrained quantities and
therefore such models are also known as exponential random
graph models (ERGMs), whereas in the microcanonical case
the ensemble that maximizes the entropy is the ensemble
where every configuration that satisfies the given constraints
has equal probability. Although maximum entropy models
seem to offer an elegant method for constructing random
graph models with any desired set of features, they are known
to be notoriously hard to approach analytically when higher
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order subgraphs are included in their formulation. Despite
these difficulties, most efforts for modeling nontrivial sub-
graph structures have been focused on ERGMs that have
counts of triangles and other subgraphs as their parameters
[18,19]. Because such ERGMs are not analytically tractable
except in a few isolated instances [20] their study has been
mostly been confined to Monte Carlo approaches which them-
selves suffer from issues of degeneracy and inconsistency
[21].

In this article we follow the common conception that net-
work motifs are basic building blocks of networks and develop
a class of maximum entropy models that are based on con-
straining counts and distributions of atomic subgraphs used to
construct the network rather than the counts of subgraphs in
the final network. The resulting models can generate networks
with a large variety of local structures while remaining ana-
lytically solvable for many of their properties. The models we
consider fall in the same category as some more recent mod-
els that use explicit copies of higher order atomic subgraphs
[13,14,22,23].

The assumption that networks are formed by atomic sub-
graphs naturally leads us to consider objects we call subgraph
configurations which correspond to the set of atomic sub-
graphs added to the graph during the generation process.
Subgraph configurations are a generalization of hypergraphs
where groups of vertices are connected by hyperedges that
are not necessarily cliques and can have arbitrary topology.
Models that consider higher order interactions [24] in the form
of cliques have been widely studied before in the form of
random hypergraphs [25], bipartite models [2,26], and sim-
plicial complexes [27]. However, the assumption that higher
order interactions are cliques is rather restrictive and does
not generalize well to directed and/or signed networks. More
specifically, we focus on maximum entropy ensembles of
subgraph configurations given various types of constraints on
the counts and the distributions of atomic subgraphs. Starting
with the general case we derive expressions for the entropy
of canonical and microcanonical ensembles. We also consider
a systematic procedure for relaxing constraints placed on the
distribution of atomic subgraphs which results in more coarse
grained models of varying parametric complexity.

The article is organized as follows. In Sec. II we intro-
duce subgraph configurations and related concepts. We then
consider canonical (Sec. III) and microcanonical (Sec. IV)
ensembles of subgraph configurations and present general
expressions for their entropy. We also discuss several special
cases starting with random graph models for graphs with non-
trivial local structures (Sec. V). We then consider models with
labeled atoms and their relation to block models (Sec. VI) and
multilayer networks (Sec. VII). We conclude with a summary
of our main results and potential directions of future studies
in Sec. VIII.

II. SUBGRAPH CONFIGURATION MODELS

A. Isomorphisms, motifs, and orbits

Before introducing the models we briefly overview key
graph theoretical concepts and definitions that are used
throughout the text. For a graph G(E ,V ) we denote its vertex

FIG. 1. Examples of undirected and directed atoms. Vertex col-
ors indicate the orbits of the atoms.

set as V (G) and its edge set as E (G). We sometimes denote the
number of vertices of G as |G|. Symmetry plays an essential
role in describing configurations of atomic subgraphs. Two
graphs G and H are said to be isomorphic if there exists
a bijection φ : V (G) → V (H ) such that (v, v′) ∈ E (G) ⇐⇒
(φ(v), φ(v′)) ∈ E (H ). If the graphs are directed and/or have
labeled (colored) edges and/or vertices an isomorphism φ

has to also preserve edge directions and labels. If G = H
in the above definition, φ is called an automorphism. The
automorphisms of G form a group under composition which
we denote as Aut(G). We call the orbits formed by the action
of Aut(G) on V (G) the orbits of G and denote the ith orbit
of G as OG,i. The orbits of a graph are classes of vertices
which can be mapped onto each other by vertex permutations
that leave the structure of the graph unchanged (see Fig. 1).
Being isomorphic is an equivalence relation of which the
equivalence classes we refer to as motifs. We denote motifs
using lowercase letters. The automorphism group and orbits
of a graph are uniquely determined by its isomorphism class.
A graph H is said to be a subgraph of G iff V (H ) ⊆ V (G) and
E (H ) ⊆ E (G). Similarly, a m subgraph of G is a subgraph of
G that is in the automorphism class m. Two subgraphs are said
to be distinct unless E (G) = E (H ) and V (G) = V (H ).

B. Subgraph configurations

A subgraph configuration C on a set of vertices V is a
set of subgraphs of the maximally connected graph KV on
V . In other words, KV is the graph that contains all possible
edges. The specifics of KV depend on the type of graph under
consideration, for instance, whether it is directed, contains
self-loops, has multiple layers, is bipartite, etc. For an example
of a subgraph configuration, see Fig. 2.

The set of all m subgraphs of KV is denoted as HV,m. For
undirected simple graphs it follows from the definition of the
automorphism group that for each subset of |m| vertices there
are |m|!

|Aut(m)| possible m subgraphs and, therefore, for a set of N
vertices we have

|HN,m| = N!

(N − |m|)!|Aut(m)| . (1)
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FIG. 2. A subgraph configuration consisting of four single edges,
two triangles, a 4-cycle, and a 4-clique.

The set of atoms of a configuration M(C) is the set of motifs
occurring in C. In general, we will assume m ∈ M are con-
nected and do not contain multiedges. Similarly, given a set
of atoms M, an M configuration is one for which M(C) ⊆ M.
The set of all M configurations on V can be defined as CM,V =
×m∈M{0, 1}|HV,m|. We denote the number of m subgraphs in a
configuration C as nm(C).

Subgraph configurations can be described in terms of sub-
graph tensors that are similar to the adjacency matrices of
graphs. Given a configuration C and subgraph s the subgraph
tensor σs(C) is defined as

σs(C) =
{

1, if s ∈ C
0, otherwise. (2)

Subgraph tensors can also be indexed in terms tuples of
vertices in analogy with the adjacency matrix. For instance,
given an atom m in terms of a labeled representative with
vertex set {1, . . . , |m|} the subgraph tensor can be defined to
be σ (m)(v1v2...vm )(C) = 1 whenever the map φ(i) = vi is an
isomorphism to some s ∈ C and 0 otherwise. This implies
that σ (m)v1v2...vm (C) = σ (m)β(v1v2...vm )(C) for any permutation
β that is in Aut(m). In other words, subgraph tensors corre-
sponding to the atom m have to be invariant under Aut(m).
This is similar to the condition Ai j = Aji for the adjacency ma-
trix of undirected graphs, which corresponds to the subgraph
tensor of the configuration consisting of all edges. However, in
general, subgraph tensors of subgraph configurations should
not be confused with subgraph tensors that represent all sub-
graphs of a certain type present in a given graph. For instance,
the configuration given in Fig. 2 does not explicitly contain all
edges nor triangles of the graph.

The number of m subgraphs in a configuration C can be
written in terms of subgraph tensors:

nm(C) =
∑

s∈HV,m

σs(C). (3)

For an M configuration one can define its orbit degree se-
quence dm,i(C)(v) as the number of m subgraphs in C for

which the vertex v is in orbit Om,i. For example, in the con-
figuration given in Fig. 2 the central vertex has edge degree 1,
triangle degree 2, 4-cycle degree 1, and 4-clique degree 1. In
terms of σs, dm,i(C)(v) can be expressed as

dm,i(C)(v) =
∑

s∈HV,m|v∈Om,i (s)

σs(C). (4)

The notion of graphicality of (edge) degree sequences also
extends to orbit degree sequences. An orbit degree sequence is
is said to be graphical if there exists a subgraph configuration
with that orbit degree sequence. For instance, for an orbit
degree sequence to be graphical the sequence has to contain
orbits in the right proportions to∑

v dm,i(v)

|Om,i| = nm ∀ m, i. (5)

Throughout this article we shall assume that all orbit degree
sequences under consideration are graphical.

C. Subgraph configurations and graphs

A subgraph configuration C on vertex set V can be pro-
jected onto a graph G = G(C) on V by taking the union of
the edges of the subgraphs in C. In general, the exact form
of the projection will depend on the type of graph under
consideration, i.e., whether it is directed, has multiple layers,
admits parallel edges, etc. In general, we will assume that
graphs are simple and hence that configurations are mapped
onto graphs by taking the union edge set of the subgraphs in
C, i.e., E (G) = ⋃

s∈C E (s) which is equivalent to replacing
any edges that occur in multiple times in the configuration by
single edges in the graph. For the sparse models we study the
expected number of such parallel edges is in general O(1).

We say that a subgraph configuration C covers G if the
projection of C is equal to G. We denote the set of all M
configurations that cover G (or simply M covers of G) as
CM (G). The covers of a graph G are exact representations of
G in the sense that given any of its covers G can be recovered
fully from it. Indeed, many widely used graph representations
are special cases of subgraph configurations that are covers.
For instance, the edge list is equivalent to the configuration
consisting of all single edges and the adjacency list equivalent
to the configuration that contains for each vertex v the star
shaped subgraph where v is connected to all its neighbors. As
a result, given a cover C of G many of its properties can be
derived directly from C. For instance, connected components
of the graph coincide with the connected components of its
covers. Similarly, every subgraph s ∈ C also occurs in G(C),
hence, the projected graph contains at least as many m sub-
graphs as C does. This simple fact allows expected subgraph
counts in the resulting graphs to be controlled by changing
the counts and types of atoms included in the model. The
subgraph structure of the presented models is discussed in
more detail in Sec. V A.

D. Subgraph configuration models and random graphs

Given a set of atoms M = {m}, a subgraph configura-
tion model is simply a probability distribution PM (C) over
the space of subgraph configurations CM,V . While subgraph
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configuration models can be used to directly model data sets
that include higher order interactions such as hypergraphs,
directed hypergraphs, and simplicial complexes, many data
sets cover only pairwise interactions, i.e., are given in the form
of a graph. In such cases a distribution over the space of graphs
GV can be obtained using the projection defined in the section
above.

Consequently, the distribution over graphs PM (G) induced
by a subgraph configuration model PM (C) is given by

PM (G) =
∑

C∈CM,V

PM (C)δ(G,G(C))

=
∑

C∈CM (G)

PM (C), (6)

where δ(G,G(C)) is one whenever G = G(C) and zero oth-
erwise. In other words, the probability of G in the model is
given by the total probability of all configurations of which
the projection is G.

Subgraph configuration models differ from most other la-
tent state models in that each latent state projects to a single
graph. This allows many properties of the model at the graph
level to be calculated at the level of configurations. Another
consequence of Eq. (6) is that the entropy of a subgraph
configuration model PM (C) is an upper bound for the entropy
of the PM (G) distribution it induces on graphs.

Multioccupancy subgraph configurations

It is possible to consider versions of the subgraph config-
uration models where a configuration can contain multiple
copies of the same subgraph. This modification is straight-
forward and much of the results for the single occupancy and
multioccupancy variants coincide in the sparse setting where
the expected number of multiple “parallel” subgraphs is o(1)
for atoms of order higher than 2 and is O(1) for two vertex
atoms or edges. Hence, any modifications to the expressions
obtained in this article in the case of multioccupancy con-
figurations are dominated by the contribution of two vertex
atoms. The case of multigraph ensembles has been studied
extensively before, e.g., in Ref. [5].

III. CANONICAL ENSEMBLES OF SUBGRAPH
CONFIGURATIONS

Canonical subgraph configuration ensembles are maxi-
mum entropy distributions under constraints given in the form
of expectations. In our case the (Shannon) entropy [16] of a
subgraph configuration model PM (C) is defined as

S[PM (C)] = −
∑

C∈CM,V

PM (C) ln[PM (C)]. (7)

Given a set of atoms M and a set constraints on the expec-
tations of a given set of features {t1, t2 . . . tn} the maximum
entropy distribution over CM,V takes the well known exponen-
tial form

PM (C) = 1

Z
exp

(
−

∑
i

λiti(C)

)
, (8)

where Z = ∑
C∈CM,V

exp[−∑
i λiti(C)] is a normalizing con-

stant known as the partition function. As a result, canonical
ensembles of subgraph configurations are generalizations of
ERGMs to hypergraphs where the topology of admissible
hyperedges is given by M.

In general, the enumeration of the partition function is a
major technical challenge in obtaining analytical results for
ERGMs that include higher order interactions in the form of
subgraph counts. In our case, though, we restrict ourselves
to features that can be expressed as linear combinations of
subgraph tensors resulting in models that are analytically
tractable.

A. Canonical ensembles with given expected
atomic subgraph counts

Given a set of atoms M = {m} the simplest type of con-
straint that can be placed on a canonical ensemble is to fix the
expected counts of atoms nm for m ∈ M:

E (nm) = cm for m ∈ M. (9)

In such canonical models atoms are distributed uniformly over
the vertices of the network and the model reduces to the
Erdös-Renyí random graph G(N, p) when M only contains
the single edge atom. Combining Eqs. (3) and (8) we obtain
that each m subgraph in HN,m occurs independently with
probability

pm = e−λm

1 + e−λm
. (10)

Imposing the constraints on the nm we have

pm|HV,m| = cm. (11)

Consequently, the entropy can be written as sum over sub-
graphs:

S(M, cm) =
∑
m∈M

|HV,m|h
(

cm

|HV,m|
)

(12)

	
∑
m∈M

[
cm − cm ln

(
cm

|HV,m|
)]

, (13)

where h(p) = −p ln(p) − (1 − p) ln(1 − p) is the binary en-
tropy.

B. Canonical ensembles with given expected
atomic degree sequence

Given a set of atoms M = {m} the constraints for the
atomic degree sequence can be written as

E (dm,i(v)) = km,i(v), (14)

for all m in M and their orbits i. Combining Eqs. (4) and
(8) results in a expression that can be factorized over the
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contributions of individual subgraphs:

P(C) = 1

Z
exp

(
−

∑
m,i

∑
v

λm,i(v)dm,i(C)(v)

)

= 1

Z
exp

⎛
⎝−

∑
m,i

∑
v

∑
s∈HV,m|v∈Om,i (s)

λm,i(v)σs(C)

⎞
⎠ = 1

Z

∏
s∈HV,m

exp

⎛
⎝−

∑
v∈Om,i (s)

λm,i(v)σs(C)

⎞
⎠, (15)

where the partition function is given by

Z =
∏
m∈M

∏
s∈HV,m

(
1 + e− ∑

v∈Om,i (s) λm,i (v))
. (16)

Hence, in this ensemble every m subgraph s ∈ HV,m occurs independently with probability

ps = e− ∑
v∈Om,i (s) λm,i (v)

1 + e− ∑
v∈Om,i (s) λm,i (v)

. (17)

As a result, the entropy of the ensemble in terms of the binary entropy h(ps),

S(M, nm) =
∑
m∈M

∑
s∈HN,m

h(ps). (18)

Similarly, the expectations of atomic degrees can be written as

E (dm,i(v)) =
∑

s∈HN,m|v∈Om,i (s)

ps. (19)

1. Sparse limit

Unfortunately, Eqs. (17) and (19) generally do not have a closed form solution. However, if we assume that the ps 
 1 for
all subgraphs s and N � 1 we have ps 	 e− ∑

v∈s λm,i (v). For N � 1 the expected counts n̄m can be approximated as

n̄m =
∑

s∈HV,m

e− ∑
v∈Om,i (s) λm,i (v)

=
∏

i |Om,i|!
|Aut(m)|

∑
t∈( V

|m| )

∑
o∈( t

|Om,i | )

e− ∑
v∈t λo(v) (v) = 1

|Aut(m)|
∏

i

( ∑
v

e−λm,i (v)

)|Om,i|
[1 + O(1/N )], (20)

where in the first step the sum over m subgraphs is converted to a sum over |m| subsets of vertices (t ) and grouping these
subgraphs according the orbit assignments (o) of the vertices in t . For each such orbit placement o there are

∏
i |Om,i|!

|Aut(m)| m subgraphs
compatible with o. The final expression is obtained by converting this to a sum over |m| tuples of vertices which for |m| 
 N
can be approximated by the sum over V |m|.

Substituting this into Eq. (19) one gets

km,i(v) = e−λm,i (v)
∑

s|v∈Om,i (s)

∏
j

∏
v′∈Om, j (s)|v′ �=v

e−λm, j (v′ ) 	 e−λm,i (v) |Om,i|n̄m∑
v′ e−λm,i (v′ ) . (21)

Solving the system of equations we obtain

ps = n̄m|Aut(m)|
∏

i,v|v∈Om,i (s)

km,i(v)

|Om,i|n̄m
, (22)

where n̄m is the expected number of total m subgraphs. In order for the model to be well defined we need ps � 1, which implies
that ∏

i,v|v∈Om,i (s)

km,i(v) � n̄|m|−1
m

∏
i

|Oi,m||Oi,m|/|Aut(m)| (23)

for all s in HV,m. This can also be expressed in terms of the average degree 〈km,i〉 = N−1 ∑
v km,i(v) using the identity |Om,i|n̄m =∑

v km,i = N〈km,i〉. Although because of the potential presence of multiple orbits there are many ways to satisfy this constraint,
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the simplest constraint is to set max{km,i (v)} < |Om,i|n̄(|m|−1)/|m|
m |Aut(m)|1/|m|. Note that this reduces to the familiar condition

kmax <
√〈k〉N when m is the single edge. Because in most practical cases the model is likely to contain atoms consisting of

edges we shall assume that max{km,i(v)} 
 √〈km,i〉N which guarantees Eq. (23).

Using the expansion h(x) = −x ln(x) + x − ∑∞
l=1

xl+1

l (l+1) for the binary entropy we obtain the following expression for the
entropy:

S(M, dm,i ) =
∑

m

[
n̄m − n̄m ln[|Aut(m)|n̄m] +

∑
i

n̄m|Om,i| ln(n̄m|Om,i|) −
∑

i

∑
v

km,i(v) ln[km,i(v)]

−
∞∑

l=1

|Aut(m)|l
l (l + 1)

n̄l+1
m( ∏

j (|Om, j |n̄m)|Om, j |)l

∏
i

(〈
kl+1

m,i

〉
〈km,i〉

)|Om,i|]
. (24)

Equation (24) generalizes many known formulas for degree-
corrected canonical ensembles including directed and undi-
rected graphs [17,28] to which it reduces when M contains
only the single edge atom. Note that in our formulation the
difference between undirected and directed graphs emerges
simply through the difference of the automorphism groups of
undirected and directed single edge atoms.

2. Orbit aggregation

Degree-corrected subgraph configuration models require a
sequence of length N to be specified for each orbit of the
atoms in M. Hence, for large M the number of parameters can
quickly become excessive. Therefore, we now present models
where constraints on the atomic degrees are relaxed by com-
bining the degrees of two or more orbits. Aggregating orbits
results in models with lower parametric complexity which is
especially relevant in the context of statistical inference where
in general the goal is to obtain a model that fits the data well
without requiring an excessive number of parameters.

Aggregating two different orbits and specifying their total
degree results in a constraint in the form

E
[
dm1,i(v) + dm2, j (v)

] = k(v). (25)

Note that m1 and m2 in the above expression can be the same
atom. We also assume that n̄m1 and n̄m2 are given. The same
derivation as in Sec. III B can be carried over to this case and
we get the analog of Eq. (17):

p(s) = e−λm−∑
v∈Om,i (s) λm,i (v)

1 + e−λm−∑
v∈Om,i (s) λm,i (v)

(26)

for m1 and m2 subgraphs where λm1,i(v) = λm2, j (v) = λ(v).
In the classical limit imposing the constraints in Eq. (25) we
obtain

k(v) ≈ e−λ(v) |Om1,i|n̄m1 + |Om2, j |n̄m2∑
v′ e−λ(v′ ) . (27)

Consequently, the probability of a subgraph s of type m1

or m2 has the same form as Eq. (22) with the following
substitutions:

km1,i(v) = k(v)
∣∣Om1,i

∣∣n̄m1∣∣Om1,i

∣∣n̄m1 + ∣∣Om2, j

∣∣n̄m2

, (28)

km2, j (v) = k(v)
∣∣Om2, j

∣∣n̄m2∣∣Om1,i

∣∣n̄m1 + ∣∣Om2, j

∣∣n̄m2

. (29)

Note that orbit aggregation is commutative and the above
expressions generalize to the case where more than two orbits
are aggregated as well as the case where multiple (disjoint)
sets of orbits are combined. The entropy for the ensemble can
be obtained by making the above substitutions in Eq. (24).

IV. MICROCANONICAL ENSEMBLES

In this section we consider subgraph configuration mod-
els which obey hard constraints on atomic subgraph counts
and degrees. For hard constraints the maximum entropy en-
semble is the one where all configurations satisfying the
constraints are equiprobable and configurations not satisfy-
ing the constraints have zero probability. Consequently, in
microcanonical ensembles we have P(C) = 1/� for any C
satisfying the constraints and the entropy is given by S =
ln(�), where � is the total number of configurations that
satisfy the given constraints.

A. Microcanonical ensemble with fixed atomic subgraph counts

Given a set of atoms M and corresponding subgraph counts
nm there are

�(M, nm) =
∏
m∈M

(|HV,m|
nm

)
(30)

such configurations. For instance, when M consists of the
edge and triangle motifs the microcanonical ensemble with e
edges and t triangles induces a probability distribution over all
graphs that can be constructed using e edges and t triangles.
Note that although the distribution over the configurations
containing e edges and t triangles is uniform, the distribution
induced over such graphs [Eq. (6)] is not uniform since the
probability of a given graph G is proportional to the number
of different ways it can be constructed using e edges and t
triangles which can vary depending on G.

B. Microcanonical ensembles with fixed atomic
degree distribution

The entropy of microcanonical ensembles can be derived
following two approaches. We first consider an analytic ap-
proach that is based on imposing hard constraints on the
canonical ensemble and later a combinatorial approach that
is based on the generative model by Karrer and Newman [14].
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1. Analytic approach

We first base our treatment of the microcanonical ensem-
bles of subgraph configurations with a given atomic degree
sequence on the conjugate canonical ensemble. The entropy
of the microcanonical ensemble Smc can be expressed in terms
of the entropy of the canonical ensemble Sc as

Smc = Sc − �, (31)

where � = −∑
m∈M

∑
i∈O(m)

∑
v∈V ln[π (dm,i(v))] and

π (k) = kk

k! e−k are Poisson probabilities. A proof of this result
for graphs is given in Ref. [17] and for simplicial complexes
in Ref. [27], hence, we omit the details of the generalization
to subgraph configurations. Applying the above results yields
the following expression for the entropy of the microcanonical
ensemble:

Smc(M, dm,i ) =
∑

m

[
nm − nm ln(nm) − nm ln[|Aut(m)|] +

∑
i

nm|Om,i|[ln(nm|Om,i|) − 1] −
∑

i

∑
v

ln[dm,i(v)!]

−
∞∑

l=1

|Aut(m)|l
l (l + 1)

nl+1
m( ∏

j (|Om, j |nm)|Om, j |)l

∏
i

(〈
dl+1

m,i

〉
〈dm,i〉

)|Om,i|]
. (32)

2. Combinatorial approach

Another model that is closely related to subgraph config-
urations is the model introduced independently by Newman
[22] and Miller [23] which generalizes the classical (edge)
configuration model to the case where in addition to the edge
degree vertices are also assigned triangle degrees. The model
was later generalized by Newman and Karrer [14] to allow for
arbitrary atomic subgraphs.

In Ref. [14] the authors describe their model in terms of
a generating process analogous to the stub matching process
for the edge configuration model. In this process, given a
set of atoms M and a corresponding atomic degree sequence
dm,i one attaches to every vertex atomic stubs reflecting its
atomic degrees. Atomic stubs are partial subgraphs such as
half-edges in the case of edges and corners in the case of
triangles. Although, in general, one might have different kinds
of stubs corresponding to the orbits of the same atom. A
network is then generated by matching stubs corresponding
to the same atom m in appropriate combinations uniformly at
random and connecting them to form an m subgraph until all
stubs are exhausted. For instance, if M consists of triangles
and edges, one matches the pairs of edge stubs and triples
of triangle stubs. This process samples all possible matchings
uniformly. However, the process allows for stubs attached to
the same vertex to be matched to each other, resulting in a
subgraph that is a vertex contraction of the original atom. For
instance, the vertex contraction of an edge creates a self-loop
and the vertex contraction of a triangle creates two parallel
edges with a self-loop on one of its vertices. The matching
process also allows multiple (parallel) copies of the same
subgraph to be created. However, our definition of subgraph
configurations excludes such parallel subgraphs and vertex
contracted subgraphs. If one excludes these cases by restarting
the generating process whenever they occur every subgraph
configuration with atomic degree sequence dm,i is formed with
equal probability.

We proceed with the calculation of P(C|dm,i ). Following
the construction of Newman and Karrer [14] we first con-
sider the number �(dm,i ) of possible stub matchings given an
atomic degree sequence dm,i. Note that the matching processes
for different m are independent. The number of possible

matchings for a given atomic degree sequence dm,i is

�(dm,i ) =
∏

m

μnm
m

nm!

∏
i

(|Om,i|nm)!

(|Om,i|!)nm
∏

v dm,i(v)!
.

Here, |Om,i|nm! is the number of arrangements of stubs of
type m, i and the factors |Om,i|!nm and

∏
v dm,i(v)! account for

equivalent arrangements of the stubs. Finally, nm! accounts
for the possible rearrangements of the subgraphs and μm =∏

i |Oi,m|!/|Aut(m)| is the number of distinct m subgraphs that
can be formed given the orbit memberships of its vertices.
For instance, there is only one possible way a triangle can
be formed on three vertices, whereas there are three different
ways a 4-cycle can be formed on 4-vertices. Note that both
motifs have only one orbit. The terms involving |Oi,m|! cancel
out and one has

�(dm,i ) =
∏

m

1

|Aut(m)|nm nm!

∏
i

(|Om,i|nm)!∏
v dm,i(v)!

. (33)

However, Eq. (33) does include cases where two or more
stubs corresponding to the same vertex are matched together.
The probability that none of the stubs attached to a given
vertex v having atomic degree dm,i(v) are matched together
is given by

Pc(dm,i(v)) =
∏

m

nm![
nm − ∑

i dm,i(v)
]
!

×
∏

i

[|Om,i|nm − dm,i(v)]!|Om,i|dm,i (v)

(|Om,i|nm)!
. (34)

Expanding the above expression using Stirling’s approxima-
tion we get

ln[Pc(dm,i(v))] = − 1

nm

(∑
i dm,i(v)

2

)

+
∑

i

1

|Om,i|nm

(
dm,i(v)

2

)
+ O

(
1

N2

)
.

(35)
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Assuming independence and summing over all vertices we obtain the following overall correction factor:

ln[Pc(dm,i )] = − 1

2

∑
m

[
|m|

(〈(∑
i dm,i

)2〉〈∑
i dm,i

〉 − 1

)
−

∑
i

( 〈
d2

m,i

〉
〈dm,i〉 − 1

)]
, (36)

where 〈dm,i〉 = ∑
v dm,i(v)/N . Although the independence assumption does not hold exactly, the dependence in general is weak

and the independence assumption is known to produce results that are consistent with more rigorous analyses for sparse simple
graphs, i.e., when M consists of only the single edge motif [17].

Even after discounting by the above factor we still are left with the possibility that the same subgraph is created multiple times
by the matching process. To account for these cases we consider the probability that at least two copies of a certain m subgraph
s are being created during the matching process. For an m subgraph with orbits Om,i(s) we have

P2(s) = |Aut(m)|2
2

nm!

(nm − 2)!

∏
j

[|Om, j |(nm − 2)]!

(|Om, j |nm)!

∏
i,v|v∈Om,i (s)

dm,i(v)!

[dm,i(v) − 2]!
, (37)

where we assume that dm,i(v) � 2 for all vertices of s since P2(s) = 0 otherwise. The probability of there being no multiple
copies of s is simply 1 − P2(s). Assuming independence between subgraphs we have

ln[Pml (dm,i )] =
∑

s∈HN (m)

ln[1 − P2(s)] 	 −|Aut(m)|n2
m

2

∏
i

1

(nm|Om,i|)|Om,i|

( 〈
d2

m,i

〉
〈dm,i〉 − 1

)|Om,i|
, (38)

where we assumed P2(s) 
 1 so that ln[1 − P2(s)] 	 −P2(s). Note that when nm = O(N ), ln(Pml ) scales as 1/N |m|−2. Hence, in
general the effect of Pml on the entropy can be neglected for atoms of order higher than 2.

Finally, Smc(dm,i ) = ln[�(dm,i )Pc(dm,i )Pml (dm,i )] and combining the factors given in Eqs. (33), (36), and (38) we obtain the
following expression for the entropy:

Smc(M, dm,i ) =
∑

m

{
− ln(nm!) − nm ln[|Aut(m)|] +

∑
i

[
ln[(|Om,i|nm)!] −

∑
v

ln[dm,i(v)!]

]

− |Aut(m)|n2
m

2

∏
i

1

(nm|Om,i|)|Om,i|

( 〈
d2

m,i

〉
〈dm,i〉 − 1

)|Om,i|
− 1

2

[
|m|

(〈(∑
i dm,i

)2〉〈 ∑
i dm,i

〉 − 1

)
−

∑
i

( 〈
d2

m,i

〉
〈dm,i〉 − 1

)]}
.

(39)

The above reduces to known expressions for entropy of
microcanonical ensembles of graphs with a given degree dis-
tribution [17,28] in both the directed and undirected cases
when M consists only of the single edge atom. Equation (39)
also agrees with Eq. (32) up to O[ln(N )] in the sparse limit
assuming that the terms for l > 1 can be neglected in Eq. (32).

C. Orbit aggregation

As in the canonical case, microcanonical ensembles can be
relaxed by considering constraints in the form of sums of the
orbit degrees:

d (v) = dm1,i(v) + dm2, j (v), (40)

where m2 might be the same as m1. Such ensembles can be
obtained by treating the stubs of the combined orbits as a
single type during the generation process. In this case one
has to replace the two factors corresponding to these orbits
in Eq. (33) by (∣∣Om1,i

∣∣nm1 + ∣∣Om2, j

∣∣nm2

)
!∏

v d (v)!
. (41)

In order to obtain the equivalent of the correction fac-
tor Pc [Eq. (36)] we consider the orbit degree distributions
for individual vertices. Assuming that the combined degrees
d (v) [Eq. (40)] of individual vertices are much smaller than
both |Om1,i|nm1 and |Om2, j |nm2 , the distribution of dm1,i(v) can
be approximated by a binomial distribution in the interval
[0, d (v)] with success probability pm1,i = |Om1 ,i|nm1

|Om1 ,i|nm1 +|Om2 , j |nm2
,

which yields 〈dm,i〉 = pm,i〈d〉 and 〈d2
m,i〉 = p2

m,i〈d (d − 1)〉 +
pm,i〈d〉. Similarly, the correction factor for multiple subgraphs
[Eq. (38)] can be obtained by replacing the factor correspond-
ing to Om1,i by

1(∣∣Om1,i

∣∣nm1 + ∣∣Om2, j

∣∣nm2

)|Om1,i|

(
〈d2〉
〈d〉 − 1

)|Om1,i|
. (42)

The final expression for the entropy can be obtained by mak-
ing the same substitutions for (m2, j) as well.

As in the canonical ensemble, the above procedure gener-
alizes to the case where one combines multiple (disjoint) sets
of orbits. The equivalent of Eq. (32) can be obtained using the
substitutions given in Eq. (28) and using the combined degree
in Eq. (31).
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V. MODELS FOR SPARSE GRAPHS WITH MOTIFS

In this section we focus on sparse models with atoms of
order larger than 2 which can be used as models for sparse
networks with extensive numbers of triangles and other bicon-
nected subgraphs. We first briefly review intersection patterns
and expected subgraph counts in sparse models and then
place subgraph configuration ensembles within the context
of some existing random graph models and representations
[13,14]. Establishing this connection allows various methods
developed in the context of such models to be carried over to
subgraph configuration models.

A. Intersections and expected subgraph counts in sparse models

In sparse models, the probability that the subgraph config-
uration contains an m subgraph on a given set of |m| vertices
scales as N1−|m|. As a result, the probability that any set of
t vertices is contained in any m subgraph in the configuration
scales as N1−t (t � |m|). This in turn implies that the probabil-
ity that any two subgraphs in the configuration simultaneously
contain a given set of t vertices scales as N2−2t . As there are
(N

t ) such sets, the expected number of t-node intersections be-

tween the subgraphs in the configuration is O(N2−t ). Hence,
in a typical realization of a sparse model there are O(1) two
node intersections between subgraphs in the configuration and
no higher order intersections. In other words, sparse models
are treelike at the level of atomic subgraphs.

Given a particular subgraph s, the expected number of s
subgraphs depends on the ways s can be constructed using
the atoms in M and their (sub)atoms which correspond to the
induced subgraphs of the atoms. A subgraph can be formed
either directly by a single subgraph in the configuration or
by combining parts of two or more subgraphs in the config-
uration. For instance, a triangle can be formed directly as a
triangular (sub)atom or by combining tree edges which in turn
could be part of some higher order atoms. As graphs gener-
ated by sparse subgraph configuration ensembles are treelike
at the level of atomic subgraphs, the only small subgraphs
with expectation O(N ) are the subgraphs that can be formed
by treelike combinations of (sub)atoms and the (sub)atoms
themselves. In particular, given any 2-connected subgraph s
the expected number of induced s subgraphs can be shown
to be

∑
m∈M nmms + O(1) where ms is the number of induced

copies of s contained in m and nm is the (expected) number
of the m subgraphs in the model. Although it is possible to
obtain similar closed form expressions for expected counts of
arbitrary subgraphs, for the sake of brevity we only consider
2-connected subgraphs and refer the reader to [13,14].

B. Kernel models

In Ref. [13] Bollobás, Janson, and Riordan introduce a
class of random graph models that generalize nonhomoge-
neous random graphs [29] to the case where not only edges,
but also copies of small atomic subgraphs are added on to the
vertices of the graph during the generation process. Given a

set of atoms M and a feature space S a graph is generated by
adding every possible embedding of m ∈ M where vertex i is
mapped onto vi to the graph independently with probability
pm:

pm(v1, v2, . . . , v|m|) = Km(s(v1), s(v2), . . . , s(v|m|))
N1−|m| , (43)

where s(vi) ∈ S are vertex features and K is a function from
S|m| to [0,∞). The normalization by N1−|m| ensures the graphs
are sparse, i.e., have on average O(N ) edges.

Note that the subgraph configuration formulation slightly
deviates from the one given above [13] which considers em-
beddings of atomic subgraphs that is one to one mappings
of vertices of atoms to the vertices of the graphs. This re-
sults in every m subgraph to be considered |Aut(m)| times
for addition. However, the formulations are essentially equiv-
alent and a subgraph configuration model can be obtained
by simply combining all embeddings that correspond to the
same subgraph. Conversely, any kernel model over subgraph
configurations with a bounded kernel Km can be mapped onto
a equivalent embedding based model by simply dividing Km

by |Aut(m)|. A more detailed discussion can be found in
Ref. [13].

Kernel models provide a very general class of subgraph
configuration models and canonical ensembles fall into the
category of kernel models. Canonical models allow us to
choose a specific form for the kernel, based on the maximum
entropy principle, given constraints on the frequencies and
distributions of the atomic subgraphs added to the graph dur-
ing the generation process. For the degree-corrected model,
the vertex features are the expected atomic degrees km,i(v) and
the kernel is given by Km =

∑
i〈km,i〉

|m| ∏i〈km,i〉
∏

v km,O(v)(v) whereas
for the homogeneous model the kernel is the constant and
equal to 〈km〉/|m| where 〈km〉 = nm/N . In Ref. [13] the au-
thors derive extensive results for properties of kernel models
including component sizes, percolation properties, the de-
gree distribution, and subgraph counts. These results carry
over to canonical subgraph configuration ensembles with little
modification.

C. Microcanonical models

Here we present some variations of the microcanonical
models (Sec. IV) which correspond to relaxations of con-
straints on the atomic degree distribution. These models in
general require fewer parameters for the same set of atoms
compared to the model that conserves the atomic degree
distribution at the level of orbits. First, we consider the mi-
crocanonical ensemble where all the orbits that correspond to
the same atom are aggregated:

dm(v) =
∑

i

dm,i(v) (44)

for all m ∈ M. Note that this is equivalent to removing the
distinction between orbits of the same atom. Applying the
corresponding transformations derived in Sec. IV C we obtain
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the following expression for the entropy:

S(M, dm) =
∑

m

[
− ln(nm!) − nm ln[|Aut(m)|] + ln[(|m|nm)!] −

∑
v

ln[dm(v)!]

− |Aut(m)|n2
m

2(nm|m|)|m|

( 〈
d2

m

〉
〈dm〉 − 1

)|m|
− |m| − 1

2

( 〈
d2

m

〉
〈dm〉 − 1

)]
, (45)

where we used the fact that
∑

i |Om,i| = |m|. Note that this is the same expression one would obtain if all atoms had a single
orbit.

The model can be further relaxed so that only the total number of atoms attached to each vertex is conserved by aggregating
atomic degrees of all orbits:

d (v) =
∑
m∈M

∑
i

dm,i(v). (46)

Again using the transformations derived in Sec. IV C we obtain the following expression for the entropy:

S(M, nm, d) = ln

[( ∑
m

|m|nm

)
!

]
−

∑
v

ln[d (v)!] −
∑

m

[
ln(nm!) + nm ln[|Aut(m)|]

+ |Aut(m)|n2
m

2
(∑

m′ |m′|nm′
)|m|

(
〈d2〉
〈d〉 − 1

)|m|
+ |m| − 1

2

|m|nm( ∑
m′ |m′|nm′

)
(

〈d2〉
〈d〉 − 1

)]
. (47)

This model has only a single degree sequence as its param-
eter and hence the expression above becomes equivalent to
Eqs. (39) and (45) when the model has a single atom with one
orbit.

Properties of microcanonical models including subgraph
counts, component sizes, and percolation properties can be
found in Ref. [14] which uses a generalization of the gener-
ating function formalism for the edge configuration model.
For more recent results, i.e., spectral properties of the micro-
canonical model, see Ref. [30]. These methods and results can
be carried over to all the variants of the microcanonical model
with minor modifications.

D. Simplicial complexes, hypergraphs, and bipartite models

We now consider some widely used models that include
higher order interactions in the form of cliques. First, we con-
sider simplicial complexes. Statistical ensembles of simplicial
complexes have been studied before, for example, in Ref. [27].

Simplicial complexes consisting of d-dimensional sim-
plices are equivalent to subgraph configurations consisting of
cliques of size d + 1. Hence, such models can be recovered by
considering models for which M consists of only Kd+1 [27].
Similarly, various hypergraph ensembles can be obtained by
considering atoms that are cliques.

Bipartite models are another type of model with atoms
that consist of cliques. Bipartite representations have tradi-
tionally been used as models for collaboration networks [2].
In the bipartite representation one has two sets of vertices, one
representing the authors and the other representing scientific
publications. An edge between i and j indicates that i is an
author of j. The collaboration network between authors is
obtained by projecting the bipartite representation on to the
set of authors by connecting all authors that have coauthored

a publication. The bipartite model consists of randomizing
a given bipartite representation such that the degrees of the
vertices in both partitions are conserved.

The entropy of the bipartite model can be obtained by a
subgraph configuration model where we have a single atom
consisting of a vertex labeled single edge with its vertices
having two distinct labels t (top) and b (bottom). This atom
has |Aut(m)| = 1 and two orbits of size 1. Using this Eq. (39)
we obtain

S(dt , db) = ln(ne!) −
∑
v∈T

ln[dt (v)!] −
∑
v∈B

ln[db(v)!]

− 1

2

(〈
d2

t

〉
〈dt 〉 − 1

)( 〈
d2

b

〉
〈db〉 − 1

)
, (48)

where ne is the number of edges and dt and db the degrees of
vertices in the top and bottom partitions. Note that the self-
loop term vanishes as expected in the bipartite case.

Bipartite representations are equivalent to subgraph con-
figurations consisting of cliques where every n-clique corre-
sponds to a n-author publication. Single author papers can be
included in the model in the form of self-loops with a single
vertex. Conserving the degree of the top vertices is equiv-
alent to conserving the number of publications for authors
and conserving the degrees of bottom vertices is equivalent
to conserving the number of n-author publications in the
model. Consequently, bipartite models are equivalent to clique
configuration models where all orbit degrees are combined.
However, one important feature of the bipartite model is that
the publications are assumed to be distinguishable. As the set
of atoms M is the set of publications in general it will contain
multiple distinguishable cliques of the same size. Moreover,
every atom occurs once in the model. Cliques have one orbit
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and |Aut(m)| = |m|!. Applying Eq. (47) we obtain

S(M, d) = ln

[( ∑
m

|m|
)

!

]
−

∑
v

ln[d (v)!] −
∑

m

ln(|m|!)

− 1

2

∑
m

|m|2 − |m|∑
m′ |m′|

(
〈d2〉
〈d〉 − 1

)
. (49)

Note that in this case the correction term for multiple sub-
graphs vanishes since the model only contains a single copy of
every atom. Although Eq. (48) concerns edge configurations
in a bipartite graph and Eq. (49) clique configurations the two
equations are identical given that dt = d and M consists of
cliques of which the sizes are given by db.

Bipartite models also have been advocated as general mod-
els of complex networks that have high clustering [26]. In
most such cases the bipartite representation is not known in
advance and a bipartite representation has to be inferred from
the network instead. In this case it might be more suitable to
assume that cliques of the same size are indistinguishable,
which would result in an additional term [−∑

m ln(nm!)] in
the entropy.

E. Directed hypergraphs and power graphs

There exist several alternative definitions for directed hy-
pergraphs [31–33]. In general, though, directed hyperedges
can be represented as directed atoms that consist of two sets of
vertices such that all the vertices in one partition are connected
to all vertices in the other partition via directed edges and
alternative definitions differ in regards to the type of directed
hyperedges they allow. Consequently, when set up with such
atoms, subgraph configuration ensembles are equivalent to
ensembles of directed hypergraphs.

Another class of graph representations related to sub-
graph configurations are power graphs [34] which represent
networks as collections of cliques and complete bipartite sub-
graphs. Although initially not conceived as generative models,
it is possible to model graphs that have various types of power
graph representations using subgraph configuration models
that contain only cliques and bipartite cliques.

F. Statistical inference

Although in principle subgraph configurations can model a
large variety of higher order graph structures in many appli-
cations information on higher order interactions is not readily
available and has to be inferred from pairwise interactions,
i.e., a graph. Even when data on higher order interactions are
available, as in the case of bipartite representations, scientific
collaboration networks the data might not contain all forms of
higher order interactions and it might be possible to infer these
for the data. For instance, scientific collaboration networks
might well contain higher order interaction patterns beyond
cliques.

Even in the setting where the atoms are known in ad-
vance, inferring higher order interactions from graph data is
a nontrivial problem. Although there exist some heuristics for
extracting higher order interactions from graphs in the case
of bipartite representations [26] and simplicical complexes
[35] these are restricted to cliquelike interactions in undirected

FIG. 3. Undirected and directed single edge atoms with vertex
labels. In the undirected case orbits coincide with vertex labels,
whereas in the directed case all atoms have two orbits regardless of
how vertices are labeled.

networks. An alternative and arguably more principled ap-
proach to obtaining higher order interactions in networks is
to use statistical inference. In general, inferring a subgraph
configuration for a given network also involves finding the
set of atoms that is most appropriate for representing the
given network. In this context, the explosion of potential
atoms as the order of subgraphs increases poses theoretical
and computational challenges. Nevertheless, when combined
with nonparametric priors similar to those used in inference
based methods in community detection [36], it is possible to
perform Bayesian inference for subgraph configurations. Such
inference procedures for atomic substructures and subgraph
configurations based on the presented models are beyond
the scope of this article and will be presented in a separate
publication.

VI. NETWORKS WITH COMMUNITY STRUCTURE

In this section we discuss the case of atoms with vertex
and edge labels. At first, we consider only labeled single edge
atoms and show that the SBM and many of its variations can
be recovered by constraining the distribution of labeled single
edge atoms of which the labels correspond to community as-
signments. For the sake of brevity, we restrict our treatment of
these models to their entropy. For a more detailed analysis of
these models we refer the reader to the references given in the
respective sections. Later, we also discuss models with labeled
higher order atoms and potential implications of higher order
structures for community detection methods that are based on
the statistical inference of SBMs.

A. SBMs and edge atoms with vertex labels

In the presence of vertex and edge labels, the definition
of graph isomorphisms should be modified to include the
preservation of vertex and edge labels. We first consider the
case where the model only contains vertex undirected labeled
edges. We denote the single edge atom with vertex labels r
and s as ers. In the undirected case the orbits of edge atoms
coincide with vertex labels (Fig. 3), i.e., for r = s we have
|Aut(err )| = 2 and a single orbit Orr,r of size 2 while for r �= s
we have |Aut(ers)| = 1 and two orbits each corresponding to
a vertex label which we denote as Ors,r and Ors,s.

1. Homogeneous SBM

The SBM [1] is widely used as a generative model for
networks with community structure. In the SBM, vertices are
assigned to one of B blocks and edges are independent and
identically distributed with success probability prs for edges
connecting two vertices from blocks r and s. It can be shown
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that the SBM is the maximum entropy ensemble given block
assignments of vertices and the expected number of edges
between blocks [5].

2. Degree-corrected SBM

The degree-corrected SBM can be obtained by assum-
ing that every vertex has a unique label indicating its block
membership and that the vertex labels of edge atoms have
to match block labels of the vertices. In the orbit degree-
corrected model fixing the atomic degree of a vertex v in block
r d(v) = (d1, . . . , dB) is equivalent to giving the number of
neighbors of different types v has. Under these specifications,
the entropy of the degree-corrected SBM can be obtained by
Eq. (39).

However, in most applications rather then specifying com-
munity specific degrees, which would require B degrees for
each vertex, the total degree of vertices is specified instead.
The entropy for such models can be obtained by aggregating
the degrees of all orbits corresponding to the same vertex
label, resulting in the following constraints:

dr (v) =
∑

s

drs,r (v) (50)

for vertices v in block r. Under these constraints, we get the
following expression for the microcanonical entropy:

S({dr}, {nrs})

= −
∑

rs

(ln(nrs!) + nrs ln[|Aut(ers)|])

+
∑

r

ln

[( ∑
s

|Ors,s|nrs

)
!

]
−

∑
r,v

ln[dr (v)!]

−
∑

rs

|Aut(ers)|n2
rs

2

∏
i

1

n|Ors,i|
i

(〈
d2

i

〉
〈di〉 − 1

)|Ors,i|

−
∑

r

nrr∑
s |Ors,s|nrs

( 〈
d2

r

〉
〈dr〉 − 1

)
, (51)

where nrs is the number of edges between blocks r and s and
ni = ∑

t nit |Oit,i| is the number of half-edges with vertex label
i. Substituting |Ors,s| = 1 + δrs and |Aut(ers)| = 1 + δrs with
their numerical values and applying Stirling’s approximation
to the factorial terms we recover the expression derived in
Ref. [5]. The entropy for the canonical ensemble can also be
obtained in a similar fashion and agrees with known expres-
sions [5].

It is also possible to formulate SBMs with intermediate
parametric complexity. For instance, one could construct a
SBM where one distinguishes between in community degree
and out community degree by aggregating only the orbits of
the edge atoms that have two distinct vertex labels. Conse-
quently, the entropy of such a model is the sum of two copies
of Eq. (51) one where nrs are set to 0 for r = s plus one where
nrs are set to 0 for r �= s.

3. Overlapping SBM

The SBM with overlapping blocks [9] can be obtained by
relaxing the condition that each vertex can only receive orbits

that correspond to a single block label. In other words, the
atomic degree vector is allowed to have nonzero entries for
multiple block labels. As such, the nonoverlapping SBM is a
subset of the overlapping SBM and the distinction between the
two models arises only due to additional assumptions about
the atomic degree sequence and hence the entropy expressions
are identical for both variants of the SBM [9].

4. Directed SBM

The directed SBM differs from the undirected SBM only
with to respect the number of atoms involved and their sym-
metries. In the directed case, there are two types of directed
edges for every pair of distinct labels and all directed single
edge atoms have two orbits and their automorphism groups
are trivial (see Fig. 3). In the directed case, it is customary to
conserve the in and out degrees of vertices separately, which
is equivalent to placing orbits corresponding to the same ver-
tex label with an incoming and outgoing edge into separate
groups. Making these changes, the entropy of the directed
SBM [5] can be recovered following the same procedure as
in the undirected case.

B. Edge labels: Link communities and hidden layers

We consider two cases of edge labels, the first being the
case where the model produces an unlabeled graph and edge
labels are hidden variables to be inferred from the data similar
to vertex labels in the SBM. This essentially provides the
counterpart of the SBM for link communities [37,38]. The
second case which we shall consider later is multilayered
networks where edge labels correspond to different layers in a
multilayer network. Therefore, the model with labeled edges
can also be interpreted as one with hidden layers [39].

In the case of labeled edges, one simply obtains a model
with independent layers where each layer is a (edge) config-
uration model. As a result, the entropy of such a model is
simply the sum of the entropies of these models. Note that
in this case the community and layer membership of a vertex
can be deduced from its atomic degrees.

The link community model is equivalent to the SBM with
overlapping communities where the counts of the atoms cor-
responding to intercommunity edges are set to zero. This is
due to the fact that the edge labeled single edge has the same
automorphism group as the vertex labeled single edge atom
that has the same label on both of its vertices. Note that in
link community models, communities can still be connected
either through direct overlap or via other link communities.
Although link community models are a subset of the overlap-
ping SBMs, link community models in general require fewer
parameters than the overlapping SBM with the same number
of blocks.

Edge atoms with vertex and edge labels

In the degree-corrected case, the link community model
is equivalent to having multiple independent (edge) configu-
ration models that are coupled through vertex intersections.
Hence, if every edge label is assumed to have its own ex-
clusive set of vertex labels, the model becomes equivalent
to the case where each link community consists of a SBM
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which includes the case of bipartite link communities. On the
other hand, if vertex labels are shared across edge labels one
obtains a SBM with multiple layers that have a common block
structure. However, these do not exhaust the possible models
as in principle the model does not intrinsically restrict the
relation between vertex and edge labels.

C. Model selection

Considering models with vertex and edge labeled atoms
leads to a variety of generative models for networks with
communities corresponding to different notions of network
communities. Formulating them within a unified framework
enables principled model selection as different variants of the
model share the same type of parameters, as has been, for
instance, done in the case of overlapping and nonoverlapping
SBMs in Ref. [8] using Bayesian nonparametrics and by set-
ting up all model variants with the same priors.

D. Higher order atoms and network communities

Including higher order structures such as triangles in gen-
erative models can have a significant impact on inference of
network communities. In general, atomic structures whether
known a priori or inferred from data provide additional in-
formation that can either reinforce or counteract evidence
for community structures. For instance, consider a random
graph with N vertices onto which we add N/6 triangles and
kN edges at random resulting at most N/2 vertices that have
a triangles attached to them. Consequently, the difference
in density between the vertices having triangles attached to
them and those which have none might be misinterpreted as
evidence for the presence of community structure. On the
other hand, higher order structures might also reinforce and
facilitate the detection of communities when the distribution
of atoms is strongly correlated with block structures and hence
facilitate the detection of block structures in data that oth-
erwise might not be detectable by SBMs that only consider
pairwise interactions. For instance, the method proposed in
Ref. [40] leverages subgraph structures for the purpose of
community detection. Although, these methods assume that
the topology of the hyperedges is known in advance and that
every such subgraph constitutes a hyperedge. The presented
models can be used to infer an optimal (generalized) hyper-
graph representation for a given network without requiring
any prior knowledge on the topology of atoms or hyperedges
which then could be further used as a basis for community
detection.

Hypergraph communities

Detecting communities in hypergraphs is an active area of
research [41,42] and the presented approach can be used to
generalize the SBM by considering hyperedges with vertex
and/or edge labels. This could be used to generalize inference
based community detection methods [36] to hypergraphs and
directed hypergraphs.

VII. MULTILAYER NETWORKS

Multilayer networks [43] can be modeled as networks with
labeled edges where edge labels indicate layer membership.
In subgraph configuration models for multilayer networks
the projection from configurations to multilayer graphs hence
should preserve edge labels that correspond to layer assign-
ments. We shall mostly focus on cases where layers are
correlated since the uncorrelated case layers are independent
and the entropy can be obtained by summing over the entropy
of each layer specific model.

A. Vertex couplings of layers

One way of obtaining correlated layers is to couple the
degree distribution across layers. Groups of layers can be cou-
pled by fixing the degrees of vertices in the graph obtained by
aggregating the layers in a group under consideration. Given
such a group of layers L this is equivalent to considering con-
straints of the form {el = nl} and dL(v) = ∑

l∈L dl (v) where
el is the total number of links and dl is the degree in layer l .

In the canonical ensemble, layers are independent given the
expected aggregate degrees of vertices and the entropy has
the from of layer specific models with expected degrees given
by dl (v) = nl

nL
dL(v) where nL = ∑

l nl . In the microcanonical
ensemble, the entropy is the sum of unlabeled (edge) config-
uration model with the aggregated degree distribution dL plus
ln[(nL

nl
)] which accounts for the assignment of edges to layers

in the right proportions. Hence, network generation and layer
assignment of edges are independent in the microcanonical
model. Such models have previously been considered in the
context of multilayer SBMs [9]. As argued in Ref. [9] in
such models layers can be interpreted as edge features of the
aggregated graph.

B. Edge couplings of layers

Layers can be coupled at the level of edges by considering
atoms that consist of multiple parallel edges from different
layers. This is essentially equivalent to creating a new layer
consisting of a specific multiedge pattern of layers and the
entropy of such models is given by the sum over individual
entropies corresponding to the multiedge atoms in the model.

Maximum entropy models for constraints on multilayer
intersection patterns have been previously studied in Ref. [44].
In Ref. [44] the ensemble is constrained in terms of counts of
(induced) copies of multilayer intersection patterns resulting
in a model where pairs of vertices are connected by a unique
multiedge pattern. As a result, this model necessarily includes
all intersection patterns found in a given multilayer graph.
Subgraph configuration models on the other hand allow for
intersection patterns not explicitly included in the model to be
formed by random intersections of other atoms. As a result,
subgraph configuration models could be used to infer a more
concise subset interlayer edge intersection patterns for a given
graph. Nevertheless, if both models are set up with the same
set of intersection patterns, one recovers the entropy expres-
sion derived in Ref. [44]. Models that combine both vertex
and edge couplings can be obtained by aggregating the atomic
degrees in models with edge couplings.
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C. Higher order couplings

It is possible to construct subgraph configuration models
where layers are coupled beyond vertex and edge couplings.
For instance, two layers can be coupled by considering a trian-
gular atom where two edges have one label and the third edge
another label. In multilayer networks the number of potential
atoms can be very large even for small atoms, especially
for networks with many layers [45]. Hence, having models
that can characterize the local structures in such networks
concisely are of great interest.

D. Multilayer SBMs

As in the single layer case, different variants of the multi-
layer SBM can be obtained by considering single atoms with
both edge and vertex labels. Models where group labels are
shared across all layers were considered in Refs. [9,44]. Such
models fall into the category of models with edge atoms that
have both vertex and edge labels which were discussed in
Sec. VI B.

VIII. CONCLUSIONS

We have formulated a general class of maximum en-
tropy models for higher order network interactions. This
class is based on explicitly representing network interac-
tions by atomic subgraphs which can have a large variety
of topological features. The resulting models are analyti-
cally tractable and can generate networks with nontrivial and
complex subgraph structures. We calculated general expres-
sions for the entropy of such models and presented a coarse
graining procedure based on aggregating ensemble constraints
that allows the parametric complexity of the models to be
controlled.

We have shown that the presented models include a large
variety of models from the literature ranging from models for
networks with motifs to SBMs to various models of multilayer

networks, and that the entropy of all these models can be
recovered from a single expression that is characterized by
the symmetry groups of atomic substructures. We also iden-
tified generative models for structural features such as link
communities and multilayer network motifs, thus showing the
generality of our methodology.

The presented models thus offer a powerful and flexible
framework where network structures are represented in terms
of atomic substructures. Subgraph configuration models also
allow for the construction of models that combine multiple
network features that better reflect empirical features of com-
plex real-world networks.

One of the main applications of the presented models is in
the area of inference based methods similar to those developed
in the context of SBMs [6]. The presented models signif-
icantly expand the types of network structures that can be
addressed by statistical inference methods. Moreover, having
a general class of models that includes multiple alternative
models provides a consistent framework for comparing alter-
native models and representations via model selection. Such
methods have been used to the discriminate between over-
lapping and nonoverlapping communities [8] and alternative
models for communities in multilayer networks [9]. In the
context of subgraph configuration models, the objective of
inference is to identify a set of atoms together with a set
of constraints on their distribution that optimally describe
the observed data. Hence, the development of such inference
algorithms remains an important area for future research.
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