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Interaction of dissipative solitons stabilized by nonlinear gradient terms
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We study the interaction of stable dissipative solitons of the cubic complex Ginzburg-Landau equation which
are stabilized only by nonlinear gradient terms. In this paper we focus for the interactions in particular on
the influence of the nonlinear gradient term associated with the Raman effect. Depending on its magnitude,
we find up to seven possible outcomes of theses collisions: Stationary bound states, oscillatory bound states,
meandering oscillatory bound states, bound states with large-amplitude oscillations, partial annihilation, com-
plete annihilation, and interpenetration. Detailed results and their analysis are presented for one value of the
corresponding nonlinear gradient term, while the results for two other values are just mentioned briefly. We
compare our results with those obtained for coupled cubic-quintic complex Ginzburg-Landau equations and
with the cubic-quintic complex Swift-Hohenberg equation. It turns out that both meandering oscillatory bound
states as well as bound states with large-amplitude oscillations appear to be specific for coupled cubic complex
Ginzburg-Landau equations with a stabilizing cubic nonlinear gradient term. Remarkably, we find for the
large-amplitude oscillations a linear relationship between oscillation amplitude and period.
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I. INTRODUCTION AND MOTIVATION

Collisions of dissipative solitons (DSs) can be found in the
literature in fields ranging from hydrodynamics to chemical
reactions on surfaces including biological media and fiber
lasers in optics [1–7]. DSs are spatially localized objects ap-
pearing in dissipative driven pattern-forming nonequilibrium
systems along with nonlinearity and dispersion [8]. In the CO
oxidation reaction on Pt(110), in some cases, solitary waves
that preserve their shapes and speed after collisions have
been observed (interpenetration), but collisions lead mostly
to mutual annihilation [1] while in collisions of subsurface
oxygen waves fragments the thicker one takes over the thinner
one (partial annihilation) [2]. Soliton-like behavior has also
been observed in the electro-oxidation of CO in Pt [3]. In
hydrodynamics, in an annular thin layer of a binary mix-
ture heated from below, the collision of counterpropagating
confined states has been studied. Partial annihilation (only
one pulse survives the collision) and bound states arise for
high and low approach velocities, respectively [4,5]. Solitonic
behavior has also been reported for the mass cell movement
of nonchemotactic mutants of the cellular slime mould Dic-
tyostelium discoideum [6]. In optics it has been revealed that
the collision of pulses can induce explosions in a mode-locked
fiber laser [7].

From a theoretical point of view, interpenetration be-
tween pulses as well as bound states, mutual and partial
annihilation have been studied in pioneering works using
counterpropagating coupled complex cubic-quintic Ginzburg-
Landau equations (CQGLEs). The result was that, in one
spatial dimension (for negative linear dispersion and negative

*Corresponding author: odescalzi@miuandes.cl

real part of the coupling), collisions of counterpropagating
pulses can lead, in particular, to complete interpenetration
or annihilation [9]. Interactions of pulses which breathe in
the modulus lead to interpenetration, annihilation and partial
annihilation [10].

An effort to understand the phenomenon of partial anni-
hilation in coupled complex CQGLEs (for the collision of
stationary pulses) has been carried out by introducing additive
noise to the equation near the boundaries between different
outcomes. We concluded that a small amount of noise can in-
duce partial annihilation of colliding dissipative solitons [11].
Recently, we have shown that for a large range of approach
velocities and stabilizing cubic-cross couplings two stationary
counterpropagating pulses can undergo partial annihilation
via a spontaneous breaking of symmetry [12].

The complex CQGLE is a prototype envelope equation
arising at the onset of a weakly inverted instability against
traveling waves [13,14]. The advantage of using this equa-
tion is that it has stable pulse solutions, inside the range of
parameters where two homogeneous attractors coexist, due to
a nonvariational feedback mechanism between the amplitude
and the frequency, and a saddle-node instability giving rise to
a pair of pulses (stable and unstable) [15].

Collisions of localized solutions have also been studied
in the framework of order parameter equations. In the one-
dimensional quintic Swift-Hohenberg equation with complex
coefficients, in particular, it has been found that the head-on
collision of two stable localized traveling states results in the
formation of a localized standing wave pattern and that two
counterpropagating localized traveling states can interpene-
trate [16].

A different theoretical approach to the study of colli-
sions of dissipative solitons are reaction-diffusion equations.
Soliton-like behavior and annihilation has been observed in
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a model of the Belousov-Zhabotinsky (BZ) reaction [17], in
the Bonhoeffer van der Pol reaction-diffusion system [18,19],
and in the FitzHugh-Nagumo system [20]. Experiments and
modeling have been carried out for the CO oxidation on Pt
[2,3]. In a simple model for the same reaction, assuming
structural imperfections, it has been shown that soliton-like
behavior and partial annihilation can arise [21].

The inclusion of nonlinear gradient terms in single and
coupled complex CQGLEs deserves a special place in this
introduction. Nonlinear gradients occur to the same order as
the quintic terms [13,14]. These terms might or not be impor-
tant depending on the physics of the system. In a pioneering
work, these terms were investigated in connection with binary
fluid convection, which resulted in a reduction of the group
velocity and asymmetry of the pulses [22]. Subsequently, the
effects of nonlinear gradient terms on breathing pulses were
studied [23].

In optics, when modeling a nonlinear fiber for ultrashort
pulses, it can be necessary to include higher-order nonlinear
and dispersive effects, such as intrapulse Raman scattering,
self-steepening, and third-order dispersion [24–26].

Recently, Facao and Carvalho have published a series of
articles showing that the complex cubic Ginzburg-Landau
equation (CGLE) together with nonlinear gradients can lead to
stable moving pulses with a fixed or oscillating shape [27–29].
It is worth noting here that the complex CGLE [30] (without
quintic nonlinearities) has only unstable pulses.

This new mechanism of stabilization of pulses is added
to the others already known: The nonvariational feedback
mechanism between the amplitude and the frequency, al-
ready mentioned above [15]; spatially localized regions in
wavelength, in the framework of nonlinear phase dynamics
[31–33]; coupling between an envelope equation for an os-
cillatory instability and a phase equation [34,35]; and the
trapping mechanism, where the slowly varying pattern ampli-
tude becomes trapped by the rapid spatial variations [16,36].

Recently, we have shown that the existence of stable mov-
ing pulses in the complex CGLE with nonlinear gradients
can be understood by a continuous supply and dissipation
of energy in the framework of a mechanical analog [37,38].
This picture has been useful in the analysis of the stabilization
mechanism demonstrating that all terms of the equation are
essential.

In the present paper we study the interaction of stable
DSs of the cubic complex Ginzburg-Landau equation which
are stabilized exclusively by nonlinear gradient terms (NLGS
DSs). We focus for the interactions in particular on the influ-
ence of the Raman term. Depending on the magnitude of the
Raman term, we find up to seven possible outcomes of theses
collisions. We compare our results with those obtained for
coupled cubic-quintic complex Ginzburg-Landau equations
and with the cubic-quintic complex Swift-Hohenberg equa-
tion.

The paper is organized as follows. In Sec. II we summarize
the ingredients of the equations studied and the numerical
methods used. In Sec. III we characterize in detail the results
and analyze the consequences. In Sec. IV we describe tran-
sitions between patterns and some of their specific properties
and in Sec. V we present conclusions and perspectives.

II. THE MODEL

We consider in a nonlinear fiber a wave packet centered
at the wave number k0 and frequency ω0. All wave numbers
close to k0 satisfy k = ω n(ω)/c that is k = k(ω), and n(ω) the
refractive index. The wave packet is modulated by an envelope
�, which depends on the slow space X and the slow time T .
W is a wave moving to the right,

W = Re[�(X, T )eik0x−iω0t ]. (1)

Thus we can make a formal expansion around k0: k − k0 =
( ∂k
∂ω

)(ω − ω0) + 1
2 ( ∂2k

∂ω2 )(ω − ω0)2 + · · · , where ∂k
∂ω

evaluated
at ω0 corresponds to 1/vg, that is the inverse of the group ve-
locity of the wave packet, and ∂2k

∂ω2 ≡ β2 is the group velocity
dispersion (β2 < 0, anomalous dispersion). Setting k − k0 =
K and ω − ω0 = � we obtain a dispersion relation for the
envelope �,

K = 1

vg
� + 1

2
β2 �2 + · · ·. (2)

The response of any dielectric medium to an intense elec-
tromagnetic field E becomes nonlinear leading to a refractive
index of the form n(ω, |E |2) = n0(ω) + n2|E |2, where n2 is
the Kerr coefficient. By incorporating in the above dispersion
relation (2) the Kerr effect, fiber losses (δ < 0), nonlinear
gain of energy ε > 0, and the curvature of the frequency
response of the narrrow-band filter (β > 0) we obtain the
complex CGLE. For a wide spectrum (>0.1 THz) energy
can be transferred from the high-frequency components to
the low-frequency ones, phenomenon called intrapulse Raman
scattering [24]. Nevertheless, for pulses wide enough con-
taining many cycles (∼100 fs = 0.1 ps) the complex CGLE
considering self-steepening (Sr) and delayed Raman response
(Rr) reads

i

[
∂X � + 1

vg
∂T �

]
− 1

2
β2 ∂2

T � + |�|2� − iδ� − iε|�|2�

−iβ∂2
T � = Rr�∂T (|�|2) − iSr∂T (�|�|2). (3)

Facao and Carvalho, in a recent series of articles [27–29],
studied Eq. (3) and its generalizations, without group velocity,
and showed that this equation admits, in particular, moving
stable pulses for the following combinations: Rr �= 0 and
Sr = 0; Rr = 0 and Sr �= 0; and Rr �= 0, Sr �= 0. However, in
this article we will focus only on the case Rr �= 0, Sr = 0. It
is important to emphasize that the cubic complex Ginzburg-
Landau equation without quintic nonlinearities or nonlinear
gradient terms has only unstable pulses.

The velocity of the pulses v(Rr ) is constant (without con-
sidering the group velocity). This and the shape (asymmetric)
of the pulses depend, in particular, on the magnitude and sign
of the parameter Rr .

Recently we have shown that the velocity v(Rr ) satisfies a
hyperbola over a large range of Rr values [37], that is, v(Rr ) ∼
1/Rr . Thus the total velocity of the pulse is vg + v(Rr ).

An equivalent equation to Eq. (3) is the cubic complex
Ginzburg-Landau equation for the envelope of linear unsta-
ble modes at the onset of a subcritical oscillatory instability
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considering nonlinear gradients and group velocity

∂t A + vg ∂xA = μA + (βr + iβi )|A|2A

−iRrA ∂x(|A|2) + (Dr + iDi ) ∂2
x A, (4)

where we have discarded self-steepening Sr .
In this paper we investigate the collision of pulses by means

of two coupled complex cubic Ginzburg-Landau equations
with nonlinear gradient terms and group velocities for coun-
terpropagating waves:

∂t A + vg∂xA = μA + (βr + iβi )|A|2A

+ iRr (|A|2)xA + (cr + ici )|B|2A

+ (Dr + iDi )∂
2
x A, (5)

∂t B − vg∂xB = μB + (βr + iβi )|B|2B

− iRr (|B|2)xB + (cr + ici )|A|2B

+ (Dr + iDi )∂
2
x B, (6)

where A(x, t ) and B(x, t ) are complex fields and where we
have considered cubic cross-coupling terms.

In optics [Eq. (3)] Rr must be positive, while for envelope
equations [Eqs. (5) and (6)], of more general applications, de-
duced close to a weakly inverted bifurcation to an oscillatory
instability this is not necessary, and thus the net velocity for
the right moving pulse should be v = vg − v(Rr ). In optics
the group velocity depends on the frequency ωo of the carrier
wave. We emphasize that for envelope equations as they arise
near a weakly inverted bifurcation associated with an oscil-
latory instability, nonlinear gradients terms arise naturally to
lowest consistent order in the distance from onset [13,14]. We
also note that the approach velocity of colliding DSs can be
changed experimentally, for example, near convective onset in
miscible binary fluid mixtures by changing the separation ra-
tio (or Soret effect) [4,5] or for autocatalytic surface reactions
[2] by changing parameters such as pressure, temperature, and
the concentration of the participating gases.

We have carried out our numerical studies for the following
values of the parameters, which we kept fixed for the present
purposes: μ = −0.012, βr = 0.3, βi = 1.0, ci = 0, Dr = 0.6,
and Di = 0.5. Positive values of Di correspond to the regime
of anomalous linear dispersion and are necessary to obtain
stable NLGS DSs in the present case. We also note that the
chosen value of μ is only weakly subcritical. Time integration
of Eqs. (5) and (6) was performed using fourth-order Runge-
Kutta finite differencing. We took as a time step dt = 0.002
and a grid spacing of dx = 0.05 leading to a box size of
L = 62.5 for N = 1250 data points. The time step and the
grid spacing were varied by a factor of 3 to study the effects
of discretization. The values used are a compromise between
accuracy and required runtime. None of the results reported
depends sensitively on the box size.

III. RESULTS AND DISCUSSION FOR THE
INTERACTION OF NLGS DSs

We were running three values of Rr to investigate the
outcome of collisions: Rr = 0.2, Rr = 0.4, and Rr = 0.1.
It turned out that the values Rr = 0.1 and Rr = 0.2 give
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FIG. 1. Phase diagram of possible outcomes of collisions of
stationary NLGS DSs for Rr = 0.1 plotted as cr versus velocity v.
Filled black circles (•) indicate stationary bound states, open black
circles (◦) oscillatory bound states, open blue triangles meandering
oscillatory bound states (�), red solid circles partial annihilation (•),
green solid squares large-amplitude oscillatory bounds states (�),
blue diamonds annihilation (�), and black open squares (�) inter-
penetration. The parameters are as follows: μ = −0.012, βr = 0.3,
βi = 1.0, Dr = 0.6, and Di = 0.5.

rise to a large number of possible outcomes of collisions
varying the approach velocity and the stabilizing value of
the cross-coupling cr . For Rr = 0.4 the number of out-
comes is considerably reduced but predominantly includes
annihilation, interpenetration, and oscillatory bound states.
Throughout the rest of this paper we concentrate on the results
for Rr = 0.1 and their discussion.

In the phase diagram Fig. 1 we plot the outcome of colli-
sions for interacting DSs with the Raman nonlinear gradient
term. The parameters varied to obtain the plot are the approach
velocity and the stabilizing cross-coupling cr between coun-
terpropagating DSs. As a result of the collisions we obtain
stationary bound states, oscillatory bound states, meandering
oscillatory bound states, large-amplitude oscillatory bound
states, partial annihilation, annihilation, and interpenetration.

The run time used to obtain the phase diagram shown in
Fig. 1 was T = 400 and the timescale of the x-t plots shown
below varies between T = 30 and T = 360 to elucidate the
important features of the interaction and/or the characteristic
features of the asymptotic state. In the x-t plots we always
incorporate both the asymptotic regime as well as the initial
conditions. We note that the scales in x and t on all x-t plots
shown are linear.

For the initial condition we prepared two NLGS DSs
located around x1 = 12.5 and x2 = 50 symmetrically with
respect to x = 31.25 for the initial approach of the two dis-
sipative solitons. For the cases of stationary bound states,
oscillatory bound states, annihilation and interpenetration this
high degree of symmetry in the x-t plots is also maintained
throughout the whole time evolution shown.

In Ref. [12] we have also demonstrated that for the case
of partial annihilation this symmetry is maintained on average
for partial annihilation when the processes of partial annihila-
tion moving to the right and partial annihilation moving to the
left are compared.

Starting with a small approach velocity, we obtain first
stationary bound states (Fig. 2) followed by slightly higher
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FIG. 2. The x-t plot of Max (|A|, |B|) showing the temporal
generation of a stationary bound state indicated by the black solid
circles in Fig. 1 for cr = −0.3 and v = 0.1. The timescale shown is
T = 360 and the box size L = 62.5.

approach velocity by oscillatory bound states (Fig. 3) over the
whole range of the stabilizing cross-coupling cr studied. As
the approach velocity is increased to v ∼ 0.6, a meandering
oscillatory bound state of the type depicted in Fig. 4 results.
One clearly sees fairly large excursions of the oscillations
to the left and to the right in a rather irregular fashion. In
addition, the amplitude of the phonon shedding increases.

A further increase of the approach velocity v leads, for
fixed v and varying cr , to two different outcomes. For smaller
values of cr (that is for more stabilizing cross-coupling) we
find large-amplitude oscillatory bound states plotted in Fig. 5.
In Fig. 6 we have plotted four snapshots of the large-amplitude
oscillatory bound state during on period, T , equally distant
in time (T/4). Clearly the NLGS DS becomes narrower and
higher as well as broader and lower as a function of time in an
alternating fashion.

FIG. 3. The x-t plot of Max (|A|, |B|) showing the temporal
generation of an oscillatory bound state indicated by the black open
circles in Fig. 1 for cr = −0.3 and v = 0.4. The timescale shown is
T = 110 and the box size L = 62.5.

FIG. 4. The x-t plot of Max (|A|, |B|) showing the time evolution
of a meandering oscillatory bound state indicated by the open blue
triangles in Fig. 1 for cr = −0.5 and v = 0.7. The timescale shown
is T = 360 and the box size L = 62.5.

To characterize the meandering oscillatory bound states
we have analyzed time-series and Fourier spectra. In Fig. 7
we have plotted two independent time series for the inte-
gral IA(t ) ≡ ∫ |A(x, t )|dx for meandering oscillatory bound

FIG. 5. The x-t plot of Max (|A|, |B|) showing the time evo-
lution of a large-amplitude oscillatory bound state indicated by
the green solid squares in Fig. 1 for cr = −0.5 and v = 1.0. The
timescale shown is T = 360 and the box size L = 62.5. We note that
the large-amplitude oscillations are combined with some degree of
meandering on timescales large compared to the frequency of the
oscillations.
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FIG. 6. Four snapshots of |A| as a function of space x during one
period T and plotted T/4 apart for the large-amplitude oscillatory
bound state; cr = −0.5 and v = 1.0.

states for cr = −0.5 and v = 0.7 starting with very similar
initial conditions and pointing to chaotic behavior as revealed
by the rather different time-dependent behavior for longer
times. This point is further corroborated by the Fourier spectra
S(ω) = |u(ω)|2, where

u(ω) =
∫ ∞

−∞
IA(t )e−iωt dt (7)

and S(0) = 0, shown in Fig. 8 for meandering oscillatory
bound states on top (cr = −0.5 and v = 0.7) and for large-

FIG. 7. Two time series of the quantity IA(t ) ≡ ∫ |A(x, t )|dx are
shown for the meandering oscillatory bound state for cr = −0.5 and
v = 0.7 from t = 30 to t = 600.

amplitude oscillatory bound states at the bottom (cr = −0.5
and v = 1.0). We have used the convention S(0) = 0 to im-
prove the visualization of the spectra; its only effect is to
remove the constant part from IA(t ). From Fig. 8 bottom we
extract a fundamental ω value of ω ≈ 0.57 corresponding to
a frequency f , f = ω

2π
≈ 0.0907. This value compares well

with the frequency deduced from Fig. 15, where we have
T = 11.1 leading to f = 0.0900. Clearly meandering oscil-
latory bound states reveal a Fourier spectrum characteristic
of chaotic behavior, while large-amplitude oscillatory bound
states are essentially periodic in nature.

For larger values of cr and v = 1.0 partial annihilation after
a fairly long interaction time results (Fig. 9). We note that in
the case of partial annihilation the rather long interaction is
associated with temporal oscillations of shrinking amplitude
until a dissipative NLGS DS moving to the right (in the case
shown) emerges. Naturally DSs moving to the right and to the
left arise equally frequently on average. An example of both
types of behavior has already been elucidated in Ref. [12].

A further increase in the approach velocity leads for
|cr |>∼0.2 to complete annihilation shown in Fig. 10. We note
that, in contrast to the case of partial annihilation depicted in
Fig. 9, the interaction time is rather short. For small values of
|cr | we obtain interpenetration after a fairly short interaction
time (Fig. 11). This outcome is to be expected intuitively,
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FIG. 8. The Fourier spectra S(ω) for meandering oscillatory
bound states (cr = −0.5 and v = 0.7) (top) and for large-amplitude
oscillatory bound states (cr = −0.5 and v = 1.0) (bottom) are plot-
ted for comparison. The range covered for ω is 0 � ω � 5. We note
the change of scale on the ordinate. While the spectrum for the
meandering oscillatory bound state is clearly showing signatures of
chaotic behavior, the spectrum for the large-amplitude oscillatory
bound state shows predominantly periodic behavior with the funda-
mental and the first few harmonics.

since in the limit |cr | → 0 there is no interaction between DSs
propagating to the left and to the right, respectively.

Since the interaction of NLGS DSs has not been studied
before, it appears to be instructive to compare the results
presented here to those obtained so far for other experimental
and theoretical pattern-forming dissipative systems. First, we
briefly sketch the experimental situation. When it comes to in-
terpenetration (soliton-like behavior), such observations have
been obtained in surface reactions [1], genetically modified
biological systems [6], and electro-oxidation on surfaces [3].
Partial annihilation has been reported mainly for surface reac-
tions [1,2] and near convective onset in binary fluid mixtures

FIG. 9. The x-t plot of Max (|A|, |B|) showing the partial anni-
hilation indicated by the red solid circles in Fig. 1 for cr = −0.3
and v = 1.0. The x-t plot includes both the initial approach and the
temporal behavior after the partial annihilation is completed. The
timescale shown is T = 110 and the box size L = 62.5.

[4,5]. By comparison stationary bound states appear to be
comparatively rare but have been thoroughly characterized
near convective onset in binary fluid mixtures.

On the modeling side there is a large body of literature
studying coupled complex cubic-quintic complex Ginzburg-
Landau equations as they emerge as envelope equations near
onset of a weakly inverted bifurcation to traveling waves. Fo-
cusing on one dimensional situations, the present state can be
summarized as follows. Stationary bound states, interpenetra-
tion and complete annihilation have been studied in Refs. [9]
and [22], while partial annihilation has been investigated in
Refs. [11,12]. Oscillatory bound states after the collision of
two stationary DSs have been identified in Refs. [39,40]. We
also note that stationary bound states and interpenetration of
stationary DSs have been found for the cubic-quintic complex
Swift-Hohenberg equation [16].

We thus arrive at the conclusion that, while a number
of outcomes of collisions of stationary DSs have been ob-
served before for coupled cubic-quintic CGL equations and
for the cubic-quintic complex Swift-Hohenberg equation, sev-
eral results of such collisions appear specifically for colliding
stationary NLGS DSs: Meandering oscillatory bound states as
well as large-amplitude oscillatory bound states. We speculate
that these two new classes of outcome are associated with the

FIG. 10. The x-t plot of Max (|A|, |B|) showing the annihilation
indicated by the blue solid diamonds in Fig. 1 for cr = −0.3 and v =
1.5. The x-t plot includes both the initial approach and the temporal
behavior after the annihilation is completed. The timescale shown is
T = 40 and the box size L = 62.5.
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FIG. 11. The x-t plot of Max (|A|, |B|) showing the process of
interpenetration indicated by the open black squares in Fig. 1 for cr =
−0.1 and v = 1.6. The x-t plot includes both the initial approach
and the temporal behavior after the annihilation is completed. The
timescale shown is T = 30 and the box size L = 62.5.

fact that NLGS DSs are solely stabilized by a cubic nonlinear
gradient term.

IV. DETAILED CHARACTERIZATION OF SELECTED
PATTERNS FORMED AND THEIR TRANSITIONS

A. The transition from stationary bound states
to oscillatory bound states

To investigate the transition from stationary bound states to
oscillatory bound states in detail we have analyzed time series
of the integral IA(t ) ≡ ∫ |A(x, t )| dx. We found that for v <

vc, IA(t ) = I0 const. For v � vc, IA(t ) = I0 + R
2 ei �H t+i φo +

c.c. at the onset of the oscillatory instability. In Fig. 12 we
see that for cr = −0.5 and for the interval of velocities 0.10 �
v � 0.20 the oscillation amplitude R shows a growth behavior
of the type R = 0.68

√
v − vc with vc = 0.104.

Therefore, the normal form describing the transition at the
onset of the Hopf bifurcation can be formulated as

ψt = (v − vc + i �H )ψ − (αr + i αi )|ψ |2ψ. (8)

Setting ψ = R ei ω t+i φ0 , we obtain R = √
(v − vc)/αr .

Thus αr can be obtained as αr = 2.16. To check further the
consistency with Eq. (8), we have plotted ω, the frequency of
the oscillatory bound states obtained from Fourier transforms,
in Fig. 12(c). The best fit is a straight line as expected for a
Hopf bifurcation

ω = �H − (v − vc)
αi

αr
. (9)

This result underscores the picture of a forward Hopf bi-
furcation for the transition from stationary bound states to
oscillatory bound states. From Eq. (9) and Fig. 12(c) we obtain
αi = 7.97 and �H = 5.78.

B. The transition to chaotic behavior in the regime
of oscillatory bound states

As a remarkable feature we find a transition to chaos within
the regime of oscillatory bound states. In Fig. 13 we have plot-
ted the first steps of the transition to chaos: Figure 13(a) shows
the state before a first doubling of the period for v = 0.22
followed by Fig. 13(b) at the transition to the first doubling

FIG. 12. Transition from a stationary bound state to oscillatory
bound states. cr = −0.5. (a) Fourier spectrum giving rise to ω =
5.76 for v = 0.11; (b) amplitude R as a function of v demonstrating
that it is a Hopf bifurcation R ∼ (v − vc )γ with vc = 0.104 and an
exponent γ = 0.50; (c) ω is plotted as a function of v and fitted to a
straight line as predicted by Eq. (8).

with the new amplitudes still fairly small at v = 0.23. In
Fig. 13(c) for v = 0.24 the first period doubling is completed
with a fairly large amplitude for the doubled period. In Fig. 14
we summarize the Fourier spectra for larger values of the
velocity, v. At v = 0.30 [Fig. 14(a)] the next period doubling
occurs. At v = 0.315 additional frequencies enter the picture
[Fig. 14(b)]. For v = 0.40 a fully developed chaotic state is
obtained [Fig. 14(c)]. To further analyze the results from the
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FIG. 13. In this plot we show the first period doubling in the
regime of oscillatory bound states for cr = −0.5. The Fourier spectra
are for three values of the velocity v: (a) v = 0.22, the state before the
first period doubling; (b) v = 0.23, at the transition to the first period
doubling, with the new amplitude still fairly small; and (c) v = 0.24
first period doubling completed with fairly large amplitude for the
doubled period.

Fourier transforms obtained (we have just shown a selection
in Figs. 13 and 14) we evaluate the velocity differences be-
tween successive doublings and their ratio to see whether we
can make contact with the Feigenbaum number, δF . Taking
the velocity v1 = 0.23 for the first doubling, v2 = 0.30 for
the second doubling and v3 = 0.315 for the next element
in the cascade we obtain for the ratio δ:

δ = v2 − v1

v3 − v2
= 4.67. (10)

FIG. 14. In this plot we show the evolution of the Fourier trans-
forms for larger values of the velocity, v, in the regime of oscillatory
bound states for cr = −0.5. (a) v = 0.30, a new period doubling
occurs; (b) v = 0.315, new frequencies are starting as visible from
the Fourier spectrum; (c) v = 0.40, fully developed chaotic state.

This value is very close to the universal Feigenbaum num-
ber δF = 4.669. We interpret this result as an indication
that a period doubling cascade is at work in our case as
well thus demonstrating that a partial differential equation
associated with the formation of spatially localized patterns—
dissipative solitons—can show in a certain parameter regime
low-dimensional behavior familiar from a class of one-
dimensional maps.
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FIG. 15. Determination of period and amplitude for the large-
amplitude oscillatory bound state for cr = −0.5 and v = 1.0: x-t
plot showing the amplitude A of the wave traveling to the right for
a shorter period of time and L = 62.5. For the amplitude we obtain
� = 4.09 and for the period T we get T = 11.1.

C. Detailed characterization of large-amplitude
oscillatory bound states

One of the patterns not found before for other collisions
of DSs are large-amplitude oscillatory bound states. One ex-
ample of a blow-up of the general x-t plot (Fig. 5) is shown
in Fig. 15: The amplitude A of Fig. 5 traveling to the right
on a magnified scale, which allows a precise determination
of the period T and the oscillation amplitude, � of the large-
amplitude oscillatory bound state: T = 11.1 and � = 4.09. In
Fig. 16 we have plotted the amplitude � and the period T of
this pattern as a function of the velocity v. The growth rates of
� and T as a function of velocity v closely parallel each other
in their behavior but do not obey a power law or simple ex-
ponential growth. For v = 1.26 the two DSs annihilate, since
both pulses become subcritical in size and area as t → T/4.

To analyze further the data for the oscillation amplitude,
�, and the period, T , presented in Fig. 16, we have plotted in
Fig. 17 the data for the period and the rescaled data for the
amplitude rescaled by a factor of 8/3. As one can see the data
almost perfectly superpose over the whole range of veloci-
ties accessible for the large-amplitude oscillatory bound state.
This indicates that the two sets of data are strictly proportional
to each other when considered as a function of v − vc with
vc ≈ 0.95. From making several additional runs for cr , we
observe that the ratio �/T changes by less than 10% going
from cr = −0.5 to cr = −0.8 and that it decreases slowly
with decreasing cr . Such a relationship between amplitude
and period is unknown, both for linear wave equations and
also for standard nonlinear prototype equations including the
nonlinear Schrödinger equation and the Korteweg de Vries
equation. We conclude that this direct proportionality reflects
an intrinsic nonlinear property of the large-amplitude oscilla-
tory bound state.

D. Detailed characterization of meandering oscillatory bound
states and the transition to large-amplitude

oscillatory bound states

Since meandering oscillatory bound states have not been
described before, we describe their behavior in somewhat
more detail in the following, also making use of the Fourier
spectra presented in Figs. 18 and 19. As the velocity of the

FIG. 16. Determination of amplitude � and period T for the
large-amplitude oscillatory bound state for cr = −0.5 as a function
of velocity v: (a) amplitude � plotted as red solid circles (•) as
function of v; (b) period T plotted as filled black circles (•) as a
function of v. In both cases we observe stronger than linear growth
with growth rates that closely parallel each other. At v = 1.26 anni-
hilation of the two DSs replaces large-amplitude oscillatory bound
states.

colliding DSs is increased several distinct features emerge.
First, the noisy background is reduced substantially with in-
creasing velocity. Second the width of the peaks is decreasing
while simultaneously their height is increasing. In addition,
the number of peaks is reduced as well with growing velocity.
All these properties point to a behavior, which is becom-
ing less and less chaotic as the transition to large-amplitude

FIG. 17. The period T indicated by filled black circles (•) and
the rescaled amplitude, � (rescaled by a factor 8/3) shown as red
solid circles (•) from Fig. 16 are plotted as a function of velocity v.
We observe that that the curves superpose almost perfectly.
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FIG. 18. The Fourier spectra for meandering oscillatory bound
states for two values of the velocity v and cr = −0.5. v = 0.60 (top)
and v = 0.70 (bottom). The range covered for ω is 0 � ω � 10.
While both Fourier spectra clearly showing signatures of chaotic
behavior, the width of the Fourier spectrum as well as the background
noise level are reduced as the velocity increases from v = 0.60 (top)
to v = 0.70 (bottom).

oscillatory bound states is approached. For large-amplitude
oscillatory bound states only one frequency and its harmonics
are observed.

Finally, we note that within the grid spacing of the phase
diagram (Fig. 1) studied here, we observed a continuous
transition from meandering bound states to large-amplitude
oscillatory bound states.

E. Transition to partial annihilation:
Spontaneous breaking of symmetry

As we see from Fig. 1 and Fig. 9 for small negative
values of the cross-coupling terms and large velocities the
region of partial annihilation (only one pulse survives the
collision) arises between meandering bound states and annihi-
lation or interpenetration. Experimentally, partial annihilation
has been found where also bound states appear [4,5]. Re-
cently, in a Rapid Communication, in the framework of two
coupled subcritical cubic-quintic Ginzburg-Landau equations,

FIG. 19. The Fourier spectra for meandering oscillatory bound
states for two values of the velocity v and cr = −0.5. v = 0.80 (top)
and v = 0.90 (bottom). The range covered for ω is 0 � ω � 10. We
note the change in scale on the ordinate compared to Fig. 18. We
note that the width of the Fourier spectrum and the background noise
level are reduced as the velocity increases.

we have shown that partial annihilation arises between sta-
tionary bound states and annihilation due to spontaneously
broken left-right symmetry [12]. In the same letter, briefly, we
have also illustrated the case which consists of two coupled
complex cubic Ginzburg-Landau equations with nonlinear
gradient terms for counterpropagating waves, where partial
annihilation also occurs because bound states lose their sta-
bility [12]. A big difference is that in the former case left and
right partial annihilation are almost identical under reflection,
whereas in the latter case there may be substantial differences.

V. CONCLUSIONS AND PERSPECTIVE

In this paper we have studied the interaction of sta-
ble DSs of the cubic complex Ginzburg-Landau equation
which are stabilized only by one nonlinear gradient term,
namely the Raman term. Depending on its magnitude we
find up to seven possible outcomes of theses collisions: Sta-
tionary bound states, oscillatory bound states, meandering
oscillatory bound states, bound states with large-amplitude
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oscillations, partial annihilation, complete annihilation, and
interpenetration. We have analyzed meandering oscillatory
bound states and bound states with large-amplitude oscil-
lations in more detail. We find that the meandering of the
meandering oscillatory bound states leads to chaotic behavior
while large-amplitude oscillatory bound states are predomi-
nantly characterized by one frequency. We have compared our
results with those obtained for coupled cubic-quintic com-
plex Ginzburg-Landau equations and with the cubic-quintic
complex Swift-Hohenberg equation. We conclude that both
meandering oscillatory bound states as well as bound states
with large-amplitude oscillations appear to be specific for
coupled cubic complex Ginzburg-Landau equations with a
stabilizing Raman term.

To compare with experiments we should recall that Eq. (4)
has been explicitly deduced for an optical system. In this
case for physical reasons, Rr must be positive. Therefore v =
vg − v(Rr ) will be large because v(Rr ) < 0. Thus, it is very
possible that stationary and oscillatory bound states cannot be
observed, while the behaviors most likely to be observed are
large-amplitude oscillatory bound states, partial annihilation,
annihilation, and interpenetration.

The results described here can naturally be extended in
several directions. As a next step it seems natural to discuss
the influence of the other nonlinear gradient terms familiar
from nonlinear optics, namely self-steepening, delayed non-
linear gain and dispersion of the nonlinear gain, since it has
been shown in Ref. [29] that in several cases one nonlinear
gradient term is already sufficient to stabilize the DS. Another

direction to go into will be the study of collisions of oscillatory
NLGS DSs as they have been described first in Ref. [28]. We
also emphasize that the study of the influence of noise on
collisions will be of high interest, since it has been shown be-
fore that even small amounts of noise can qualitatively change
the outcome of collisions for DSs found for the CQCGL
equation [11].

The most important challenge is clearly to find suitable
experimental systems to study DSs stabilized exclusively
by nonlinear gradient terms and their interactions. Given
the nature of the gradient nonlinearities, most likely the
experimental systems of choice will come from nonlinear
optics.

Although experiments involving collisions in nonlinear op-
tics are scarce, we refer to a recent article reporting explosions
induced by soliton collision in a mode-locked fiber laser [7].
What we propose is to use this same medium in a collision of
counterpropagating pulses with a wide spectrum (>0.1 THz)
so that high-frequency components can be transferred to low-
frequency ones, thus the Raman effect becomes important. For
our equations to be valid it is necessary that the pulses are
wide enough (∼100 fs).
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