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We investigate the statistics of articulation points and bredges (bridge edges) in complex networks in which
bonds are randomly removed in a percolation process. Because of the heterogeneous structure of a complex
network, the probability of a node to be an articulation point or the probability of an edge to be a bredge will not
be homogeneous across the network. We therefore analyze full distributions of articulation point probabilities
as well as bredge probabilities, using a message-passing or cavity approach to the problem. Our methods allow
us to obtain these distributions both for large single instances of networks and for ensembles of networks in
the configuration model class in the thermodynamic limit, through a single unified approach. We also evaluate
deconvolutions of these distributions according to degrees of the node or the degrees of both adjacent nodes in
the case of bredges. We obtain closed form expressions for the large mean degree limit of Erdős-Rényi networks.
Moreover, we reveal and are able to rationalize a significant amount of structure in the evolution of articulation
point and bredge probabilities in response to random bond removal. We find that full distributions of articulation
point and bredge probabilities in real networks and in their randomized counterparts may exhibit significant
differences even where average articulation point and bredge probabilities do not. We argue that our results
could be exploited in a variety of applications, including approaches to network dismantling or to vaccination
and islanding strategies to prevent the spread of epidemics or of blackouts in process networks.
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I. INTRODUCTION

Networks affect many dimensions of human existence.
They manifest themselves in everyday life, they underpin
advanced information and communication technologies, and
they provide a powerful paradigm to analyze complex prob-
lems in the natural sciences, in engineering, and in economics
and the social sciences [1–5]. Key functionality of a net-
work often depends on whether pairs of nodes are mutually
connected through one or several paths of contiguous edges
or whether they reside in different disconnected components
of a net. One of the key questions of network science has
therefore been the identification of conditions under which
networks—natural or artificial—exhibit a so-called giant con-
nected component (GCC), which occupies a finite fraction
of a system in the limit of large system size [6]. A natural
question then is how random or intentional removal of nodes
or edges will affect the functionality of a network, in particular
whether a GCC would survive such a process of node or edge
removals; this question has been extensively studied in the
past two decades using percolation theory [1–5,7–11].

Of crucial importance for the functionality of a network are
articulation points (APs) and bredges (or bridge edges) [12].
Articulation points are nodes whose removal would break
the network component on which they are located into two
or more disconnected components [13–16], while bredges
are edges whose removal would break the network compo-
nent on which they are located into two components [17,18].
APs and bredges thus play a central role in network attack

strategies where network dismantling is achieved by system-
atic removal of cycles, a process known as decycling [19–21],
which in turn generates further APs and bredges. It is clear
from their definition that all nodes on trees that are not leaf
nodes of a network are APs, and conversely that nodes that
belong to any cycle cannot be APs, unless they are also root
nodes of a tree. In a similar vein, any edge located on a subtree
of a network will always be a bredge. Figure 1 provides an
illustrative example.

It is worth mentioning, however, that there is also a con-
structive role for APs and bredges, as these are precisely the
nodes or edges in a network one needs to remove in efficient
strategies for containment (islanding) of blackouts in power
grids, financial shocks, and vaccination in the context of epi-
demics, to name but a few relevant cases. From a different
perspective, APs and bredges are fundamental quantities in
describing the structure of networks.

The statistical properties of APs and bredges were recently
studied in detail for models in the configuration model class
in Refs. [22] and [23], respectively. Closed form expressions
were obtained for the average fraction of nodes that are APs,
both in the entire network and on the GCC of configura-
tion model networks. Further details concerning the degree
distribution of APs and the distribution of articulation ranks
which specify the number of additional network components
created by the removal of a node were also evaluated in closed
form; for further details, see Ref. [22]. In Ref. [23], analogous
results were obtained for bredges, including the probability for
edges to be bredges, both in the entire network and separately
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FIG. 1. Articulation points and bredges in an ER network of
mean degree c = 2 and N = 30 nodes. Articulation points are in-
dicated by circles, with a radius proportional to their articulation
rank, i.e., proportional to the number of new network components
that would be created by their removal, while vertices that are not
articulation points are indicated as black dots. Bredges are indicated
by broken lines, with long dashed lines indicating so-called root
bredges which are directly linked to the 2-core of the network,
and short dashes indicating the remaining bredges located on tree
branches of the GCC or on finite isolated clusters. Full lines indicate
edges which are part of at least one cycle, and hence their removal
would not break the network into two components. These nonbredge
edges form the so-called 2-core of a network.

for the GCC, as well as joint degree distributions of nodes
connected by a bredge, once more both in the entire network
and restricted to the GCC. Both sets of results heavily rely
on an earlier analysis of the microstructure of the GCC and
the finite network components of configuration models in
Ref. [24]. Figure 1 shows an example of an Erdős-Rényi (ER)
network exhibiting APs and bredges.

In Refs. [22] and [23], the authors looked at average AP
and bredge probabilities and their deconvolution according to
degree for ensembles of random networks in the configuration
model class. In the present paper, we look at the fate of APs
and bredges in percolation, i.e., at the evolution of AP and
bredge probabilities in a percolation process where a certain
fraction of edges is randomly removed from the network with
probability 1 − p (and hence retained with probability p).
Moreover, we go beyond average probabilities and their de-
convolution according to degree in recognition of the fact
that the probability of a node to be an AP or of an edge to
be a bredge will depend on higher order coordination shells
around the node or edge in question, rather than just on the
degree of a node or the two degrees of the end nodes of an
edge. This type of heterogeneity was properly highlighted and
analyzed in detail for percolation probabilities and cluster-size

(b)

(a)

FIG. 2. (a) Articulation point probabilities ai of a selected set of
nodes i and (b) bredge probabilities bi j of a selected set of edges
(i, j) from the network of Fig. 1 as functions of the bond retention
probability p in a percolation process.

distributions in Ref. [25], and we will use a variant of that
analysis for the study of APs and bredges.

Figure 2 illustrates the heterogeneity of AP and bredge
probabilities that is to be expected in this problem. It shows
AP probabilities for a selected set of of nodes and bredge
probabilities for a selected set of edges for the example net-
work of Fig. 1 as functions of the bond retention probability p
of a percolation process. Results are obtained using the theory
outlined in the present paper, as predicted by Eq. (9) below
for APs and by Eq. (15) for bredges. They demonstrate, in
particular, that nodes on the 2-core of the network at p = 1
cannot be APs, but may become APs as p is decreased and cy-
cles are eliminated through bond removal. Conversely, nodes
on tree components of the network that are not endpoints at
p = 1 are APs with probability 1 but may lose that property by
becoming endpoints or isolated nodes through bond removal
as p is decreased. For bredges, the figure illustrates in a similar
vein that edges that belong to tree components of the network,
whether attached to the GCC or not, are bredges with proba-
bility 1, while edges located on cycles on the original network,
i.e., at p = 1, are bredges with probability 0 but may become
bredges as cycles are broken with increasing probability as
p is decreased. Our paper explains how this fairly intricate
phenomenology can be captured analytically.

Our main results are the following. We demonstrate that
the message-passing approach to percolation probabilities can
be used to evaluate node-dependent probabilities of vertices
in a complex networks to be APs as well as edge-dependent
probabilities of pairs of neighboring vertices in a network to
be connected by a bredge. We derive a formulation for single
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instances of large networks and use that to obtain a formu-
lation for ensembles of networks in the configuration model
class in the thermodynamic limit. We obtain closed form ap-
proximations for the large mean degree limit of Erdős-Rényi
(ER) networks, which we find efficiently capture probabil-
ity density functions of AP and bredge probabilities already
for relatively moderate mean degrees. Distributions of AP
probabilities and bredge probabilities are evaluated for ER
networks as well as scale-free networks in the thermodynamic
limit, and we also obtain deconvolutions of these distributions
according to degree(s) of the node(s) involved. We also apply
the single-instance theory to obtain distributions of AP and
bredge probabilities for a real-world network. Finally, we use
the message-passing approach to identify APs and bredges in
a given network, and for any given realization of a percolation
process, and find that it performs far better than might be
expected, given that the method is known to be exact only
on trees.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the version of the message-passing ap-
proach to percolation that we are using for the analysis of APs
and bredges. We formulate the approach both for the analysis
of finite instances of large networks and for the thermody-
namic limit of networks in the configuration model class.
In Sec. III, we use these results to analyze the probabilities
of edges to be bredges and the probabilities of nodes to be
APs as a function of the edge retention probability p. Once
more, we do this for large single network instances and for
networks in the configuration model class, when the thermo-
dynamic limit of infinite system size is taken. In Sec. IV, we
derive closed form approximations for the probability density
functions (pdfs) of AP and bredge probabilities for the large
mean degree limit of Erdős-Rényi (ER) networks. Results
are presented in Sec. V. Section VI finally concludes with a
summary and discussion that also consider various possible
applications of our main results.

II. BOND PERCOLATION

The analysis of AP and bredge probabilities is closely
related to the analysis of percolation in complex networks,
a process by which bonds (or vertices) of a network are
randomly and independently either kept with probability p
or deleted with probability 1 − p. The present investiga-
tion is based on a message-passing approach to percolation
in complex networks [26,27]. We will, however, comple-
ment the results of these papers by evaluating the results
of the message-passing approach beyond average percolation
probabilities or, for that matter, average AP and bredge proba-
bilities, using ideas proposed in Ref. [25]. The approach taken
in Ref. [25] evaluates distributions of percolation probabilities
in terms of size distributions of finite clusters. Here, we use
a more direct approach, closer to that of Ref. [26], which is
formulated directly in terms of node-dependent percolation
probabilities.

We will formulate the message-passing approach for single
instances of large complex networks, and then use the results
to obtain a description for networks in the configuration model
class in the thermodynamic limit. Networks in the configura-
tion model class are maximally random subject to a prescribed

degree distribution [28,29]. Using ki to denote the degree
of node i in a network, we thus assume that a network is
characterized by a degree distribution Prob(ki = k) = pk for
k ∈ N and that there are no degree-degree correlations.

A. Single-instance theory for percolation probabilities

We begin by briefly describing the message-passing ap-
proach to percolation, concentrating for specificity on bond
percolation. The case of site percolation where nodes are
randomly removed with probability 1 − p and retained with
probability p can be analyzed using the same ideas and
methods.

We consider networks consisting of N vertices, labeled
i = 1, 2, . . . , N , which are connected by a set of nondirected
edges (i j). We introduce indicator variables ni to denote
whether vertex i is in the giant connected component (GCC)
of the network (ni = 1) or not (ni = 0), and indicator variables
xi j which denote whether the edge (i j) is kept in a single re-
alization of the percolation process (xi j = 1) or not (xi j = 0).
In terms of these, we have

ni = 1 −
∏
j∈∂i

(
1 − xi jn

(i)
j

)
(1)

in which ∂i denotes the set of nodes connected to i in the orig-
inal graph and n(i)

j is an indicator variable denoting whether

the vertex j adjacent to i is (n(i)
j = 1) or is not (n(i)

j = 0) on the
GCC on the cavity graph from which vertex i and the edges
emanating from it are removed. Equation (1) states the fact
that a site belongs to the GCC if it is connected to it through
at least one of its neighbors, which in turn requires both that
the neighbor is in the GCC and that the link connecting to that
neighbor is actually kept in the given instance of a percolation
experiment. For the cavity indicator variables we have, by the
same line of reasoning, that

n(i)
j = 1 −

∏
�∈∂ j\i

(
1 − x j�n( j)

�

)
. (2)

Equations (1) and (2) can be averaged over all possible real-
izations of the percolation process on the given network. This
gives

gi = 1 −
∏
j∈∂i

(
1 − pg(i)

j

)
(3)

for the probability that vertex i will be part of the GCC in a
realization of the percolation process, while

g(i)
j = 1 −

∏
�∈∂ j\i

(
1 − pg( j)

�

)
(4)

is the probability that vertex j neighboring on i on the original
graph will be part of the GCC on the cavity graph from which
i and edges emanating from it are removed. In Eqs. (3), we
exploited the fact that that xi j and n(i)

j are independent, and

the same clearly holds for x j� and n( j)
� in Eq. (4). As usual, a

factorization of averages is used that assumes independence
of random variables along different edges incident on a given
node. This assumption is exact only on trees but is known
to be an excellent approximation on locally tree-like graphs,
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which becomes exact for finitely coordinated systems in the
thermodynamic limit N → ∞ of infinite system size.

Equations (4) can be solved through forward iteration—
starting from random initial conditions—on a single instance
of a graph, and from the solution site-dependent percolation
probabilities gi can be computed using Eqs. (3). Alternatively,
for certain random network ensembles, distributions of per-
colation probabilities can be evaluated in the thermodynamic
limit.

B. Thermodynamic limit

We will evaluate distributions of percolation probabil-
ities, and subsequently distributions of articulation point
probabilities and distributions of bredge probabilities in the
thermodynamic limit for networks in the configuration model
class.

In the thermodynamic limit, Eqs. (4) constitute an infinite
system of coupled self-consistency equations for the cavity
probabilities g(i)

j . Assuming that a statistical law or a proba-

bility density π̃ (g̃) of the g(i)
j exists, it can be found, following

standard arguments [25,30–32] by demanding probabilistic
self-consistency. The value of π̃ (g̃) is obtained by summing
probabilities of all instances of of the right-hand side of
Eqs. (4) for which g(i)

j ∈ (g̃, g̃ + dg̃]. Using this procedure,
Eqs. (4) result in

π̃ (g̃)=
∑

k

k

c
pk

∫ [ k−1∏
ν=1

dπ̃ (g̃ν )

]
δ

(
g̃ −

[
1 −

k−1∏
ν=1

(1 − pg̃ν )

])
,

(5)

in which k
c pk is the probability that a randomly chosen neigh-

bor of a node has degree k, and we have adopted the shorthand
dπ̃ (g̃ν ) = π̃ (g̃ν ) dg̃ν . Although this equation is a highly non-
linear integral equation, it can be solved efficiently and to any
desired degree of precision (limited only by computational
power) using a population dynamics algorithm [30]. In terms
of the solution of Eq. (5), the distribution π (g) of node-
dependent percolation probabilities is found from Eq. (3) as

π (g)=
∑

k

pk

∫ [ k∏
ν=1

dπ̃ (g̃ν )

]
δ

(
g −

[
1 −

k∏
ν=1

(1 − pg̃ν )

])
.

(6)

III. STATISTICS OF ARTICULATION POINTS
AND BREDGES IN PERCOLATION

A. Articulation points

In order for a node i of the system not to be an articulation
point, all its neighbors must reside on the giant component of
the reduced network from which i is removed [22]. Introduc-
ing n̂i ∈ {0, 1} as an indicator variable which denotes whether
i is an articulation point (n̂i = 1) or not (n̂i = 0), and noting
that only the links that are still present, for which thus xi j = 1,
should contribute to the logic as to whether or not a node is an

articulation point, we get

n̂i =
[

1 −
∏
j∈∂i

(
n(i)

j

)xi j

]
× 1I|x∂i|�2

=
[

1 −
∏
j∈∂i

(
1 − xi j + xi jn

(i)
j

)]×1I|x∂i|�2 . (7)

Here we have introduced the vector x∂i = (xi j ) j∈∂i and the
norm |x∂i| = ∑

j∈∂i xi j , and we have invested the fact that
nodes connected to fewer than two other nodes cannot be
articulation points. Upon averaging this over realizations of
a percolation process, this gives the probability

ai = 〈n̂i〉 (8)

that node i is an articulation point, where angled brackets
denote an average over bond configurations in an ensemble of
percolation processes in which bonds (of a given network) are
randomly and independently removed with probability 1 − p
and kept with probability p. Performing the average over bond
configurations in Eq. (7), we get

ai =
〈[

1 −
∏
j∈∂i

(
1 − xi j + xi jn

(i)
j

)]×1I|x∂i|�2

〉

= 1 − p(1 − p)ki−1
∑
j∈∂i

(
1 − g(i)

j

)

−
∏
j∈∂i

(
1 − p + pg(i)

j

)
. (9)

The heterogeneity of the original network entails that the ai

depend in a highly nontrivial way on the location of the nodes i
in the original network. Following the reasoning used above to
obtain the distribution of percolation probabilities, one obtains
the probability density function π (a) of the node-dependent
articulation point probabilities in the thermodynamic limit of
infinite system size as

π (a) = (p0 + p1) δ(a) +
∑
k�2

pkπ (a|k) (10)

with

π (a|k) =
∫ [ k∏

ν=1

dπ̃ (g̃ν )

]
δ

(
a −

[
1 − p(1 − p)k−1

×
k∑

ν=1

(1 − g̃ν ) −
k∏

ν=1

(1 − p + pg̃ν )

])
(11)

giving the pdfs of articulation point probabilities conditioned
on degrees for which k � 2.

Using the fact that 0 � g(i)
j � 1 for all g(i)

j appearing in
Eq. (9), it is straightforward to obtain p-dependent expressions
for articulation point probabilities of and limiting probabilities
for some subclasses of vertices. For example, for any node i
residing on a finite cluster of a network—examples are nodes
labeled 25, 28, 29, and 30 in Fig. 1—we have g(i)

j = 0 for all
j ∈ ∂i. For these nodes, Eq. (9) then entails that

ai

∣∣
ki=k = aFC

k (p) = 1 − kp(1 − p)k−1 − (1 − p)k . (12)
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These form a family of continuous curves for which aFC
k (0) =

0 and aFC
k (1) = 1, and the aFC

k (p) would mark p-dependent
locations of δ peaks in pdfs of AP probabilities for any net-
work in which finite isolated clusters exist. Curves labeled
a25, a28, a28, and a30 in Fig. 2 provide examples belonging to
this family. Given that isolated clusters are generated through
percolation, whenever p < 1 these curves should eventually
become noticeable in pdfs of AP probabilities even in sys-
tems in which finite clusters to not exist at p = 1. Below the
percolation threshold, they completely describe the support of
the distribution of AP probabilities.

Next, suppose that i is a node on the GCC of a network with
ki = k, and suppose that kt < k − 1 of the edges emanating
from i belong to a tree rooted in i, whereas the remaining
k� = k − kt � 2 edges emanating from i are part of one or
several loops on the GCC. Examples of such nodes are nodes
10, 16, and 18 in Fig. 1. Their corresponding p-dependent AP
probabilities ai(p) as given by Eq. (9) are marked in Fig. 2.
For nodes of this type, we have g(i)

jt
= 0 for all jt ∈ ∂i which

are located on the tree, whereas for the remaining k� neigh-
bors of i, we have the the inequality (1 − g(i)

j�
) � (1 − p)k j� −1

which follows by using the upper bound 1 in g( j� )
� � 1 for

all � ∈ ∂ j� \ i in Eq. (4). Note that g( j� )
� ’s close to (the upper

bound) 1 are only likely to be found sufficiently far above any
percolation transition, thus for p � 1. Denoting by k = (k j� )
the set of degrees of the k� terminal nodes that link i to loops,
we can conclude that for vertices of this type we have

ai

∣∣
ki=k;kt ,k

→ ak;kt ,k(p)

with

ak;kt ,k(p) = 1 − p(1 − p)k−1

[
kt +

k�∑
�=1

(1 − p)k j� −1

]

−(1 − p)kt

k�∏
�=1

[
1 − p(1 − p)k j� −1

]
. (13)

These form families of curves for which ak;kt ,k(0) = 0, just
as in the family of curves that describe the situation on finite
clusters. If kt > 0 (and i ∈ GCC), i.e., if i is a root node of
a tree attached to the GCC (examples are nodes 10, 16, and
18 in Fig. 1), then ak;kt ,k(p) → 1 as p → 1, just as in the case
of finite clusters. However, if kt = 0 (and i ∈ GCC), then i is
not the root node of a tree attached to the GCC (examples
are nodes 12, 13, 14, 15, and 17 in Fig. 1), and we have
ak;kt ,k(p) → 0 as p → 1 unlike in the finite cluster case. Close
to p = 1, it is expected that the probability of g( j� )

� ’s saturating
their upper bound is expected to be reasonably high, so this
family of curves is expected to be reasonably well visible, as

they would correspond to locations of pronounced maxima
in p-dependent pdfs of AP probabilities, at least in networks
which are reasonably densely connected at p = 1. We shall
find that this is clearly borne out by the results presented
below.

In order to rationalize further structures in p-dependent
pdfs of AP probabilities, one would have to include infor-
mation about the configuration of higher coordination shells
around a chosen vertex i, and use iterated versions of the self-
consistency equation (4) to express the g(i)

j for j ∈ ∂i in terms
of cavity percolation probabilities on edges further removed
from i. Following that strategy, one would in principle be able
to characterize the p dependence of such structures in terms
of sums of powers of p and (1 − p). In that context, the small
example provided in Figs. 1 and 2 can be instructive.

B. Bredges

Moving on to bredges, we can follow the same line of
reasoning. For a randomly chosen edge (i j) in a network not
to be a bredge [16,23], both of its end nodes must belong to
the GCC in a network from which the edge (i j) is removed.
Introducing ni j as an indicator variable that denotes whether
the edge (i j) is a bredge (ni j = 1) or not (ni j = 0), this can
be expressed in terms of the cavity indicator variables n(i)

j and

n( j)
i introduced above as

ni j = 1 − n( j)
i n(i)

j . (14)

Averaging this equation over all realizations of the percolation
process gives the probability

bi j = 〈ni j〉 = 1 − g( j)
i g(i)

j , (15)

for a link (i j) to be a bredge in an ensemble of percolation
processes where links (on a given network) are randomly
and independently removed with probability 1 − p and kept
with probability p. Equation (15) allows one to obtain link-
dependent bredge probabilities bi j in large single network
instances from the solutions of Eqs. (4). Once again, the het-
erogeneity of the original network entails that the bi j depend
in a nontrivial way on the location of the edge (i j) in the
original network. The probability density function π (b) of
the link-dependent bredge probabilities in the thermodynamic
limit is obtained following the reasoning used to find the
distribution of percolation probabilities as

π (b) =
∫

dπ̃ (g̃)dπ̃ (g̃′) δ(b − (1 − g̃g̃′)). (16)

To access the dependence of bredge probabilities on the
degrees of the terminal nodes of an edge, one can use the self-
consistency equations (4) in Eq. (15), giving

bi j = 1 −
[

1 −
∏

�∈∂i\ j

(
1 − pg(i)

�

)][
1 −

∏
�′∈∂ j\i

(
1 − pg( j)

�′
)]

. (17)

In the thermodynamic limit, this then translates into

π (b) =
∑
k,k′

k

c
pk

k′

c
pk′ π (b|k, k′) , (18)
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with the

π (b|k, k′) =
∫ [ k−1∏

ν=1

dπ̃ (g̃ν )

][ k′−1∏
ν ′=1

dπ̃ (g̃ν ′ )

]
δ

⎛
⎝b −

{
1 −

[
1 −

k−1∏
ν=1

(1 − pg̃ν )

][
1 −

k′−1∏
ν ′=1

(1 − pg̃ν ′ )

]}⎞
⎠ (19)

as pdfs of the bredge probabilities, conditioned on the degrees
k and k′ of the terminal nodes of an edge.

For bredge probabilities described by Eq. (15), one can
obtain p-dependent families of curves that depend on the local
environment of the terminal nodes i and j defining the edge.
If i or j (or both) are nodes residing on a tree of the original
network, then the product g( j)

i g(i)
j is identically zero; hence for

edges of this type we have

bi j = bt
i j (p) ≡ 1 . (20)

Examples are edges (1,3), (4,5), (6,10), and (25,26) in Fig. 1,
with the corresponding bi j (p) curves marked in Fig. 2(b). This
results in the appearance of a δ peak at b = 1 in the pdf of
the bredge probabilities at all p (provided the network does
contain trees, be they attached to the GCC or not). If networks
are constructed without tree components at p = 1, i.e., prior
to random bond dilution, then this δ peak at b = 1 will appear
with increasing weight as p decreases.

Assuming that an edge (i j) connects nodes with ki = k and
k j = k′ and that both are indeed on the GCC of a network
from which the edge in question is removed, then one can
use the bounds g( j)

i � 1 − (1 − p)ki−1 and similarly g(i)
j � 1 −

(1 − p)k j−1 to conclude

bi j

∣∣
ki=k,k j=k′ � bk,k′ (p) (21)

with

bk,k′ (p) = 1 − [1 − (1 − p)k−1][1 − (1 − p)k′−1]. (22)

As discussed above, in the case of AP probabilities one
expects that close to p = 1 the probability of g( j)

i ’s and g(i)
j ’s

saturating their upper bound should be reasonably high so this
family of curves is expected to be reasonably well visible in
representations of p-dependent pdfs of bredge probabilities,
as long as the networks are fairly densely connected in the
p → 1 limit.

As in the case of AP probabilities, further structures in
the results for bredge probabilities can be rationalized by
considering higher order coordination shells around the two
vertices defining an edge under study.

IV. LARGE MEAN DEGREE APPROXIMATION

For networks exhibiting “narrow” degree distributions in
the sense that the the standard deviation of the degrees is
negligibly small in comparison to the mean degree, it is
possible to derive closed form approximations of the results
above [25,33]. The obvious candidate to consider is the Pois-
son degree distribution of ER graphs with large mean degree
〈k〉 = c, for which the standard deviation σk = √

c is small
compared to the mean for c 
 1.

In the large mean degree limit, the solution of Eq. (5) turns
out to be well approximated by the δ distribution

π̃ (g̃) = δ(g̃ − g∗) . (23)

The value of g∗ is obtained by inserting this ansatz into Eq. (5)
and deriving a self-consistency equation for g∗. Assuming a
Poisson distribution for the degrees, we get the equation

g∗ = 1 − e−pcg∗ (24)

as the self-consistency equation for g∗. In order to obtain a
nontrivial solution in the large-c limit, one has to adopt the
scaling p = ρ/c at fixed ρ, so that Eq. (24) becomes

g∗ = 1 − e−ρg∗ , (25)

which can be solved in closed form, giving

g∗ = 1 + W (−ρe−ρ )

ρ
, (26)

where W (·) is the Lambert W function; see Sec. 4.13 in
Ref. [34].

In order to obtain the large mean degree limit of the dis-
tribution π (a) of articulation point probabilities, we insert
the ansatz of Eq. (23) into Eq. (11), which implies that the
conditional probability a(k) for a node of degree k to be an
articulation point is at large k(� 2) given by

a(k) = 1 − kp(1 − p)k−1(1 − g∗) − (1 − p + pg∗)k . (27)

For a Poisson distribution of mean degree c, the distribution
of scaled degrees x = k/c is well approximated by a nor-
mal distribution of mean 1 and variance 1/c for c 
 1, i.e.,
x ∼ N (1, 1/c) in this limit. From Eq. (27), we can obtain an
expression of the scaled degree x = x(a) as a function of the
AP probability a as the solution x = x(a) of

a = 1 − ρx(1 − p)cx−1(1 − g∗) − (1 − p + pg∗)cx


 1 − ρx e−ρx (1 − g∗) − e−ρx(1−g∗ ) , (28)

where we have used the large-c limit in the second line. This
then allows us to obtain a closed form expression for the pdf
π (a) using the fact that the distribution of scaled degrees x is
a normal distribution

π (x) =
√

c

2π
exp

[
− c

2
(x − 1)2

]
(29)

which, via a standard identity about transformations of pdfs
under a change of variable, transforms into

π (a) = π (x)

∣∣∣∣dx

da

∣∣∣∣
=

√ c
2π

exp
[− c

2 (x − 1)2
]

|ρ(1 − g∗)e−ρx[(ρx − 1) + eρxg∗ ]| , (30)

with x = x(a) given in terms of the solution of Eq. (28). Note
that the most efficient way to evalutate this density, however, is
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to avoid solving Eq. (28) and simply treat the pair of equations
(28) and (30) as a parametric representation of the pdf π (a)
in terms of the parameter x � 0.

The large mean degree approximation for the pdf π (b) of
bredge probabilities is slightly more involved, as according
to Eqs. (18) and (19) it involves a natural deconvolution on
contributions depending on the degrees of both end nodes of
a bredge. Exploiting once more the fact that π̃ (g̃) 
 δ(g̃ − g∗)
for ER networks with large mean degree, we obtain bredge
probabilities as functions of the degrees k, k′ of terminal nodes
as

b = b(k, k′) = 1 − [1 − (1 − pg∗)k−1][1 − (1 − pg∗)k′−1].

(31)

Noting that for a Poisson degree distribution k
c pk = pk−1 we

relabel k ← k − 1 and k′ ← k′ − 1 on the right-hand side of
Eq. (31). Following the reasoning for APs above, we once
more exploit the fact that scaled (relabeled) degrees x = k/c
and y = k′/c are normally distributed random variables of
mean 1 and variance 1/c. Rewriting Eq. (31) in terms of scaled
relabeled degrees gives

b = b(x, y) = 1 − [1 − (1 − pg∗)cx][1 − (1 − pg∗)cy]. (32)

We can solve this, for instance, for y to obtain

y = y(b|x) = 1

c ln(1 − pg∗)
ln

[
1 − 1 − b

1 − (1 − pg∗)cx

]
,

(33)

provided that b > (1 − pg∗)cx, giving y for any given value of
x as a function of the bredge probability b. This allows us to
transform the Gaussian pdf π (y) = √ c

2π
exp [ − c

2 (y − 1)2]
of the scaled degree y—using an analogous transformation of
variables identity for pdfs, albeit now conditioned on x—into

π (b|x) = N (x) π (y)

∣∣∣∣∂y

∂b

∣∣∣∣	(b − (1 − pg∗)cx )

= N (x) exp[− c
2 (y(b|x) − 1)2]√

2πc | ln(1 − pg∗)| [b − (1 − pg∗)cx]

	(b − (1 − pg∗)cx ) , (34)

with y(b|x) given by Eq. (33) and 	(x) the Heaviside step
function. Here N (x) is a normalization factor that is needed
due to the x-dependent restriction on the allowed range of b
values, to ensure that the π (b|x) are normalized pdfs for all x.
It cannot be evaluated in closed form and has to be obtained
numerically. This finally gives

π (b) =
∫

dx π (b|x) π (x) (35)

with π (x) the pdf of an N (1, 1/c) normal random variable
given by Eq. (29). The integral in Eq. (35), too, has to be done
numerically.

In Sec. V below, we show that even for moderate values
of the mean degree c these results already provide a decent
approximation for the distributions of articulation point prob-
abilities and bredge probabilities.

V. RESULTS

Below we present results both for synthetic networks in the
configuration model class in the thermodynamic limit and for
single instances of a real world network.

A. Synthetic networks

Figures 3 and 4 show heat maps of the p-dependent proba-
bility density functions π (a) of articulation point probabilities
and and π (b) of bredge probabilities, respectively. Results
in Fig. 3 are for ER networks of mean degree c = 2, those
in Fig. 4 for scale-free networks with degree distribution
pk ∝ k−3 for k � 2. The first prominent difference between
the two networks is a different percolation threshold, namely
pc = 0.5 for the ER network and pc 
 0.1 for the scale-free
network. Apart from the fact that the scale-free network has
a lower percolation threshold than the ER network, another
qualitative difference is in the fact that it has a minimum
degree kmin = 2 and thus it has, at p = 1, no finite isolated
clusters or even sets of nodes that form tree-like structures.
This feature explains the main qualitative difference of the
heat maps of AP probabilities in the ER and the scale-free
network: Nonleaf nodes on trees are always APs; these are
abundant in the ER network, explaining the fact that, for large
p, the pdf π (a) of AP probabilities has significant mass for
a 
 1 in the ER case, whereas for p close to 1, the pdf of AP
probabilities is very close to zero near a = 1 in the scale-free
network where trees do not exist right at p = 1.

There are, in both figures, sharp p-dependent structures
that are clearly visible sufficiently far above the percolation
threshold. They can be rationalized, both for the heat maps of
π (a) and π (b) in terms of local neighborhoods of nodes and
edges, as explained in Sec. III A for articulation points and in
Sec III B for bredges respectively.

For articulation points, there is a family of curves connect-
ing the points (p, a) = (0, 0) and (p, a) = (1, 1) described by
Eq. (12) for finite clusters and by Eq. (13) with kt > 0 for root
nodes of trees attached to the GCC. These are clearly visible in
the entire p range for the ER network with mean degree c = 2
as finite clusters and trees attached to the GCC exist at all p.
For the scale-free network with kmin = 2, there are no finite
clusters and tree-like structures at p = 1. They are, however,
created by random bond removal, so features with locations
described by these equations become more prominent as p is
lowered. For articulation points which are not root nodes of
trees, Eq. (13) with kt = 0 defines a family of curves which
connect the points (p, a) = (0, 0) and (p, a) = (1, 0); these
curves describe the location of p-dependent peaks in pdfs
of AP probabilities which are clearly visible close to p = 1
as they require that the probability to have cavity percola-
tion probabilities g(i)

j 
 1 is sufficiently large. This family of
curves will thus become blurred and disappear as the percola-
tion transition is approached from above.

For bredges, Eq. (22) defines a family of curves which cor-
respond to maxima in pdfs of bredge probabilities, which—in
analogy to the corresponding family of curves describing
AP probabilities—will be clearly visible close to p = 1 as
they, too, require the probability to have cavity percolation
probabilities g(i)

j 
 1 to be sufficiently large. As a result, this
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FIG. 3. (a) Heat map of the pdf π (a) of articulation point probabilities for an ER network of mean degree c = 2. (b) Heat map of the pdf
π (b) of bredge probabilities for the same system. Because of the very large range of values for the pdfs, a nonlinear mapping of pdfs into
the interval [0,1] of the form π (·) → √

π (·)/(0.4 + √
π (·) ) is adopted as a means to achieve a color code that remains discriminate also at

relatively low values of pdfs.

family of curves will also become blurred and disappear as the
percolation transition is approached from above.

Some of the curves described by Eqs. (12) and (13) for
APs and by Eq. (22) for bredges are shown in Fig. 5, and
they agree well with features seen in the heat maps in Figs. 3
and 4. Other prominent features seen in the heat maps are
not captured by these families of curves, as they require an
analysis of local environments of nodes and edges beyond
first coordination shells, as discussed and exploited before
in Refs. [24,33] to rationalize prominent features in pdfs of
percolation probabilities.

To the extent that there is some degree of similarity of the
results for articulation points and bredges in both cases, it is
due to the intimate connection which exists between bredges
and articulation points, as each end node of a bredge is an
articulation point if it is not a leaf node and each articulation
point of degree k � 2 must have at least one bredge emanating
from it [23].

Nonetheless, there are marked differences which are more
clearly brought out in plots of π (a) and π (b) at given values
of bond retention probabilities p, which are better suited to
demonstrate quantitative details. Figure 6 shows results for ER
networks of Fig. 3 at p = 0.75. There are δ peaks at 0 as well

as a set of other δ peaks at locations given by aFC
k (p = 0.75)

in π (a) for k � 2. The peak at zero is due to isolated nodes
and nodes that are leaf nodes after random bond removal. The
continuum part of π (a) is due to nodes originally on the 2-core
of the GCC. Individual contributions π (a, k) for some k are
also shown and are seen to contribute to different features in
the overall pdf. The pdf π (b) of bredge probabilities has a
δ peak at 1, originating from finite tree-like clusters or trees
attached to the GCC on the original network, whereas the
continuous part of π (b) is due to nodes on the giant cluster
that were part of one or several loops on the GCC of the
original network. Any marked features that would occur at
locations given by bk,k′ (p = 0.75) are already blurred. The
deconvolution of π (b) according to the degree k of one of the
terminal nodes shows that larger values of k entail that bredge
probabilities are shifted toward smaller values.

Figure 7 shows results for the scale-free network of Fig. 4
at p = 0.5. The scale-free network was constructed with
kmin = 2, so there are no isolated nodes nor leaves, nor fi-
nite tree-like clusters or trees attached to the giant cluster
at p = 1. As a consequence, the δ peaks in π (a) and π (b)
are absent in this system. The deconvolution according to
degree reveals that nodes of degree k = 2 are predominantly
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FIG. 4. (a) Heat map of the pdf π (a) of articulation point probabilities for a scale-free network with degree distribution pk ∝ k−3, with
k � 2. (b) Heat map of the pdf π (b) of bredge probabilities for the same system. As in Fig. 3, the color code is generated using the nonlinear
mapping π (·) → √

π (·)/(0.4 + √
π (·) ).
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(a) (b)

FIG. 5. (a) Families of p-dependent AP probabilities aFC
k (p) [upper unlabeled set of curves, given by Eq. (12)] for k = 2, . . . , 7 (bottom to

top) and ak;kt ,k(p) [lower set of curves, given by Eq. (13)]; the lower set of curves corresponds to a subfamily corresponding to a set of nodes
of degree ki = k, with kt = 0, and k j = k′ for all j ∈ ∂i, and we use the label (k, k′) members of this subfamily. (b) Families of p-dependent
bredge probabilities of the form bk,k′ (p), given by Eq. (22).

responsible for the larger π (a) values for a � 0.25 with the
peaks at a = 0.1875 and at a = 0.125 predicted by Eq. (13),
while others require including further coordination shells in
the analysis. The sharp maxima in π (b) are mainly due to
edges, with one terminal node of degree k = 2. The peaks
at b = 0.75 and at a = 0.5 are predicted by Eq. (22), the
former as b(2, 2, p = 0.5) and the latter as an accumulation
point of the b(k, k′, p = 0.5) for k′ → ∞. For the scale-free
network, large degrees do occur with sufficient probability
to give sufficient weight to this peak. Other sharp peaks at
larger values of b can be rationalized by including higher
coordination shells in the analysis.

One can harness techniques of Ref. [35] used originally
to disentangle contributions to sparse random matrix spectra
coming from the giant connected components and from finite
clusters to investigate probabilities of nodes to be articulation
points and probabilities of edges to be bredges conditioned on
these nodes and edges having belonged to the GCC prior to
any percolation experiment. This is obviously the most rele-
vant issue to study when thinking of maintaining functionality

of a network or conversely of attack strategies which would
efficiently undermine such functionality. Technically this is
done by analyzing the message-passing equations for two
“replicas” of indicator variables, one for the system without
random bond removals and one for the same system with
random bond removals. This analysis quantitatively confirms
the attribution of features in π (a) and π (b) discussed above
according to whether they are due to nodes or edges originally
on the GCC or on finite clusters.

Figure 8 finally demonstrates that the large mean degree
approximation is remarkably efficient already for the fairly
moderate value c = 10 for the mean degree.

B. Single-instance cavity for a real world network

If we compare results for synthetic networks shown above
with those for a real world network, we can state the fol-
lowing. There are p-dependent structures—with the same p
dependence—in the real world and synthetic networks. In
Fig. 9, we present results for one such real world network,

(a) (b)

FIG. 6. (a) Distribution π (a) of articulation point probabilities (black full line) and contributions π (a, k) for a selection of different
degrees, shown here for k = 2, 3, 4 and k > 5, for the ER network of mean degree c = 2 at bond retention probability p = 0.75, with
individual contributions decreasing with increasing k. (b) Distribution π (b) of bredge probabilities (black full line) and contributions
π (b, k) = ∑

k′ π (b, k, k′) for k = 2, 3, 4, and k > 5 for the same system. Contributions peak at lower b values for increasing k. For π (a),
the δ peak at a = 0 originates from nodes with k = 0 and k = 1, whereas the δ peak at a = 1 is due to nodes on finite clusters and on tree
branches that are not leaf nodes. For π (b), the δ peak at b = 1 is due to edges which reside on tree branches.
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(a) (b)

FIG. 7. (a) Distribution π (a) of articulation point probabilities (black line) and contributions π (a, k) for a selection of different degrees,
shown here for k = 2, 3, 4 and k > 6, for the scale-free network at bond retention probability p = 0.5, with individual contributions decreasing
with increasing k. Note that typical probabilities of nodes to be APs appear to increase with the degree k. (b) Distribution π (b) of bredge
probabilities and contributions π (b, k) = ∑

k′ π (b, k, k′) for k = 2, 3, 4 and k > 6 for the same system. Contributions peak at lower b values
for increasing k.

a symmetrized version of the Gnutella file-sharing network
[36] with N = 62 586 nodes. It is notable that the clarity with
which individual features show up depends very much on
the system, and differences between the networks are clearly
visible. For example, except in the vicinity of the percola-
tion transition at pc 
 0.1, the pdf of bredge probabilities is
concentrated at significantly lower values of b in the Gnutella
network than in the two examples of synthetic random net-
works. The same appears to be true for the pdf of articulation
point probabilities generated by nodes that are on the 2-core of
the original network, for which therefore ai(p) → 0 as p → 1.

A recent study of bredges in real world networks [16]
has revealed that the fraction of bredges in these networks
was very close to the fraction in randomized networks with
the same degree distribution. In Fig. 10, we confirm this
for the Gnutella network undergoing random bond removal
for the average bredge probabilities at all values of the bond
retention probability p, and to a lesser degree of similarity for
average AP probabilities. However, despite the closeness of

values of average AP and bredge probabilities in the original
network and its randomized version, there remain marked
differences at the level of the full distributions π (a) and π (b)
of AP and bredge probabilities, respectively.

C. Single-instance cavity algorithm to identify
articulation points and bredges

The message-passing approach can also be used to iden-
tify individual APs and bredges in a given network, rather
than local AP probabilities and bredge probabilities in en-
sembles of systems affected by random bond or site removal.
To this end, one returns to the message-passing equations
for the indicator variables ni and the cavity indicator vari-
ables n(i)

j for a single realization of the bond-occupancy
variables xi j , i.e., Eqs. (1) and (2). An iterative solution of
Eqs. (2) for xi j ≡ 1 would allow one to identify APs and
bredges in the original network via Eqs. (7) and (14), re-
spectively. Given any realization of the xi j resulting from

(a) (b)

FIG. 8. (a) Comparison of the distribution π (a) of articulation point probabilities (blue full line) with its large mean degree approximation
red (dashed line) for an ER graph of mean degree c = 10 and bond-retention probability p = 0.2. The analogous comparison for the
distribution π (b) of bredge probabilities is in panel (b). The agreement between the results of the full cavity analysis and its large mean
degree approximation is surprisingly good already for the moderate value of the mean degree considered here.
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FIG. 9. (a) Heat map of the pdf π (a) of articulation point probabilities for the Gnutella file-sharing network. (b) Heat map of the pdf π (b)
of bredge probabilities for the same system. The nonlinear map to produce color codes is the same as in Figs. 3 and 4.

random or targeted bond removal, one could repeat that anal-
ysis and find bredges and APs in the same manner after bond
removal.

We have tested this idea for the Gnutella file-sharing net-
work. Although the message-passing algorithm will be exact
only on trees, we found it to be extremely efficient and
accurate for this real world network, despite the fact that
the network contains a large number of loops. For bredges,
comparison with exact recursive algorithms revealed that the

results of the message-passing analysis were in fact exact:
There were neither false positives nor false negatives. Of the
147 892 edges in this network, we correctly identified all
28 759 bredges in the network. In the case of APs, comparison
with exact recursive algorithms revealed just a single false
negative: We identified 12 253 out of 62 586 nodes to be APs,
missing only one additional AP found by the exact algorithm.
Although this demonstrates performance only on a single
example, results are certainly encouraging.

(a) (b)

(c) (d)

FIG. 10. (a) Average AP probabilities for the Gnutella file sharing network undergoing a percolation process as a function of bond retention
probability p, compared with the p-dependent AP probabilities for a randomized version of the same network. (b) The same comparison for
the p-dependent average bredge probabilities. Panels (c) and (d) compare full distributions π (a) of AP probabilities and π (b) of bredge
probabilities for the original and the randomized version of the Gnutella network at bond retention probability p = 0.3. While at the level of
average AP and bredge probabilities the Gnutella network and its randomized version are very similar, the full pdfs π (a) and π (b) exhibit
remarkable differences.
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The complexity of the algorithm is estimated to scale as
N ln N with system size N for sparse graphs. Here the factor of
N accounts for the scaling of the algorithm with the number of
edges in a system with finite mean degree, while the ln N fac-
tor accounts for the scaling of the algorithm with the diameter
of the network (which scales logarithmically with network
size N for small world networks of the type considered in the
present paper); the diameter dependence is due to the fact that
messages need to be passed (a few times) through the network
in order to achieve convergence.

VI. SUMMARY AND DISCUSSION

In summary, we demonstrated that the message-passing
approach to percolation—apart from its original purpose to
compute heterogeneous node-dependent percolation probabil-
ities [25,33]—can also be utilized to evaluate heterogeneous
node-dependent probabilities of vertices in a complex net-
works to be APs as well as heterogeneous edge-dependent
probabilities of pairs of neighboring vertices in a network to
be connected by a bredge.

Average probabilities of nodes to be APs and average
probabilities of edges to be bredges were recently evaluated
for ensembles of networks in the configuration model class
in Refs. [22] and [23] respectively. In the present paper, we
looked at the evolution of these probabilities in percolation
where a certain fraction of edges is randomly removed from
the network, and we were able to go beyond average proba-
bilities. This provides a significant amount of further detail
in the analysis. It recognizes and exploits the fact that the
probability of a node to be an AP or of an edge to be a bredge,
in a node or bond percolation experiment, will depend on the
entire environment of the node or edge in question, rather than
just on its degree or on the two degrees of the end nodes of an
edge. For the sake of definiteness, we restricted our analysis
in the present paper to the case of bond percolation, though
it would be straightforward to formulate the theory for site
percolation.

We derived a formulation for single instances of large
networks and used it to obtain a formulation for ensembles
of networks in the configuration model class in the thermo-
dynamic limit. We also obtained closed form approximations
for the large mean degree limit of Erdős-Rényi (ER) net-
works, which we found to be fairly efficient already for rather
moderate values of the mean degree. It is worth emphasizing
that solving Eqs. (4) for cavity percolation probabilities is
sufficient to obtain node-dependent percolation probabilities
gi(p) using Eq. (3), AP probabilities ai(p) using Eq. (9), and
edge-dependent bredge probabilities bi j (p) using Eq. (15), all
in one go. Alternatively, solving Eq. (5) for the pdf of cavity
percolation probabilities of configuration model networks in
the thermodynamic limit is sufficient to obtain limiting pdfs of
percolation probabilities, AP probabilities, and bredge proba-
bilities from Eqs. (6), (10), and (18), respectively, once more
all in one go.

Distributions of AP probabilities and bredge probabilities
were evaluated for ER networks as well as scale-free net-
works in the thermodynamic limit; deconvolutions of these
distributions according to degree were also obtained. The
single instance theory was applied to obtain distributions of

AP and bredge probabilities for a real-world network. Finally,
we also implemented the single-instance formulation of the
theory prior to averaging over realizations of a percolation
experiment as an algorithm to locate APs and bredges in a
given network and for any given realization of a percolation
process, and we find that it performs surprisingly well, giving
only a single false negative for APs in the Gnutella file-sharing
network data—a network of N = 62 586 nodes and 147 892
edges—and no errors at all when locating bredges.

A study of bredges in real-world networks [16] recently
revealed that the fraction of bredges in such network was
very close to the fraction observed in randomized versions
of these networks. In the present paper, we have seen that
while this remains true if bonds are randomly removed from
either the original network or its randomized version, this is
no longer the case for the full distributions of AP and bredge
probabilities.

Articulation points and bredges are exploited in optimized
algorithms of network dismantling [19–21]. Dismantling pro-
cesses typically begin with a decycling stage in which a node
is deleted in every cycle of a network. This process transforms
the network into a tree or a forest of trees, in which all the
nodes of degrees k � 2 are APs and all edges have turned
into bredges. Subsequent removal of further nodes or edges
will then break the network into many small components. In
this context, the results of the current work and in particular
individual ai(p) and bi j (p) curves could be useful to devise
efficient decycling heuristics that take into account the frac-
tion 1 − p of edges that the attack is able to delete. In general,
a deep attack that aims at dismantling the network completely
should initially target nodes [edges] with low ai(p) [bi j (p)]
values in order to achieve decycling, as explained below.

We believe that the quantitative results obtained in this
work contain a lot of interesting information about nodes
and edges in the network and could be useful in a broad
spectrum of applications. For instance, an interesting aspect
of the bi j (p) curves is that they exhibit no crossings, meaning
that the order between the bi j (p) curves is preserved in the
whole range of p’s where they differ. In particular, looking
at the b value of all the edges for any intermediate value of
p can be used to rank them; lower bi j (p) value of an edge
(i, j) means it is more likely that the network would maintain
its functionality when the edge in question is removed in the
course of a random deletion of of a fraction 1 − p of its edges.
In other words, the bi j (p) curves can be used as a basis for
an edge-based centrality measure. We believe that targeting
edges with a low bi j (p) score would boost the efficiency of
the decycling phase of a deep attack on a network that has
a lot of resources, because these edges participate in many
cycles. Conversely, targeting high-b edges would result in
chipping off fragments from the network even after a short
or modest attack, albeit leaving a relatively well-connected
2-core behind.

In contrast to the bi j (p) curves, the ai(p) curves do ex-
hibit crossings as p is varied and hence cannot provide a
p-independent way to rank nodes. Still, these curves convey a
lot of useful information. For example, a node i whose curve
ai(p) starts at ai(1) = 1 and connects smoothly to its subper-
colating branch sits on a tree branch or on a finite component.
However, if it starts at ai(1) = 1 but exhibits a knee before
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connecting to its subpercolating branch, then it must be a root
AP, namely an AP that sits on the 2-core and glues one or
more tree branches to the 2-core. Finally, if the curve starts at
ai(1) = 0, then the node sits on the 2-core initially, and a deep
attack should aim at initially deleting nodes i with the lowest
possible ai(p) values, where 1 − p is a measure of the effort
invested in an attack.

A more sophisticated implementation of these ideas could
devise an attack with multiple stages, where at each stage only
a set of edges or nodes are deleted according to the principles
mentioned above. This is followed by a reassessment of the
situation by calculating the updated ai(p) and bi j (p) curves,
which could now help us decide the next set of nodes or edges
to delete.

Interesting problems to look at in the near future could
include generalizing the present analysis to directed networks,

which prevail in many technical applications and contexts,
and providing a more systematic study of the single-instance
message-passing algorithm for locating bredges and APs,
concerning both its accuracy and the precise scaling of the
algorithm with system size. Another aspect one might want to
look at is the distribution of the sizes of clusters created by
removing APs or bredges from the net, which would require
adapting the techniques of Ref. [27] as used in Ref. [25] to
study heterogeneity in percolation to the problem of APs and
bredges.
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