
PHYSICAL REVIEW E 103, 042303 (2021)

Partial local entropy and anisotropy in deep weight spaces
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We refine a recently proposed class of local entropic loss functions by restricting the smoothening regulariza-
tion to only a subset of weights. The new loss functions are referred to as partial local entropies. They can adapt to
the weight-space anisotropy, thus outperforming their isotropic counterparts. We support the theoretical analysis
with experiments on image classification tasks performed with multilayer, fully connected, and convolutional
neural networks. The present study suggests how to better exploit the anisotropic nature of deep landscapes, and
it provides direct probes of the shape of the minima encountered by stochastic gradient descent algorithms. As
a byproduct, we observe an asymptotic dynamical regime at late training times where the temperature of all the
layers obeys a common cooling behavior.
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I. INTRODUCTION

Recent studies on the weight space of deep neural networks
[1,2] have highlighted the existence of rare subdominant clus-
ters of configurations that yield a high test accuracy. Although
these clusters constitute a deviation from typicality, they are
efficiently encountered by stochastic gradient descent (SGD)
algorithms and correspond to wide valleys of suitable loss
functions, such as cross entropy [3].

An analogous circumstance occurs in the context of con-
straint satisfaction problems, where the chase after clusters
of solutions is improved when the loss function gets sup-
plemented by a term that encourages a local high density of
solutions [4]. To find the number of solutions contained in the
vicinity of a specific weight configuration, one can define a
local solution-counting functional, namely a local entropy.

Classification tasks performed by means of quantized
neural networks (where the weights are discrete) can be inter-
preted as constraint satisfaction problems. There are, however,
two reasons to generalize the concept of local entropy: First,
classification problems are typically required to reach a high
but not necessarily perfect accuracy; second, they are often
approached with machines that have continuous weights.1 The
strict counting of solutions employed for constraint satisfac-
tion problems can therefore be relaxed to just an incentive that
encourages a high local density of high-accuracy configura-
tions. A local averaging of the loss, for instance, is expected to
have such an effect, but other deformations of the loss yielding
a local smoothening can be valid choices, too.

A specific smoothening procedure of the loss function
can be enforced by means of a spatial convolution with a
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1Up to the numerical precision employed.

Euclidean heat kernel, whose spread is controlled by a param-
eter γ ,

F (β, γ ;W ) = − ln
∫

dNW ′ exp

(
− βL(W ′)

− γ

2
||W − W ′||22

)
, (1)

where both W and W ′ parametrize the N-dimensional weight
space, || · ||2 represents the Euclidean norm, and L is a generic
loss function; adopting an energetic interpretation of the loss,
the parameter β corresponds to an inverse temperature. In the
limit β → 0, the integral in (1) can be interpreted as (the con-
tinuum version of) a weighted counting of the configurations
W ′ where the weighting decreases exponentially with their
distance from W [5].

The smoothening introduced by (1) is isotropic in weight
space. However, when optimizing with SGD, the gradient
noise depends in general on both the position and the direc-
tion, this being actually a key factor for the success of SGD
algorithms [6]. Therefore, it is natural to expect that a refine-
ment of the smoothening functional able to suitably exploit
the anisotropy of gradient noise can significantly improve its
regularizing effects. Besides, such refinement can furnish an
interesting new probe of the weight space.

The present paper focuses on partial, entropic and local
smoothening, namely a smoothening analogous to (1) ap-
plied to just a subsets of weights. This allows one to address
weight-space anisotropy in a direct and active way. We will
loosely adopt the term partial local entropy to convey this
idea irrespective of the details of the particular smoothening
technique, as long as it corresponds to an incentive to local
high density of high-accuracy configurations restricted to a
subset of weights.2

2The functional F (β, γ ;W ) defined in (1) can be interpreted in
analogy to a thermodynamical potential; as such, it should be referred
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II. ANISOTROPY IN WEIGHT SPACE

By definition, the neurons of a deep network are arranged
on different layers, and such architecture imposes a natural
hierarchy among them, according to their depth within the
network. In a fully connected setting, the receptive field of
each neuron coincides with the whole input, however deeper
neurons are fed with signals that have been preprocessed by
lower-lying neurons. Roughly, while the neurons in the first
layer compute a weighted sum of the network inputs, the
neurons in the second layer compute a weighted sum of the
outputs of the first layer, that is, a weighted sum of a weighted
sum of the network inputs. Such compositional nature of the
operation performed by each subsequent layer suggests that
the depth of the network corresponds to a hierarchy in com-
binatorial complexity [7].3 Any isotropic assumption about
the weight space neglects this structural hierarchy, thereby it
should be regarded with caution, if not suspicion.

Careful consideration of the hierarchical anisotropy of the
weight space has led to important insight about the inner
workings of neural networks (also in the biological domain
[8]) as well as improvements in the optimization of artificial
neural networks.4 Gradient noise depends on both position
and direction, and its covariance matrix is correlated to the
Hessian matrix of the loss function, which makes SGD escape
exponentially fast from sharp minima [6].5 Thus, it is fair to
consider weight-space anisotropy as one of the main features
at the root of the effectiveness of SGD algorithms in reaching
high test accuracy and generalization.

Layer temperature and asymptotic cooling

The learning dynamics of a deep neural network trained
with SGD is in general a complex process. The system is
out of equilibrium and, given the dependence of the gradient
noise on the position in weight space, one cannot schematize
the training as the evolution of a system in contact with an
equilibrium thermal reservoir. Nonetheless, it is still possible
to define a temperature as the variance of the gradient noise
when schematizing the training evolution in terms of a Brow-
nian motion [7,11,12]. More precisely, one has to focus on the

to as local free entropy; this extra connotation is sometime omitted
to avoid clutter.

3One can rephrase such combinatorial complexity in terms of cor-
relations among the input channels: the neurons in the first layer
are sensitive to the inputs individually, so they respond to one-point
correlations; the neurons belonging to the nth layer, instead, are
sensitive to n-point correlations, that is, the joint correlations of n
inputs.

4In this regard, two relevant examples are Kaiming weight initial-
ization [9] and regularization by means of anisotropic noise injection
[10,11].

5To keep the analysis as simple as possible, in the present paper
we do not exploit the Hessian matrix of the loss function to define
specific partial local entropies, yet this represents an interesting di-
rection for further investigation. Specifically, information about the
eigenvalues of the Hessian matrix could be useful in scoping the
hyperparameter γ [see (1)], namely in adjusting its value during
optimization in an adaptive fashion.

covariance matrix D(W ) characterizing the stochastic Wiener
process.6

Let us focus for a moment on a specific point W ∗ in
weight space. Given the anisotropy of D(W ∗), it is impossible
to define a unique temperature characterizing all directions,
but one can in principle still define a temperature for each
direction. Since we are working in a space with very high
dimensionality, this is hardly of any help. However, we should
recall that there is a natural grouping of the directions in
weight space provided by the layered structure of the network.
Furthermore, it is possible to define layer variables that aver-
age over the weights belonging to the same layer. One can
consider fluctuations of such layer variables that, due to the
averaging over a layer, are expected to be stabler and reflect
the hierarchy of the architecture. Accordingly, one can define
a layer temperature corresponding to the variance of such
layer averaging of gradients.7 This corresponds to regarding
the layers as if they were the individual units of a neural
network; despite being a crude approximation, this could help
us to gain useful insight about the training dynamics [14].8

The layer temperature is a characterization of the noise of
the training signal sI through layer I , defined as

sI = 1

NI

∑
ω∈�I

||∇ωL(W )||2, (2)

where �I denotes the set of the NI weights connecting the
Ith layer with its inputs, || · ||2 represents the Euclidean norm,
and L(W ) is the loss evaluated at the weight configuration
W . The training signals sI and their noise evolve during opti-
mization, and it is possible to isolate different regimes in the
training dynamics. In [14] the authors observed that a possibly
generic dynamic transition occurs when the signal-to-noise
ratio switches from being initially dominated by the signal to
being later dominated by noise. This occurs quite abruptly (in
terms of optimization time) and approximately at the moment
when the training signal attains its maximum value; see Fig. 1.

The numerical studies that we performed suggest the
generic presence of a further dynamic transition, occurring
at later stages of the training. This eventual regime is char-
acterized by a subexponential decay of both signal and noise
for all layers. Interestingly, the subexponential contraction of
the signal and the noise for all the layers is characterized by
a common decaying behavior. At late times, the hierarchy
between layers is therefore preserved and gets frozen: the

6We refer to [12] for the definition of the covariance matrix D(W ).
The analysis of a Brownian motion by means of the Fokker-Planck
equation encodes both the noise anisotropy and its dependence on
position through the covariance matrix D(W ) [12,13].

7We underline that a direct analysis of the variance of the gradi-
ent noise for the single weights shows that in general the weights
belonging to the same layer cannot be characterized by a com-
mon temperature. Said otherwise, the possibility of defining a layer
temperature does not imply thermal isotropy within the subspace
spanned by the weights of the same layer.

8Reference [14] has been debated in the subsequent literature,
where there is a wider set of references useful for a critical analysis
[15,16].

042303-2



PARTIAL LOCAL ENTROPY AND ANISOTROPY IN DEEP … PHYSICAL REVIEW E 103, 042303 (2021)

FIG. 1. The training signal sI defined in (2)—where I ∈ {1, 2, 3, 4} labels the layers of the network—is represented with solid lines; the
dashed lines represent the associated standard deviations. The plots depict a long training of two four-layer fully connected neural networks on
MNIST with either ReLU (top plot) or TanH (bottom plot) activation functions. Three distinct dynamical regimes emerge in both plots: (i) an
early signal-dominated regime; (ii) a short, intermediate, and noise-dominated regime; and (iii) an eventual, long, and noise-dominated regime
where all quantities decay subexponentially with a common behavior (the vertical axes are natural logarithms).

dynamics of all the layers can in fact be described factorizing
the common subexponential decay.

Interpreting the noise as a temperature and adopting a
renormalization group language, the eventual subexponential
cooling (possibly turning exponential at asymptotically late
times) is suggestive of an infrared fix point, where quan-
tities evolve by a common rescaling without distortion at

asymptotic low energies.9 It is relevant to stress that Fig. 1 has
been obtained without adopting weight-decay regularization.
Moreover, we have obtained qualitatively similar results both

9Here, a potential connection emerges to studies of neural networks
under the perspective of scaling rules; see, for instance, [17,18].

042303-3



DANIELE MUSSO PHYSICAL REVIEW E 103, 042303 (2021)

with ReLU and TanH activation functions; while the former is
scale covariant, the latter is not.

As already stressed, even if the layerwise account gives
a very coarse-grained picture of the actual training dynam-
ics, still it confirms the importance of anisotropy throughout
the whole training process, including at asymptotic late
times where the in-sample loss and the test error have long
stabilized.

III. PARTIAL LOCAL FREE ENTROPY

For the sake of generality, the present section is rather
technical. The reader who is just interested in the specific
losses used in the experiments can jump to Sec. IV and focus
on the loss functions (22) and (23) without missing the core
ideas.

We consider the cross-entropy loss Lc.e.(W ) as the base-
line function to be smoothened; W is a vector indicating
a configuration in weight space. We consider y additional
configurations W + �W a with a = 1, . . . , y, shifted by a
uniformly distributed random vector �W a. The loss cor-
responding to each configuration is supplemented by an
additional term measuring its distance from the unperturbed
point W . For the moment we let the distance function
dR,k (�W a) be arbitrary, but we assume that it depends on two
parameters, to be specified later. We consider the new loss

M(R, k, y;W ) ≡ − ln

{
1

y + 1

[
e−Lc.e. (W )

+
y∑

a=1

e−Lc.e. (W+�W a )−dR,k (�W a )

]}
, (3)

normalized with respect to the number of sampling points y +
1. Roughly, the loss M amounts to the logarithm of an average
of exponentials. In the case of just one sampling point, y = 0,
M coincides with the baseline loss,

M(R, k, y = 0;W ) = Lc.e.(W ). (4)

We choose the following distance function:

dR,k (�W ) ≡ − ln
N∏

i=1

[(
1 − 1

1 + e−2k(�Wi−R)

)

× 1

1 + e−2k(�Wi+R)

]
, (5)

which depends on two real parameters, R and k. In the k → ∞
limit, the kernel

KR,k (�W ) ≡ e−dR,k (�W ) (6)

reduces to the characteristic function of the N-dimensional
hypercube HW ,R centered in W with edges 2R long,10

lim
k→+∞

KR,k (�W ) =
N∏

i=1

[1 − �(�Wi − R)]�(�Wi + R).

(8)
Thus, the parameter R represents the effective linear size of
the support of the kernel (6), while k controls its sharpness;
see Fig. 2. In the infinite sharpness limit, k → ∞, the random
displacement vectors �W a in (3) are sampling the hypercube
HW ,R uniformly.

Taking an infinite number of sampling points,

M(R, k, y;W ) −−−−→
y→+∞ F (R, k;W ), (9)

where

F (R, k;W ) ≡ − ln
∫

dNW ′ e−Lc.e. (W ′ ) KR,k (W ′ − W ), (10)

defines a parametric family F (R, k;W ) of local free entropies,
in analogy with (1).11Taking the k → ∞ limit of (10), one
obtains

lim
k→+∞

F (R, k;W ) = − ln
∫

HW ,R

dNW ′ e−Lc.e. (W ′ ). (12)

To recapitulate, in the limit of a large number of sampling
points, y → ∞, the loss function M(R, k, y;W ) approxi-
mates a parametric family of free local entropy functions (10)
parametrized by the effective linear size R of the smoothening
region (in weight space) and the sharpness k of the associated
kernel (6).

To define partial local free entropies, we have only to
generalize the passages above to the case in which only a
subset of weights is smoothened over. We can define a discrete
indicator function U taking values in {0, 1}N and defined on
the N dimensions of weight space: it takes value 1 on the
directions along which we smoothen the loss, and 0 on the
remaining directions in weight space. Thinking of U as an
N-dimensional vector, it provides an un-normalized projector
onto the subset of weights considered for smoothening. We
can thus define a restricted version of the distance function
dR,k (�W ),

d [U ]
R,k (�W ) ≡ dR,k ((�W · U )U ), (13)

where · indicates the scalar product of RN in the N-
dimensional weight space.

10Recall that the Heaviside step function �(x) can be obtained as
the limit of infinite sharpness for a sigmoid function, namely

�(x) = lim
k→+∞

1

1 + e−2kx
. (7)

11The particular local free entropy specified in (1) is associated with
a different choice of distance, namely

d (γ ; �W ) = γ ||�W ||22. (11)
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FIG. 2. One-dimensional section of the distance function dR,k defined in (5) (left plot) and of the kernel KR,k defined in (6) (right plot); in
the plots R = 1 and k = 22, 23, 24, 25 from darker to lighter.

Adopting the restricted distance (13), we can repeat the
same steps as above: first consider

M[U ](R, k, y;W ) ≡ − ln

{
1

y + 1

[
e−Lc.e. (W )

+
y∑

a=1

e−Lc.e. (W+�W a )−d [U ]
R,k (�W a )

]}
, (14)

then take the y → ∞ limit

M[U ](R, k, y;W ) −−−−→
y→+∞ F [U ](R, k;W ), (15)

where

F [U ](R, k;W ) ≡ − ln
∫

dNW ′ e−Lc.e. (W ′ ) K [U ]
R,k (W ′ − W )

(16)
represents a parametric family of partial local free entropies.
Eventually, take the k → ∞ limit,

F [U ](R;W ) ≡ lim
k→+∞

F [U ](R, k;W ), (17)

where

F [U ](R;W ) ≡ − ln
∫

H [U ]
W ,R

dNW ′ e−Lc.e. (W ′ ); (18)

the integration region H [U ]
W ,R is a hypercube extended only in

the directions along which U is non-null.

A simpler entropic loss

It is interesting to seek a simpler loss that could some-
how preserve the smoothening effect of partial local free
entropy. To this end, one can define an averaged loss over
an N-dimensional vicinity in weight space—this imitating the
effects of local entropy—or to a lower-dimensional vicinity—
this instead imitating partial local entropy. We focus on the
latter case and define

L̄[U ](R, k, y;W )

≡ 1

y + 1

[
Lc.e.(W ) +

y∑
a=1

Lc.e.(W + �W a)K [U ]
R,k (�W a)

]
.

(19)

Considering the k → ∞ limit, one obtains

L̄[U ](R, y;W ) ≡ 1

y + 1

[
Lc.e.(W )+

y∑
a=1

Lc.e.(W+�[U ]W a)

]
,

(20)
where �[U ] means simply that the random vectors are sam-
pled uniformly within the hypercube H [U ]

W ,R centered in W and
extending along the direction indicated by the vector U , its
edges being 2R long. In the limit of infinite samples, we have

L̄[U ](R;W ) −−−−→
y→+∞

∫
H [U ]

W ,R

dNW ′ Lc.e.(W ′), (21)

and the loss reduces to a simple local average along a subset
of directions in weight space.12

IV. EXPERIMENTS WITH FULLY CONNECTED
NETWORKS

The focus of the first group of experiments is on layerwise
partial entropy regularizations for multilayer, fully connected
neural networks trained on image classification tasks. Namely,
we considered partial local entropies where the subset of
weights chosen for smoothening coincides with whole layers.
We consider the 10-class classification tasks associated with
MNIST [20] and FASHION-MNIST [21] datasets, whose input
images are 28 pixels wide and 28 pixels high. We consider
both two- and three-layer fully connected neural networks
with continuous weights13 having a further 10-neuron out-
put layer. All layers except the last have 784 = 282 neurons
and are structurally identical, apart from their different depth
within the network. The following hyperparameters have been
kept fixed for all the experiments: learning rate η = 0.0001,
momentum μ = 0.9, minibatch size 256, and trained for 120
epochs.

12The loss function defined in (19) can be related to the robust en-
semble studied in [5], which in turn is similar to the elastic averaging
proposed in [19].

13We performed the experiments with single floating point numeri-
cal precision.
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We considered two loss functions, a partial local exponen-
tial average loss (PLEA)

LPLEA(W )= − ln

{
1

1 + y

[
e−Lc.e. (W )+

y∑
a=1

e−Lc.e. (W+�W a )

]}
,

(22)
and a partial local average loss (PLA)

LPLA(W ) = 1

1 + y

[
Lc.e.(W ) +

y∑
a=1

Lc.e.(W + �W a)

]
,

(23)
where Lc.e. is the cross-entropy loss and �W a is a random
vector sampled in the vicinity of W .14 Such a vicinity is a
hypercube centered in W with edge 2R and extending only
along a subspace of the N-dimensional weight space. Notice
that in this way the regularizations of the cross-entropy Lc.e.

given by (22) and (23) enforce an anisotropic bias.
In the experiments reported below, we consider only sub-

spaces associated with one or more layers at a time.15 Apart
from the entropic smoothening, we do not enforce any further
regularization; in particular, we do not use weight decay.

A. Results

The experiments suggest two main conclusions:
(i) In general, the entropic regularizations (22) and (23)

improve test accuracy. The effect increases rapidly with the
size R of the smoothening region, up to a maximum size
beyond which performance gets degraded.

(ii) When implemented on suitable subsets of weights (e.g.,
single layers), the entropic regularizations outperform signifi-
cantly their isotropic counterparts.

The first point means that smoothening improves perfor-
mance up to a point beyond which its averaging effect distorts
the original loss landscape too heavily. The second point
means that the strong differences in the role played by the
various weights affect the loss landscape and the effectiveness
of regularization. This implies that the shape of the wide flat
minima encountered by SGD optimization is relevant, not
only their extension. Another generic conclusion suggested by
the experiments is that the layerwise entropic regularization is
more effective when performed on deeper levels. This harmo-
nizes with the intuitive idea that deeper weights are associated
with more complex features, which, in a reliable classification,
should be progressively more robust.

An important detail of the experimental setups is that all
layers have the same number of neurons, 784. Thus, when
comparing quantities associated with different layers, we are
actually probing the mere effect of depth. A direct comparison
between structurally different layers would instead be more
difficult to interpret.

14The losses (22) and (23) correspond to infinite sharpness limits,
k → ∞, of (14) and (19), respectively. See Sec. III for more details.

15Throughout the present paper, the weight space spanned by W is
formed only by the synaptic coefficients connecting different layers,
while it excludes biases. Despite these biases being present and
trained over, we do not smooth over them.

B. Two-layer fully connected neural network on FASHION-MNIST

We considered two-layer, fully connected neural networks
adopting both PLEA loss function (22) and PLA loss function
(23). The results obtained with the two loss functions are
qualitatively analogous.

We measured the test accuracy reached by three versions
of the same two-layer network as we moved the regularization
radius R.16 The three versions differ simply by the choice of
the weight subspace considered for smoothening: either (i)
the whole first layer; (ii) the whole second layer; or (iii) both
layers (isotropic choice). The results are reported in Figs. 3
and 4 (left plot). Regularization on the second layer alone
proved to be the best strategy for both choices of loss functions
and in the entire range of R probed by the experiments. The
isotropic regularization can outperform the regularization on
the first layer alone, but only at very small values for R. In
fact, the isotropic choice leads soon to degraded results as R
increases, while the single-layer regularizations continue to
improve the test accuracy, showing a saturating behavior.

C. Three-layer fully connected neural network on MNIST

The experiments on the three-layer fully connected neural
networks confirm and extend the results obtained for its two-
layer counterpart. They are depicted in Fig. 4 (right plot).
In particular, the isotropic choice proves to be the worst
among all the possible choices of subsets17 as soon as the
smoothening radius R is sufficiently big. Moreover, there is
an articulated interplay of regimes as R varies: at the lowest
values of R, the best choice consists in regularizing with
respect to the first and third layers jointly; at large values of
R, regularizing with respect to the second or third layer alone
proves to be the best choice. Also, the performance hierarchy
among the suboptimal regularization schemes changes as R
moves, showing a complicated structure.

D. Finer sampling

To test whether the decrease in accuracy associated with
regularizing on multiple layers is due to insufficient sampling
[i.e., too small y; see (22) and (23)], we repeated the exper-
iments performed with the two-layer fully connected neural
network on FASHION-MNIST with PLA loss doubling the num-
ber of sampling points y. The results obtained with y = 8 are
comparable to those obtained with y = 4; see Fig. 5; this hints
at the fact that the sampling of the smoothening neighborhood
cannot explain the poor performance of multilayer regulariza-
tion.

V. EXPERIMENTS WITH CONVOLUTIONAL NEURAL
NETWORKS

We extend the analysis described in Sec. IV in two direc-
tions: (i) we consider more complicated image classification

16That is, the parameter encoding the linear size of the smoothening
region; see Sec. III for details.

17Recall that we consider only subsets of weights associated with
one or more whole layers.
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FIG. 3. Comparison of the best (left) and final (right) test accuracy reached by a two-layer fully connected neural network on FASHION-
MNIST. The lines correspond to three different PLA losses [see (23)] obtained by smoothening the cross entropy, respectively, on the first, the
second, or both layers.

FIG. 4. Left plot: best test accuracy reached during training by a two-layer fully connected neural network over FASHION-MNIST. The three
lines correspond to three different PLEA regularization schemes [see Eq. (3)], where smoothening is performed on the first layer alone, on the
second layer alone, or on both layers, respectively. Right plot: best test accuracy reached by a three-layer fully connected neural network on
MNIST. The lines represents different PLA regularization schemes according to an RGB color nomenclature, where red corresponds to the first
layer, green to the second, and blue to the third.

FIG. 5. Comparison of the test accuracy performance obtained with a bilayer fully connected neural network on FASHION-MNIST and
trained with PLA loss [see Eq. (23)]. The lighter line refers to finer sampling, y = 8, while the darker line refers to y = 4. There is no strong
sensitivity to the sample size.
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FIG. 6. Training loss (left) and test accuracy (right) of the convolutional network (24) trained to solve the CIFAR10 image classification
task. The black lines refer to the case in which no entropic regularization was considered. The red and green lines refer to PLA [see (23)] loss
applied to the first (I) or second (II) fully connected layer, respectively, as specified in the legend. The paler lines in the right plot depict the
in-sample accuracy.

tasks; and (ii) we consider deeper networks with convolu-
tional architectures. The convolutional neural networks that
we adopt present five convolutional layers followed by three
fully connected layers; the details of the architectures are
given in (24) and (25). All the convolutional kernels are 3 × 3.

A. Results

The main conclusions that emerged from the study of par-
tial entropic regularizations applied to convolutional neural
networks are the following:

(i) Partial entropic regularizations involving the convolu-
tional layers lead, in general, to worse classification accuracy
with respect to the nonregularized case.

(ii) When applied to the fully connected head of convolu-
tional networks, partial entropic regularizations can improve
the classification accuracy in a similar way to that observed
on multilayered perceptrons, described in Sec. IV, especially
when adopting an early stopping strategy interrupting training
before its full stabilization.

Some further comments are in order. Convolutional lay-
ers implement a structured bias encoding some degree of
locality and translational invariance. Thus the convolutional
structure, if compared to fully connected layers, is highly
specialized. Entropic regularizations can in general be thought
of as corresponding to the integration over some injected
artificial noise. As such, one expects them to weaken, if not
to spoil, any specific bias previously encoded in the neural
architecture. Such comment holds both for the partial en-
tropic regularization studied here as well as for other forms
of noisy regularizations, like Dropout. The latter, too, has
been observed to hamper the performance of convolutional
networks [22]. Conversely, fully connected layers have no
specific structure, and the average over additional noise can
lead to better performance in general, also when applied to
the fully connected head in a convolutional network.

In the experiments detailed below, we consider fully con-
nected heads formed by three layers. The deepest layer
outputs 10 channel, as required by the 10-class classifica-
tion tasks considered, and we do not regularize it. The other
two fully connected layers are instead equal in shape among

themselves. As already argued in Sec. IV for the multilayer
perceptrons, the structural equality allows for a direct com-
parison between the two layers.

B. CIFAR10

For the classification task corresponding to the CIFAR10
dataset [23], we considered the following convolutional archi-
tecture:

Layer In channels Put channels
Conv 3 64
Conv 64 64

MaxPool
Conv 64 128
Conv 128 128
Conv 128 128

MaxPool
Fully 128 × 4 × 4 128 × 4 × 4
Fully 128 × 4 × 4 128 × 4 × 4
Fully 128 × 4 × 4 10

(24)

We have trained it for 360 epochs with a constant learning
rate η = 10−4, a minibatch size of 256 images, and mo-
mentum μ = 0.9 without Nesterov acceleration. The training
dataset has been augmented and regulated by means of ran-
dom transformations on the images. Specifically, we have
considered rescaled random crops ranging from 60% to 100%
of the image area and with a height-to-width ratio from 3

4 to
4
3 . Neither weight decay nor dropout layers have been used.18

Actually, the only regularization for the stochastic gradient
descent has been provided by the partial local average, en-
coded in (23), with four additional sample points drawn from
a uniform distribution in a hypercube ball of a side equal to
2R, with R = 0.01. The initialization followed the so-called
Kaiming procedure described in [24].

The results are depicted in Fig. 6. We considered three
cases: no regularization or PLA regularization applied to ei-
ther the first or second layer in the fully connected head [see

18We compare the partial entropic regularizations against weight-
decay regularizations in Sec. V B 1.
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FIG. 7. The paler (yellow) lines represent training instances that adopted increasing levels of weight-decay regularization, 0.01, 0.001
and 0.0001, respectively, from darker to lighter. They all overlap with the unregularized case (label 0), meaning that the effects of weight
regularization are irrelevant. The plot on the top left depicts the in-sample loss during training on CIFAR10; the lowest line corresponds to
II and the second from below corresponds to I. The plot on the top right shows the out-of-sample accuracy during training on CIFAR10; the
uppermost line corresponds to II while the second from the top corresponds to I. The bottom plot is a zoom of the top right figure highlighting
the late portion of the training.

(24)]. The PLA modification of the loss function yields better
performance, both in-sample and out-of-sample, especially if
combined with an early stopping strategy, which interrupts the
training before its eventual stabilization. The PLA procedure
implies collecting multiple samples of the loss function in
the vicinity of the current weight configuration of the net-
work (we took four points in a hypercubic vicinity plus the
center); the gradient is accumulated but eventually rescaled
in such a way that the multiple sampling does not affect the
training by means of a simple amplification of the learning
rate.

Comparison against standard weight-decay
regularization

To better assess the effects of partial entropic regulariza-
tion, we considered comparing them with those produced by
a standard regularization method, namely weight decay [25].
Specifically, we considered three levels of weight-decay rate:
0.01, 0.001, and 0.0001. As shown in Fig. 7, weight-decay
regularization proved to be of essentially no use in the present
experiments. On the contrary, partial entropic regularization
improved the performance, more significantly in the early
phase of the training but only slightly in later stages. These
experiments do not pretend to support a generic claim; how-
ever, they show explicitly that partial entropic regularization
can be preferable with respect to weight regularization.

C. STL10

STL10 is a 10-class classification dataset [26] of 96 × 96
color images acquired from ImageNet [27]. STL10 was de-
signed for partially unsupervised learning [28]. In fact, it
contains only 500 labeled images for supervised training.
Although these hardly suffice to train a machine in a fully
supervised setup, we use them to simply show the positive
effects that partial entropy regularizations induce on the early
phase of the training, without requiring an overall satisfactory
performance.19

We adopt the following convolutional architecture:

Layer In channels Out channels
Conv 3 8
Conv 8 8

MaxPool
Conv 8 16
Conv 16 16
Conv 16 16

MaxPool
Fully 16 × 20 × 20 16 × 20 × 20
Fully 16 × 20 × 20 16 × 20 × 20
Fully 16 × 20 × 20 10

(25)

19STL10 has already been used in the literature for supervised
learning; see, for example, [29].
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FIG. 8. Training loss (left) and test accuracy (right) of a deep convolutional network (25) trained on the STL10 image dataset in a fully
supervised scheme for 960 epochs. The black lines correspond to zero entropic regularization, while the lines I and II correspond to partial
entropic regularization applied only to the first and second fully connected layers, respectively. The green line (II) corresponds to lowest loss
and highest accuracy. The bottom plot is a zoom over the last part of the right plot above, depicting the accuracy levels reached at the end of
the training.

which is analogous to (24) but has lighter layers. We trained
it for 960 epochs with a constant learning rate η = 10−5,
momentum μ = 0.9 without Nesterov acceleration, and a
minibatch size of 64 images. To mitigate the issue pre-
sented by the smallness of the training set, we have applied
heavy augmentation and regularization to the training images.
Specifically, we considered random crops whose size ranges
from 8% to the full image, and whose aspect ratio ranges
from 3

4 to 4
3 ; we considered random horizontal flips, random

reduction to gray-scale (with a probability p = 0.1), color
jitter (brightness, contrast, saturation, and hue all set to 0.5),
and random rotation whose maximal rotation angle is ±π

radians.20

We monitored the training, and we report the evolution
of the in-sample loss and the test accuracy in Fig. 8. The
partial entropic regularization, applied to one layer at a time,
improves the training and validation performances, but only if
accompanied by an early stopping strategy. The experiments

20To implement such transformations, we relied on the transforms
library in PyTorch [30].

of Fig. 8 refer to a PLA loss (23) where the side of the sampled
hypercube is 2R with R = 0.01. The network was initialized
according to the Kaiming method [24]; no weight decay was
considered.

VI. DISCUSSION

A local smoothening of the loss function can improve the
chase for wide flat minima [1,2], which is already a strength
of the standard stochastic gradient descent algorithm [6].21 We
elaborate and refine the smoothening techniques based on lo-
cal entropy to the purpose of leveraging the anisotropic nature
of deep weight spaces. Concretely, we propose to restrict local
entropic losses to suitable sub-spaces of weights, thus defining
partial local entropies. This allows us to explore, address, and
exploit the intrinsic anisotropic nature of deep weight spaces.
In fact, we show that a partial entropic regularization can

21The generic relevance of wide flat minima is still debated in the
literature [31,32], especially in relation to scale covariance and nor-
malization in weight space for networks adopting ReLU activations.
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FIG. 9. Loss and accuracy levels during training, both in-sample and out-of sample, for the five-layer perceptron (A1) with ReLU (top)
and TanH (bottom) activation functions. Logarithms are in the natural basis.

implement useful biases on the shape of the minima encoun-
tered by SGD optimization.

We have mainly explored the layerwise implementations
of partial local entropies; although there is room for finer
analyses resolving smaller subspaces, the layerwise approach
is both natural (i.e., well-adapted to the architecture of deep
networks) and informative.

In the present paper, we have applied partial entropic reg-
ularizations to some fully connected and convolutional neural
networks employed for image classification tasks. They can,
however, be employed for the optimization of wider classes
of learning machines, e.g., autoencoders [33]. In particular,
the specific layerwise entropic regularizations proposed in
the present study apply in any context involving a layered
neural network. The partial entropic regularizations have been
proved to be potentially useful in all the considered experi-
ments. However, their positive effects in progressively more
demanding tasks seem to be restricted to an early stopping
protocol. The adoption of a partial entropic loss led to a more
aggressive optimization in all the performed experiments.

Direct analysis in the language of statistical physics

The study of local entropic regularizations is a very active
research front in machine learning, especially in connection

to statistical physics [1,3–5,19,33–35]. Wide flat minima have
been described as a structural characteristic of deep networks,
and their correlation with good generalization performance
has been claimed in [1,3]. In some simple setups, it is even
possible to estimate analytically the hypervolume of the clus-
ters of configurations giving rise to the relevant minima [3,36].
The theoretical framework on which the calculations are based
has been developed for the study of disordered systems in
condensed matter, mainly spin glasses (see [37] and refer-
ences therein), and it is called the replica approach. Within
this approach, different regimes are described by different
Ansätzes, and they can be separated by clustering transitions
[38].22

A simple version of the replica approach [41] can rely on
two (crude) assumptions: (i) averaging over (typically Gaus-
sian) input; (ii) considering treelike architectures. The former
essentially washes out completely the information about the
dataset. This is not always undesirable; in fact, it allows for
the characterization of structural properties of the machines
that hold true per se independently of the dataset. However,
it constitutes a limitation whenever the actual information

22An analogous transition in K-SAT problems has been studied in
[39,40].
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provided by the input is important. As a future prospect,
it would be interesting to study how a direct and explicit
account of correlations in the input data could improve the the-
oretical understanding of the partial entropic regularizations,
especially regarding their effects on the inference quality.23

Considering a treelike architecture is very helpful to simplify
the computations; in fact, avoiding loops in the network often
opens the possibility of exact computations by, for instance,
belief propagation algorithms [3,41]. Nevertheless, adopting
a treelike network as a proxy for a fully connected one can be
too crude a simplification, which is expected to deviate more
significantly as the depth of the system is increased.

To explain the experiments described in Sec. IV, it would
be desirable to have a direct control on the shape of the
relevant clusters of weight configurations reached upon SGD
training, or at least an estimation thereof. This could be seen as
a refinement of the estimation of the clusters size [3,36], and
as such it is likely to be a very demanding endeavor up to the
point that it becomes natural to ask whether some simpler—
though possibly rougher—approach is viable. To this end, it is
interesting to investigate mean-field inference methods [43].
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APPENDIX: DETAILS ON THE ASYMPTOTIC COOLING
EXPERIMENTS

The experiments described in Sec. II A were performed
with a five-layer, fully connected neural network with the
following architecture:

Layer In channels Out channels

Fully connected 282 282

Fully connected 282 282

Fully connected 282 282

Fully connected 282 282

Fully connected 282 10

(A1)

The following hyperparameters have been adopted: learning
rate η = 10−4, momentum μ = 0.9 without Nesterov accel-
eration, minibatch size of 256 images. The networks have
been trained for 3.5 × 104 epochs on the MNIST dataset. Nei-
ther weight decay nor partial local entropic regularizations
have been used. The only difference between the two ex-
periments relies in the activation functions, ReLU and TanH,
respectively. The loss and accuracy levels during training are
reported in Fig. 9.
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