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Dynamic behavior of elevators under random inflow of passengers
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Elevators can be regarded as oscillators driven by the calls of passengers who arrive randomly. We study
the dynamic behavior of elevators during the down peak period numerically and analytically. We assume that
new passengers arrive at each floor according to a Poisson process and call the elevators to go down to the
ground floor. We numerically examine how the round-trip time of a single elevator depends on the inflow rate
of passengers at each floor and reproduce it by a self-consistent equation considering the combination of floors
where the call occurs. By setting an order parameter, we show that the synchronization of two elevators occurs
irrespective of final destination (whether the elevators did or did not go to the top floor). It indicates that the
spontaneous ordering of elevators emerges from the Poisson noise. We also reproduce the round-trip time of
two elevators by a self-consistent equation considering the interaction through the existence of passengers and
the absence of volume exclusion. Those results suggest that such interaction stabilizes and characterizes the
spontaneous ordering of elevators.
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I. INTRODUCTION

Congestion is one of the challenging problems we face
in everyday life. Physically it can be described as a process
in a nonequilibrium system [1–3]. For example, the traffic
jam was empirically known to emerge even in normal con-
ditions, without disruptions caused by traffic accidents or
bottlenecks. The quantitative measurements revealed that the
jamming transition occurred as the vehicle density increased
[4,5]. More specifically, the traffic flow increased linearly with
the density at low densities, while widely varying at high
densities. Interestingly, for the intermediate densities, the flow
did not uniquely depend on the density. The latter implied the
existence of the hysteresis effect and metastable states. The
traffic jam was also known for showing density waves and
several models were proposed to describe this phenomenon
[6–10]. Generally speaking, out-of-equilibrium behaviors are
often observed in the transportation systems, where traffic
participants move and interact with each other.

Elevators represent one more example of transportation
systems exhibiting nontrivial out-of-equilibrium behaviors.
Multiple elevators form clusters in the crowded system and
thus its density separation is similar to traffic jams [11–20].
However, different from traffic jams, elevators exhibit sponta-
neous ordering as the out-of-equilibrium oscillators. Elevator
and car systems are also different in a way they interact with
other traffic participants. More specifically, elevators freely
pass other elevators, but cars cannot go ahead if other cars
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are present in front of them. Such a difference originates from
whether vehicles have the volume exclusion effect. Another
difference appears in the control parameter. While the traffic
jam emerges when the car density increases, the clustering
of elevators originates from the increasing mean number of
passengers coming in a unit time. The dynamics of elevators’
motion as a function of inflow was investigated for various
scenarios. More specifically, the pioneering numerical studies
reported the synchronization of multiple elevators moving
down during peak loads [11,12]. The interaction between the
elevators, however, was not clarified, and the mechanisms
of the synchronization remained elusive. Recently, stochas-
tic models have been developed and applied to estimate the
typical time of round trips in a steady state for each inflow
[14–19]. These models assumed that elevators’ motion pre-
sented a limit cycle with the necessary stops at both top and
ground floors. However, the motion of the elevator system
is essentially caused by the Poisson noise of passengers’ ar-
rivals. Thus, in order to understand the mechanism of elevator
clustering, it is important to investigate the spontaneous order-
ing that emerges from this noise.

In this paper, we investigate elevators’ downward motion
during peak loads when passengers go down to the ground
floor to exit the building. We numerically simulate the motion
of a single elevator in a building where the passengers arrive
according to the Poisson process. We measure the round-trip
time for various inflow rates of passengers and reproduce it by
an equation considering the combination of floors where the
call occurs. Next, we examine the simultaneous arrivals of two
elevators by introducing an order parameter. We show that the
simultaneous arrivals of elevators occur irrespective of final
destination (whether the elevators do or do not go to the top
floor). Moreover, we demonstrate that the round-trip time of
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FIG. 1. Schematic of the model.

two elevators can be estimated by a self-consistence equation
considering the interaction between elevators and the absence
of the volume exclusion effect. Finally, we show that the
interaction stabilizes the spontaneous ordering of elevators,
and the absence of the volume exclusion characterizes the
dynamics of the cluster. Note that elevator system efficiency
considerations are beyond the scope of this study.

II. PROBLEM FORMULATION

Let us consider a downward elevator system motion during
peak loads. We assume that the arrival of new passengers
at each floor is a Poisson process. Moreover, the passenger
inflow rate at each floor is uniform, and elevators do not
necessarily serve the top floor. To model the dependence of a
round-trip time from the inflow rate, we use a self-consistent
equation considering combinations of calling floors during a
round trip.

Our elevator system consists of one or two elevators serv-
ing K floors (Fig. 1). The elevators take 1 time step to move 1
floor up or down and γ time steps for the passengers to enter
or exit. In this paper, we set γ = 10 for all cases. Consistent
with previous studies [11,12], we assume that all calls for
elevators are from passengers waiting for the elevators at
floor 1 ∼ K in order to move to the ground floor and exit
the building. Once an elevator goes down, it does not go
up again until it arrives at the ground floor. If there are no
passengers in either elevators or floors, the elevators stay at
the floor where they stopped until the next call. In the case
of no waiting calls and no passengers in the elevators, the next
call will be accepted by the elevator closest to the calling floor.
Provided there are multiple (more than one) unresolved calls
and both elevators are free, the elevator stopped at a higher
floor (the upper elevator) moves upward to the higher calling
floor. Simultaneously, the lower elevator starts moving if there
are some calling it can reach faster compared to the upper
one. Each elevator can simultaneously carry not more than
M passengers. The elevators are not smart enough to identify
the number of carrying passengers and possibly stop even if

they are full. Unless otherwise noted, we focus on the case that
the capacity is large enough not to be filled up, M = 10000.
Finally, we set the initial position of elevators randomly and
performed each simulation for at least 10 000 time steps.

To estimate the time to go to the target floor, kt , from
the floor, k, we make the following additional assumptions:
(1) If the elevator is going up or at the ground floor, it will
stop at the highest floor, kh, among those having unresolved
calls and then will switch to going down and will stop at
all floors with unresolved calls between kh and kt . (2) If the
elevator is going down and k > kt , it will stop at all the floors
with unsolved calls between k and kt . (3) If the elevator is
going down and if kt � k, it will stop at all the floors with
unresolved calls between k and ground floor and between kh

and kt . The estimated time is also used to decide whether the
lower elevator goes up or stops at a floor with unresolved calls,
in the case of the upper elevator having passengers and going
down. Note that the actual time to arrive at the target floor is
different from the estimated one because the passenger inflow
is updated at every time step. The number of new passengers
at each floor and at every time step n is distributed according
to Poisson law :

Pλ(n) = λn

n!
e−λ , (1)

where λ = μ/K is the Poisson parameter and μ stands for the
passenger inflow rate for the entire building.

III. RESULTS

First, we examined the relation between the passenger in-
flow rate, μ, and the behavior of an isolated single elevator in a
10-floor building (K = 10). Figures 2(a)–2(d) show examples
of the time evolution of the elevator’s position. In general, if
μ is small, the elevator stays at the ground floor and resolves
only one call for most round trips. As μ increases, the elevator
makes round trips between the ground floor and the upper
floor continuously. Figure 2(e) shows the percentage of the
waiting time at the ground floor r for various values of μ. As
μ increases, the value of r asymptotically approaches γ /130.
Note that 130 is the time of a round trip when the elevator
stops at all floors including the ground floor. More specifically,
it decays exponentially as exp(−μ/0.03) for small μ and
switches to exp(−μ/0.07) for μ � 0.1.

Figure 2(f) shows the mean time between two consecutive
departures from the ground floor, τ . For small μ, τ decays
as 1/μ because the elevator moves to resolve a single call.
Its interval follows an exponential distribution [orange dashed
line in Fig. 2(f)]. The mean time, τ reaches the minimum for
μ = 0.04 and starts increasing for higher values of passenger
inflow rates. The maximum value of the mean time is τ =
130 (time steps) and corresponds to the elevator that starts
from the ground floor and stops at all floors. Turning into an
increase from the 1/μ decay implies that the elevator motion
shifts from the intermittent to the periodic motion.

Let us now define τ for the periodically moving elevator.
The total time of the j-th round trip, τ j (time interval be-
tween the j-th and the ( j + 1)-th departures) reads as τ j =
2z j + γ (n j + 1). Here z j is the highest floor in the j-th round
trip, and n j is the number of floors where the elevator stops.

042305-2



DYNAMIC BEHAVIOR OF ELEVATORS UNDER RANDOM … PHYSICAL REVIEW E 103, 042305 (2021)

FIG. 2. [(a)–(d)] Single elevator dynamics for small passenger
inflow rates: (a) μ = 0.01, (b) μ = 0.04, (c) μ = 0.06, and (d) μ =
0.2. The dark blue lines represent the position of the elevator at
each time step. As μ increases, the elevator moves periodically. (e)
Percentage of the elevator waiting time at the ground floor, r, vs the
passenger inflow rate, μ, for K = 10. As μ increases, r approaches
the asymptotic value of r0 = γ /130 (dashed line). Inset: r − r0

decays exponentially as μ increases. The dashed and dotted lines
represent slopes of exp(−μ/0.03) and exp(−μ/0.07), respectively.
(f) The mean time (black dots) between two consecutive departures
from the ground floor and corresponding standard deviation (shaded
area). The mean initially decreases for small μ and starts increasing
at about μ = 0.04. The solid cyan and dashed orange lines represent
estimated values obtained from Eq.(2) and an exponential distribu-
tion, respectively. The dotted black line represents τ = 130.

Note that adding 1 in the second term corresponds to a stop
at the ground floor. Let mj be the number of new passengers
coming during the j-th round trip. Then the number of new
passengers coming during N(� 1) round trips can be approx-
imated as

∑N
j=0 mj = μ

∑N
j=0 τ j . Thus, the mean number of

new passengers on a round trip is

m = μ[2z + γ (n + 1)] , (2)

where x = 1/N
∑N

j=0 x j .
The value of z is estimated by Em(z), the expectation of

the highest floor where the passengers are waiting provided
that m passengers are randomly located at K floors. This
expectation is following the methodology of the ball-in-box
problem (Fig. 3). The number of ways m passengers can be

FIG. 3. Schematic illustration of the ball-in-box problem corre-
sponding to our model when m passengers are waiting for elevators
in a K-floors building. The passengers are labeled according to the
order of arrival. Black circles represent individual passengers. The
highest floor where passengers are waiting is z and the number of
floors where passengers are waiting is n.

located at k floors is km. Then combination satisfying k being
the highest floor is km − (k − 1)m. Thus, the expectation of
the highest floor among those stopped during a round trip is

Em(z) = 1

Km

K∑
k=1

k[km − (k − 1)m]

= K − 1

Km

K−1∑
k=1

km. (3)

Here n can be considered as the expectation value of the
number of floors where more than zero passengers arrive
during a round trip. Assuming that the typical round-trip time
is τ and m = μτ , the expectation value, Em(n) reads as

Em(n) = K (1 − e−m/K ). (4)

Because both Eqs. (3) and (4) are functions of m, Eq. (2) is
the closed form of m. As shown in Fig. 2(h) (solid line), the
value of 2z + γ (n + 1) derived from Eq. (2) for each μ can
appropriately reproduce the simulation results for μ greater
than 0.05. It indicates that the elevator motion is periodic for
this range of the passenger inflow rate. Additionally, to satisfy
the “no new calls during the round trip” condition, μ < 0.03
should be satisfied so that it corresponds to n < 1. For μ

ranging from 0.03 to 0.05, the intermediate motion emerges.
Next, the dynamics of the two elevators was investigated.

It is shown in Figs. 4(a)–4(d) that μ = 0.02, 0.1, 0.2, and 0.4.
Similar to the case of a single elevator, the elevators stay at
the ground floor when μ is small [Fig. 4(a)]. The elevators
exhibit round trips between the ground floor and the upper
floor continuously when μ is in intermediate range [Fig. 4(b)].
When μ is large, the two elevators arrive at the ground floor
simultaneously as μ increases [Figs. 4(c)–4(d)]. To quantify
this tendency, we measure the simultaneousness, S, defined as
follows:

S =
∣∣∣∣∣

1

N

N∑
j=1

exp
(

2π i
τ j

ω

)∣∣∣∣∣ , (5)
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FIG. 4. [(a)–(d)] Two elevators dynamics for different values of the passenger inflow rate: (a) μ = 0.02, (b) μ = 0.1, (c) μ = 0.2, and
(d) μ = 0.4. Dark blue and bright orange lines represent the positions of each elevator at a given time step. As μ increases, the elevators
move as a cluster. (e) The simultaneousness (S) as a function of the passenger inflow rate. Cross and blue dot markers represent mean S for
(K, M ) = (10, 10000) and (10, 20), respectively. The vertical lines on the cross and dot markers represent the standard deviation. The red plus
markers represent mean S for (K, M ) = (100, 10000). (f) Percentage of fully-packed round trips as a function of the passenger inflow rate.
Each marker style is the same as those in (e). Although S shows similar behavior for (K, M ) = (10, 20) and (10, 10000), only the percentage
of (K, M ) = (10, 20) rises with μ. (g) The simultaneousness as a function of the normalized highest floor in a round trip (z/K). Here z is the
mean of the highest floors where the elevators stop in a round trip, and K is the highest floor of the building. [(h),(i)] Time interval between
two consecutive elevators arrivals at the ground floor (T ) as a function of the passenger inflow rate. Numerical and theoretical plots for K = 10
and K = 100 are given in (g) and (h), respectively. Each marker style is the same as those in (e). The dashed lines represent theoretical values
derived from Eq. (6).

where τ j is the time between j-th and ( j + 1)-th departures
of either elevator at the ground floor, ω is a mean time of
a round trip from the departure to the next arrival of both
elevators, and N is a total number of departures. The dot and
cross markers in Fig. 4(e) show mean S for parameter sets
of (K, M ) = (10, 20) and (10,10000), respectively. In both
cases, S rapidly increases for small μ. Above μ = 0.3, the
mean S of (K, M ) = (10, 20) is fluctuated around S = 0.7.
The vertical lines on dot and cross makers show the standard
deviation of S for each μ. The standard deviation of (K, M ) =
(10, 20) is large above μ = 0.6. As shown in Fig. 4(f), for
(K, M ) = (10, 20), the percentage of fully packed round trips
is almost 0 below μ = 0.25, increases above 0.25, and reaches
1 at μ = 0.4. Those results suggest that, for a high inflow
rate, the queues of the waiting passengers remain, and the
dynamics of elevators becomes deterministic. In such cases,
the initial condition affects the degree of simaltaneous arrival.
On the other hand, for (K, M ) = (10, 10000), mean S reaches
saturation above μ = 0.3, the standard deviation is small until
μ = 0.8, and the percentage of fully packed round trips stays
0 for all μ. These results indicate that the simultaneous arrival
can occur even in the case where the elevators are not filled.

We also investigate the behavior of mean S at (K, M ) =
(100, 10000) and find that it rises for smaller values of μ than
and stabilize from μ = 0.2 [red plus markers in Fig. 4(e)].
The values of S fluctuate for μ exceeding 0.5, implying that
the initial distance between two elevators does not get smaller.
It can be due to the dynamics of elevators becoming close to
deterministic. The fully packed percentage remains 0 when
μ � 1 [Fig. 4(f)].

To figure out whether the elevators arrive simultaneously
even if they do not reach the top floor, we examine the relation
between z/K and S for various values of μ. As shown in

Fig. 4(g), S rises when z is relatively small. The simultaneous
arrival occurs without elevators’ reaching the top floor. It
indicates that the simultaneous arrival can emerge from the
noise even without the given limit cycle.

We define T as the round-trip time from an elevator’s
departure from the ground floor to the elevator’s next arrival
on the ground floor. As the time since the last elevator depar-
ture is shorter, fewer new passengers come at a given floor.
Hence, the number of floors where the elevator stops becomes
smaller, its speed increases and finally overcomes that of the
leading elevator. As a result, the distance between the two
elevators reduces with time. Because the two elevators are
symmetric and the elevator system has no volume exclusion
problem, the anteroposterior relation of the two elevators is
frequently switched when the distance is close to 0. There-
fore, it can be assumed that about half of the elevator calls
occurred during the last round trip are resolved by an elevator,
and the other half is resolved by another elevator. Addition-
ally, the probability of new passengers coming at the floor
since the forward elevator departed from that floor is assumed
to be 1 − exp(−γμ/K ). The latter can be attributed to the
fact that the typical time since the forward elevator has left
is γ . Hence, assuming the two elevators move as a cluster, the
number of floors where the elevator stops during a round trip
can be represented as n

2 + (z − n
2 )(1 − e− γμ

K ), where z is the
highest calling floor for the last round trip of the cluster, and
n is the number of calling floors for the last round trip of the
cluster. Similar to derivation of Eq. (2), the mean number of
new passengers in a round trip is given by

m = μ

{
2z + γ

[
n

2
+ 1 +

(
z − n

2

)(
1 − e− γμ

K
)]}

. (6)
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As z and n are estimated as the functions of m [see Eqs. (3)
and (4)], Eq. (6) also presents a closed form of m. As shown
in Fig. 4(h), T calculated from Eq. (6) reproduces the trend
obtained in simulations. As the assumption of the distance
between two elevators being always small was inadequate for
small S values, the difference between theory and simulation
was relatively large for μ less than 0.2. The value of T
of (K, M ) = (10, 20) above μ = 0.4 mismatch that obtained
from Eq. (6). It suggests that the theory can be applied when
the elevators are not fully packed.

IV. DISCUSSION AND CONCLUSIONS

We have examined the dynamics of elevators moving
downwards for passenger inflow corresponding to a Poisson
process. We defined the time between two consecutive de-
partures from the ground floor of a single elevator for each
level of the passenger inflow rate and found that the relation
of those could be separated into two. For a small inflow
rate, the time decayed as inflow increased and it followed
the mean of the exponential distribution. For a large inflow
rate, the time increased with inflow and was reproduced by
the self-consistent equation considering possible combina-
tions of floors on which the calling occurs during a round-trip
time. Next, we numerically studied the conditions for the
simultaneous arrival of two elevators by introducing the order
parameter. We showed that the simultaneous arrival can occur
even in the case of the unlimited capacity. We also found that

the elevators would arrive simultaneously even if the elevators
did not go to the top floor. It indicated that the spontaneous
ordering of elevators emerged from the Poisson noise. We de-
fined the round-trip time for each level of the passenger inflow
rate and reproduced the round-trip time by a self-consistent
equation based on the equation for a single elevator. For the
self-consistent equation of two elevators, we assumed that
the smaller the distance between the two elevators, the faster
the posterior elevator becomes. Such interaction where the
distance between vehicles is small is the same as that of buses
in the bus-route model [21–23]. However, as mentioned in
the Introduction, the volume exclusion effect does not work
for elevators, while it does for the bus-route model. Hence,
the elevators could overcome others and the anteroposterior
relation of the two elevators was frequently switched when the
distance was close to 0. It results that the mean speed of mul-
tielevators can be faster than that in a single elevator system,
while that of buses cannot be. Thus, we can conclude that the
interaction stabilized the spontaneous ordering of elevators,
and the absence of the volume exclusion characterized the
dynamics of the cluster. Those results clarify the mechanisms
of elevator clustering and will open venues for optimization
of passenger flows in tall buildings.
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