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Spectral properties of Hermitian Toeplitz, Hankel, and Toeplitz-plus-Hankel random matrices with inde-
pendent identically distributed entries are investigated. Combining numerical and analytic arguments it is
demonstrated that spectral statistics of all these low-complexity random matrices is of the intermediate type,
characterized by: (i) level repulsion at short distances, (ii) an exponential decrease in the nearest-neighbor
distributions at long distances, (iii) a nontrivial value of the spectral compressibility, and (iv) the existence of
nontrivial fractal dimensions of eigenvectors in Fourier space. Our findings show that intermediate-type statistics
is more ubiquitous and universal than was considered so far and open a new direction in random matrix theory.
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I. INTRODUCTION

Matrices are omnipresent structures in extremely varied
branches of physics and mathematics, and there exist many
different types of matrices tailored for specific problems. To
get a certain overview of a general matrix classification one
could order matrices according to their complexity. The well-
known Kolmogorov complexity of a string is the minimal
length of a program which can calculate the string. A pos-
sible way to measure the (arithmetic) complexity of a matrix
is by counting the minimal number of operations needed to
perform certain nontrivial operations, e.g., to find the inverse
matrix, or matrix eigenvalues, with a given precision (see, e.g.,
Refs. [1–4] and references therein).

For generic N×N matrices, standard algorithms (such as
the Gauss-Jordan elimination) require O(N3) operations, al-
though more refined algorithms reduce it (up to logarithmic
corrections) to O(N3) with ω ≈ 2.372 86 [4]. Nevertheless,
there exist special types of matrices of lower complexity
which generically necessitate a smaller number of operations.

The most investigated class of such low-complexity ma-
trices consists of matrices with small-rank displacement
structure [5,6] which are characterized by the existence of a
linear operator that transforms all matrices from the class into
matrices of small rank. Two main types of such displacement
operators were used, the Toeplitz-like displacement operator
∇A,B(M ) = M − AMB and the Hankel-like displacement op-
erator �A,B(M ) = AM − MB, where A and B are arbitrary
matrices. The rank of matrices ∇A,B(M ) and �A,B(M ) de-
pends on the choice of A and B; the minimal rank r is called
the displacement rank of M. A matrix is referred to as a
structured matrix if its displacement rank is much smaller
than its dimension. The importance of this notion comes
from the theorem proved in Ref. [5] that the standard O(N3)
number of operations needed, e.g., to inverse a matrix can
be replaced by O(r N2). By using more sophisticated algo-
rithms, this number can even be reduced to O(r N ln N )
[7–9].

The best-known examples of structured matrices are
Toeplitz (Tmn), Hankel (Hmn), and Toeplitz-plus-Hankel
[(T + H )mn] matrices, whose matrix elements have the fol-
lowing form

Tmn = tm−n, Hmn = hm+n, (T + H )mn = tm−n + hm+n,

(1)

with m, n = 1, . . . , N and ti, h j arbitrary real or complex
numbers. The matrices considered in (1) have a long history:
Hankel matrices were introduced in 1861 [10] and Toeplitz
matrices in 1911 [11]. They appear naturally in various fields
of mathematics and physics, such as differential and integral
equations, functional analysis, probability theory, statistics,
numerical analysis, theory of stationary processes, signal and
image processing, control theory, integrable models, among
many others (see, e.g., Refs. [12–18] and references therein).
The existence of algorithms inverting these matrices in O(N2)
operations were known for a long time [8,19–22]. Exam-
ples of displacement structures for these matrices is briefly
discussed in Appendix A. Considerable efforts were per-
formed to find the asymptotic behavior of the determinants
and eigenproblems for matrices (1) in the limit of large matrix
dimensions (see, e.g., Refs. [16–18] and references therein).
It appeared that all these calculations require additional reg-
ularity conditions of matrix elements (e.g., a finite number
of Fisher-Hartwig singularities). Very irregular matrices, that
is, without any particular structure other than (1), seem to be
inaccessible to known analytic methods.

The investigation of irregular Hermitian Toeplitz matrices
was initiated in Ref. [23] where elements tk were taken as
independent and identically distributed (i.i.d.) random vari-
ables (with t−k = t∗

k ). A central aspect of the study of random
matrices is the investigation of their statistical spectral proper-
ties. From the above-mentioned fact that Toeplitz matrices are
low-complexity matrices it seems natural that their spectral
statistics differ from the Wigner-Dyson statistics of usual ran-
dom matrix ensembles used to describe chaotic systems [24].
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It was shown in Ref. [23] that spectral statistics of random
Toeplitz matrices is of intermediate type, which is character-
ized by level repulsion, as for usual random matrix ensembles
[25] but with exponential decrease in nearest-neighbor spac-
ing distributions as for the Poisson distribution typical for
integrable models [26]. Such a type of intermediate spectral
statistics was first observed in the Anderson model at the
point of metal-insulator transition [27,28] and later in certain
pseudointegrable billiards [29,30] and quantum maps [31].
More precisely, Ref. [23] showed that spectral statistics of
random Toeplitz matrices are well described by the semi-
Poisson distribution, which is the simplest model where only
the nearest-neighbor levels interact (an approach described in
Ref. [32]).

The main purpose of this paper is to investigate statistical
properties of other structured matrices beyond the Toeplitz
class, namely, random Hermitian Hankel and Toeplitz-plus-
Hankel matrices where elements tk and hk in (1) are i.i.d.
Gaussian random variables with zero mean and unit variance
(for complex elements real and imaginary parts are i.i.d. stan-
dard Gaussian random variables). The main conclusion of the
paper is that spectral statistics of all these low-complexity
matrices is of intermediate type and well described by a
γ distribution. Moreover, eigenvectors of these matrices are
multifractal in Fourier space, which is typical for models with
intermediate statistics. Such a multifractal behavior of eigen-
states was identified in wave functions of the Anderson model
at metal-insulator transition [33–35] and in certain random
matrix ensembles [36]. Quite remarkably, as we show here,
such features are also present in models as simple as random
Toeplitz or Hankel matrix ensembles.

The plan of the paper is the following. Section II is
devoted to the investigation of a simple heuristic method
which permits to obtain explicit approximate formulas for
spectral statistics of structured matrices. These results are
then applied to random Hermitian Toeplitz, Hankel, and
Toeplitz-plus-Hankel matrices with independent matrix el-
ements. The results demonstrate the intermediate character
of spectral statistics for these matrices and confirm the fact,
observed in Ref. [23], that random Toeplitz matrices are well
approximated by the semi-Poisson distribution. Other func-
tions characterizing the spectrum are discussed in Sec. III. In
Sec. IV it is demonstrated that the results of direct large-scale
numerical calculations for different correlation functions for
the above matrices agree well with the obtained approximate
formulas. The summary of the obtained results is performed
in Sec. V. In Appendix A the simplest displacement structures
for the considered matrices are briefly discussed. Appendix B
is devoted to the construction of short-range plasma models
which have the same power-low behavior at small arguments
as matrices discussed in the main text.

II. WIGNER-TYPE APPROXIMATE FORMULAS

The purpose of the present section is to obtain heuristically
simple approximate formulas for structured random matrices.
Our guiding principle is the construction of the Wigner-
type surmises for nearest-neighbor distributions in standard
Wigner-Dyson ensembles of random matrices.

A. Wigner-Dyson ensembles

The usual Wigner-Dyson ensembles of random matrices
are the Gaussian orthogonal ensemble, the Gaussian unitary
ensemble, and the Gaussian symplectic ensemble character-
ized, respectively, by the Dyson index β = 1, 2, 4. For these
ensembles, it is well known (see, e.g., Refs. [25,37]) that the
nearest-neighbor spacing distribution P0(s) (i.e., the probabil-
ity that two levels are separated by a distance s with no level
inbetween) is well approximated by the Wigner surmise,

P0(s) = a(β )sβe−b(β )s2
, (2)

with constants a(β ) and b(β ) determined from the normaliza-
tion conditions,∫ ∞

0
P0(s)ds = 1,

∫ ∞

0
sP0(s)ds = 1. (3)

The success of such a surmise is based on the simple fact
that any function which has the correct behavior ∼sβ at small
values of the argument and is quickly decreasing at large
values of the argument should be a reasonably good approx-
imation for the true function, provided normalization fixes
the otherwise arbitrary parameters a(β ) and b(β ). Of course,
deviations between the exact result and the simple expression
(2) do exist, but as the function at large argument is small,
they are practically unobserved. The accuracy of the Wigner
surmise is so high that the exact function, given by a solution
of a certain Painlevé equation [25,38], is very rarely used,
mainly in monumental calculations of the Riemann ζ function
[39]. In most other cases the Wigner surmise is sufficient.

Much less used are the analogous Wigner-type surmises for
the higher-order nearest-neighbor spacing distributions Pn(s),
which are the probabilities that two eigenvalues are separated
by a distance s with exactly n eigenvalues between them.
Again, the accuracy of such an approximate formula for Pn(s)
mainly depends on the correctness of the small-s behavior
and of the quick asymptotic decrease in the function at large
argument. The main ingredient to obtain these surmises is,
therefore, to determine the small-argument behavior of Pn(s).
This can be readily obtained from the exact joint eigenvalue
probability density, which for the Wigner-Dyson random ma-
trix ensembles is known to be [25]

P(e1, . . . , eN ) ∼
∏

1�i< j�N

|ei − e j |β
N∏

k=1

e−V (ek ), (4)

where V (e) is a confining potential and β = 1, 2, 4. The ma-
trices that contribute most to Pn(s) for s ∼ 0 are those for
which n + 2 eigenvalues are close to a certain value λ and,
thus, almost degenerate with a distance s � 1 between the
largest and the smallest of these eigenvalues (see Fig. 1). If
we assume that all other eigenvalues are separated from λ by
a gap � s, then the product

∏
i< j over all pairs of eigenvalues

in (4) splits into two parts: A first product �1 involving only
those eigenvalues that are close to λ, and a second product
�2 including all the other terms. In product �2, eigenvalues
close to λ are paired with eigenvalues far from λ and, thus, can
be replaced by λ. Under this approximation, only product �1

will contribute to the small-s behavior of Pn(s). This product
�1 can be expressed solely in terms of spacings s1, . . . , sn+1
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FIG. 1. Configuration of eigenvalues for the Pn(s) correlation
function.

between consecutive eigenvalues close to λ (see Fig. 1). At
small s the confining potential can be discarded, and we, thus,
have

Pn(s) ∼
s→0

∫ ∞

0
ds1ds2 · · · dsn+1

n∏
k=0

n−k+1∏
i=1

(si + · · ·

+ si+k )βδ

(
s −

n+1∑
k=1

sk

)
. (5)

Substituting sk = syk in (5) one can extract the leading power
of s by merely counting the different contributions (the δ func-
tion accounting for a −1 contribution); the remaining integral
just gives an overall multiplicative constant. One directly gets

Pn(s) ∼
s→0

sγn , γn = β
(n + 2)(n + 1)

2
+ n. (6)

Assuming, as in the usual Wigner surmise, that all correlation
functions have Gaussian decay at a large argument one gets
an approximate formula for Pn(s) of the form

Pn(s) = ansγn exp(−bns2), (7)

where constants an and bn are calculated from the standard
normalization conditions,∫ ∞

0
Pn(s)ds = 1,

∫ ∞

0
sPn(s)ds = n + 1. (8)

These formulas are not new and have been derived in, e.g.,
Ref. [40] and (from different considerations) in Ref. [41].

The main drawback of the above approach is that it requires
the knowledge of the exact eigenvalue distribution. Now we
will obtain the same result from simple arguments, without
using the specific form (4) and extend it to more general
situations.

B. Wigner-Dyson revisited and intermediate-type statistics

Suppose, as above, that the small-s behavior of Pn(s) comes
from matrices with n + 2 eigenvalues close to a certain fixed
value λ and all other eigenvalues far away from λ (here and in
the following we restrict ourselves to the vicinity of the bulk
of the spectrum, that is, λ 	 0 for Wigner-Dyson matrices).
This means that only eigenvalues close to λ contribute to Pn(s)
as s → 0, and the other eigenvalues can be ignored. One can

then restrict oneself to a (n + 2) × (n + 2) Hermitian matrix
Mi j whose eigenvalues are almost degenerate, that is

Mi j = λδi j + εmi j, |ε| � 1. (9)

We are looking for the number of independent variables in m

whose nonzero values lift the degeneracy. Since that matrix is
Hermitian, the total number of independent matrix elements
is Nt = n + 2 + β

(n+2
2

)
with β = 1 for real and β = 2 for

complex matrices. But adding a constant value to all mii does
not change the relative position of eigenvalues so that this
number has to be diminished by 1 (one could, e.g., impose
that m11 = 0). Therefore, we get

qn = n + 1 + β

(
n + 2

2

)
(10)

variables whose nonzero values lift the degeneracy.
Let e j be eigenvalues of Mi j . Setting e j = λ + εv j for

j = 1, . . . , n + 2, the v j are solutions of det(vδi j − mi j ) = 0.
When mi j = O(1) all e j are, in general, different and are of
the order of ε around λ. For the considered ensembles all
qn matrix elements are independent random variables with a
certain nonzero probability density. The spacing distribution
is then obtained by a qn-fold integral over these variables. The
probability that all eigenvalues of matrix Mi j are within a short
distance s from λ is the probability of the event that all the qn

variables are on the order of s. One can, therefore, rescale each
variable in the qn-fold integral by s, which gives a probability
proportional to sqn , and, thus,

P(|e j − λ| < s) ∼
s→0

sqn . (11)

This quantity corresponds to the cumulative spacing distribu-
tion

∫ s
0 Pn(y)dy. Therefore, the spacing distribution Pn(s) has

the following limiting value:

Pn(s) ∼
s→0

sγn , γn = qn − 1. (12)

For the Wigner-Dyson ensembles qn is given by (10), thus,
this expression agrees with the above result (6) obtained from
the exact joint distribution. The behavior of Pn(s) at large
values of the argument is then determined by the fact that each
eigenvalue interacts with all other eigenvalues, which suggests
the quadratic exponent in (7).

The number qn is known as the codimension of the matrix
ensemble. More precisely, for a family of matrices M(x) that
depend on a parameter x ∈ Rm, one can define the subman-
ifold of parameter space M ⊂ Rm such that for all x ∈ M
the matrix M(x) has k degenerate eigenvalues equal to λ. The
dimension dim(M) gives the number of variables that can be
modified without changing the k eigenvalues λ. Then the codi-
mension of the matrix ensemble is defined as the codimension
of the submanifold M; it determines the minimal number
of independent parameters in a matrix that has k degenerate
eigenvalues with a given value.

In the present case, qn gives the minimal number of
independent parameters in a Hermitian matrix with n + 2
degenerate eigenvalues. The well-known theorem of von
Neumann and Wigner [42] (see also [43]) states that the codi-
mension of Hermitian matrices with k degenerate eigenvalues
is k2 − 1 for complex matrices and 1

2 (k + 2)(k − 1) for real
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ones. When k = n + 2 these expressions agree with qn in
Eq. (10) obtained from matrices of size n + 2.

We are unaware of exact results about codimensions for
matrix families considered in the paper. Nevertheless, the
codimensions of any subclass of Hermitian matrices are in-
dependent of matrix dimensions as they are upper bounded
by the above size-independent values. It is then natural to
conjecture that they can be determined by considering the
smallest possible matrix with n + 2 degenerate eigenvalues.
The above discussion shows that such an approach works well
for the Wigner-Dyson ensembles. Below it will be applied to
Hermitian Toeplitz, Hankel, and Toeplitz-plus-Hankel ensem-
bles of random matrices.

In order to get a complete Wigner-like surmise we must
additionally fix the behavior at large argument. In the case
of the intermediate-type ensembles considered in the present
paper one can argue [27–29] that the interaction between
eigenvalues has to be of short range and asymptotically the
nearest-neighbor distributions decrease only as an exponen-
tial of the distance between eigenvalues (which is typical
in short-range interaction thermodynamics). Combining both
asymptotic behaviors at large and small s, one gets that the
Wigner-like surmise for intermediate-type matrices should be
of the form

Pn(s) = ansγn exp(−bns), (13)

where an and bn are fixed by the normalization conditions (8),
that is,

an = 1

�(γn + 1)

(
γn + 1

n + 1

)γn+1

, bn = γn + 1

n + 1
. (14)

The distribution (13) belongs to the family of γ distributions.
It is determined by the quantity γn = qn − 1 only with qn

being the minimal number of independent matrix elements in
a small vicinity of a degenerate matrix such that any variations
of them lift the degeneracies of matrix eigenvalues. Another
definition of qn is that it is equal to the total number of
parameters minus the number of “zero modes”, that is, the
number of parameters whose variation does not remove the
eigenvalue degeneracy.

C. Toeplitz matrices

Let us now consider a random (n + 2) × (n + 2) Hermitian
Toeplitz matrix Tjk = t j−k, 1 � j, k � n + 2, where ti’s are
real or complex i.i.d. Gaussian random variables. A Hermitian
Toeplitz matrix of size n + 2 has n + 1 distinct off-diagonal
elements and a single real diagonal entry. In total this gives
Nt = 1 + β(n + 1) independent variables, where β = 1 for
real and β = 2 for complex matrices.

If a degenerate matrix is perturbed by a Toeplitz matrix T in
such a way that the perturbation does not lift the degeneracy,
then T has to be proportional to the identity matrix, T = λ1.
There is only one such matrix with t0 = λ and all other ele-
ments zero. It implies that there exists only one zero mode.
Therefore, qn = Nt − 1 = β(n + 1) and, consequently,

γn = β(n + 1) − 1. (15)

The γ distribution (13) with such γn and β = 1 corresponds to
the Poisson distribution, whereas for β = 2 it coincides with

the semi-Poisson distribution, which agrees with the results of
Ref. [23] for random Toeplitz matrices.

D. Special Toeplitz-plus-Hankel matrices

We now apply the same method to Hermitian Toeplitz-
plus-Hankel matrices having the form ti− j + hi+ j . Elements
hi may either be independent from the elements t j or de-
pend on them. Let us start with the second situation, where
entries of the Hankel matrix are given in terms of the t j .
This situation arises when considering the spectrum of a
real symmetric Toeplitz matrix. Indeed, it is well known that
the spectrum of such a matrix can be split into two sets of
eigenvalues, the so-called reciprocal and antireciprocal sets,
associated with symmetric and skew-symmetric eigenvectors,
respectively [44,45]. These sets (for real Toeplitz matrices of
even dimension) are given by eigenvalues of matrices of the
form

(T + ηH )i j = t|i− j| + ηti+ j−1, (16)

where η = ±1 and ti are real i.i.d. Gaussian random variables.
Any (n + 2) × (n + 2) matrix of the form (16) is deter-

mined by the Nt = 2n + 4 elements t0, . . . , t2n+3. Once again,
the identity matrix belongs to this ensemble, thus, the number
of zero modes corresponds to the number of parameters for
which a matrix (16) is proportional to the identity,

T + ηH = λ1. (17)

Such a matrix has only two free parameters. Indeed, it is
subjected to the restrictions ti j + η hi j = λδi j , yielding for
ti j = t|i− j| and hi j = ti+ j−1,

t0 + ηt2i−1 = λ, i = 1, . . . , n + 2, (18)

ti− j + ηti+ j−1 = 0, i = j + 1, . . . , n + 2. (19)

Condition (18) is equivalent to

ηt2i−1 = λ − t0, i = 1, . . . , n + 2, (20)

which fixes all odd coefficients in terms of λ and t0, whereas
condition (19) taken at i = j + 1 gives

t2 j = −η t1, j = 1, . . . , n + 1, (21)

which fixes all even coefficients apart from t0. The two re-
maining free parameters are, thus, t0 and λ, yielding two
zero modes. The number of independent parameters minus the
number of zero modes is then qn = Nt − 2 = 2n + 2, and one
gets for these matrices,

γn = 2n + 1, (22)

which corresponds to the semi-Poisson distribution. Again,
this is in agreement with the findings in Ref. [23].

E. Independent Toeplitz-plus-Hankel matrices

Suppose now that coefficients of the Toeplitz and Hankel
matrices are fully independent. Namely, we consider Toeplitz-
plus-Hankel matrices of the form

(T + H )i j = ti− j + hi+ j, i, j = 1, . . . , n + 2, (23)
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with independent (real or complex) coefficients t j, j =
0, 1, . . . , n + 1 and real hj, j = 2, . . . , 2n + 4. The total
number of parameters is now Nt = 1 + β(n + 1) + (2n + 3).

As in the previous subsections to find zero modes one has
calculate the number of matrices from this ensemble such

T + H = λ1. (24)

This condition now yields the restrictions

t0 + h2i = λ, i = 1, . . . , n + 2, (25)

ti− j + hi+ j = 0, i = j + 1, . . . , n + 2. (26)

The first condition entails that h2i = λ − t0 for i = 1, . . . , n +
2, whereas the second condition for 1 � j � n + 1 and i =
j + k gives

h2 j+k = −tk, k = 1, . . . , n + 2 − j. (27)

In particular, h2 j+1 = −t1 for 1 � j � n + 1, and, thus, all
h j’s are fixed. Equation (27) fixes, in turn, all tk’s for k � 2,
and constrains the imaginary part of t1 to be zero. Only
t0, λ, and the real part of t1 remain free, providing three
zero modes. Therefore, one has qn = Nt − 3 = 2n + 1 +
β(n + 1). It means that for independent Toeplitz-plus-Hankel
matrices γn = 2n + β(n + 1). This gives

γn = 3n + 1 for β = 1, (28)

γn = 4n + 2 for β = 2. (29)

F. Hankel matrices

Let us now turn to an ensemble of pure Hankel matri-
ces Hjk with entries of the form hi+ j . Whereas in all cases
considered so far the identity matrix was a member of the
ensemble, this is not the case anymore: A Hankel matrix
cannot have all eigenvalues equal since the identity matrix is
not of Hankel form (this also reflects in the peculiar density
of eigenvalues for this ensemble as compared with the others
as will be illustrated in Fig. 2 below). Spectra with n + 2
almost degenerate eigenvalues can nevertheless be obtained
by considering matrices of size N = 2n + 2. Indeed, the N×N
Hankel matrix,

d jk (N ) =
{

1, j + k ≡ 0 mod N,

0, j + k ≡ 0 mod N,
(30)

with N = 2n + 2 has n + 2 eigenvalues equal to 1 and n
eigenvalues −1, therefore, in the vicinity of d (N ) matrices
have n + 2 almost degenerate eigenvalues close to 1. There-
fore, Hankel matrices of the form

Hjk = λd jk (N ) + εH jk, N = 2n + 2, (31)

with H jk = h j+k and ε → 0, have n + 2 eigenvalues close
to λ.

A real symmetric N×N Hankel matrix hi+ j is determined
by Nt = 2N − 1 parameters h2, . . . , h2N . Following the rea-
soning of the previous subsections, to obtain the small-s
behavior of Pn(s) one has to calculate the number of indepen-
dent variables, apart from those that do not affect differences
between eigenvalues. For matrices of the form close to the
identity matrix as in (9) all eigenvalues are on the order of ε

-3 -2 -1 0 1 2 3
�

0

0.1

0.2

0.3

0.4

��
��

FIG. 2. Mean normalized densities ρ̄(ε) for different classes of
structured matrices. From top to bottom at ε = 0: real and complex
Toeplitz (black), independent real Toeplitz-plus-Hankel (red), inde-
pendent complex Toeplitz-plus-Hankel (green), and Hankel (blue).

around λ. By contrast, in the case of matrices (31) there are
certain H’s such that deviations of perturbed eigenvalues are
on the order of ε2 around λ. As we are looking for Pn(s) only
at the lowest order on s these “almost-zero modes” will give
higher-order contribution and have to be excluded from the
counting of independent variables.

Since d (N )2 = 1 is the identity matrix, the square of ma-
trix (31) is H2 = λ21 + λε[d (N )H + Hd (N )] + ε2H2. If the
anticommutator of matrices d (N ) and H is zero,

d (N )H + Hd (N ) = 0, (32)

then eigenvalues of H are ±λ + O(ε2) and such matrices
correspond to almost-zero modes, and perturbations H in
the direction specified by Eq. (32) will not affect eigenvalue
spacings (at lowest order). The requirement (32) leads to the
following conditions:

hk + h2N−k = 0, 2 � k � N,

hN+k + h2N−k = 0, 1 � k � N.
(33)

As a consequence, for 2 � k � N − 2 we must have hk =
hN+k = −h2N−k = −hN−k (in particular, this fixes hN/2 = 0).
For k = N − 1 we must have hN−1 = −hN+1 = h2N−1. For
k = N we get hN = h2N = 0. The remaining free parameters
are, thus, h2, h3, . . . , hN/2−1, hN−1 and, of course, λ. This
gives in total n + 1 almost-zero modes, so that qn = Nt − n −
1 = 3n + 2. For random Hankel matrices with independent
elements we, thus, get the γ distribution (13) with

γn = 3n + 1. (34)

An alternative, perhaps a more transparent way of un-
derstanding the origin of condition (34) is to note that for
Hankel matrices the condition hk = hN+k with k = 2, . . . , N ,
obtained below (34), defines the so-called Hankel circulant
matrices, which can easily be diagonalized in Fourier space
[cf. Eq. (60)]. It is plain that for Hermitian matrices Hi j = hi+ j
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TABLE I. Values of γn for different types of Hermitian matrices
with independent elements.

Matrix type γn

Complex Toeplitz matrices 2n + 1
Special Toeplitz-plus-Hankel matrices 2n + 1
Hankel matrices 3n + 1
Real Toeplitz-plus-Hankel matrices 3n + 1
Complex Toeplitz-plus-Hankel matrices 4n + 2

of the form (31) with such a property eigenvalues are given by

λn =
{±|ξn|, n = 1

2 N, N,

ξn, n = 1
2 N, N,

ξn =
N∑

r=1

hr+N e−2π irn/N .

(35)
In the problem considered here one has hN = h2N = λ

[cf. (30)]. Therefore,

ξn = λ +
N−1∑
r=1

hr+N e−2π irn/N . (36)

In order that the modulus |ξn| equals λ + O(h2), it is neces-
sary that the sum in this equation be a pure imaginary for
all n = N/2, N . This requires hr+N + h2N−r = 0, which gives
back (34).

The heuristic results of this section are that for all matrix
families given by Eq. (1) the nth nearest-neighbor distribu-
tions Pn(s) should be well described by the γ distribution (13)
with γn summarized in Table I.

III. OTHER SPECTRAL PROPERTIES

A. Level compressibility

A characteristic property of models with intermediate
statistics is the nontrivial value of the level compressibility
χ , which is determined through the limiting behavior of the
variance of the number of eigenvalues (normalized to unit
density) in an interval of length L. If N (L) is the number of
eigenvalues inside the interval L then,

�2(L) ≡ 〈[N (L) − L]2〉 ∼
L→∞

χL , (37)

where the average is taken over different realizations of ran-
dom matrices. For the usual Wigner-Dyson random matrix
ensembles χ = 0 and for the Poisson distribution χ = 1. For
intermediate statistics it is argued [27,28] that

0 < χ < 1. (38)

The calculation of the number variance requires the knowl-
edge of the two-point correlation function R2(s), determined
as the probability that two eigenvalues are separated by a
distance s. Since there is an arbitrary number of eigenvalues
inside this interval, it is plain that it equals the sum over all
nearest-neighbor distributions,

R2(s) =
∞∑

n=0

Pn(s). (39)

The γ distributions proposed above for Pn(s) are only ap-
proximations to unknown expressions and small errors hardly

visible in the nearest-neighbor distributions may lead to
considerable deviations in the infinite sum for R2(s). Never-
theless, it is instructive to see what is the compressibility for a
γ distribution.

The distribution Pn(s) has the form sγn exp[−(γn + 1)s/
(n + 1)], where γn = pn + k with p and k independent of
n. For n � 1 it has its maximum at s ≈ n + 1 [which
coincides with its mean value n + 1 given by the normal-
ization (8)]. A second-order expansion near this maximum
gives a Gaussian with mean value n + 1 and variance ≈
n/p. At large n the distribution can, thus, be approximated
asymptotically by

Pn(s) = 1√
2π�2(n)

exp

(
− (s − n − 1)2

2�2(n)

)
, �2(n) = n

p
.

(40)
This formula can be reversed to determine the behavior of
Pn(s) as function of n at large fixed s,

Pn(s) = 1√
2π�2(s)

exp

(
− (n − s)2

2�2(s)

)
, �2(s) = s

p
. (41)

Therefore, from the definition (37) it follows that

�2(L) ≈
∫

(n − L)2Pn(L)dn = L

p
, (42)

which means that for a γ distribution with γn = pn + k,

χ = 1

p
. (43)

In other words, if Pn(s) at large n has exponential decrease
as exp(−ps) then χ = 1/p. Such a relation is also valid
for all short-range plasma models discussed in Ref. [32]
(cf. Appendix B).

B. Form factor

The compressibility can be recovered alternatively from
the asymptotic behavior of the two-point correlation form
factor as

χ = lim
τ→0

K (τ ), (44)

where the form factor is the Fourier transform of the spectral
two-point correlation function, defined as

K (τ ) =
∫ ∞

−∞
R2(s)e2π iτ sds. (45)

The Fourier transform (45) can be evaluated by introducing
the Laplace transform of the sum (39), which yields

K (τ ) = 1 + 2 Re g(2π iτ ), (46)

where the function g is defined as

g(t ) =
∞∑

n=0

gn(t ), (47)

with gn(t ) the Laplace transform of Pn(s). Assuming that
γn = pn + k with p and k independent on n one gets from (13)
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that

gn(t ) =
∫ ∞

0
Pn(s)e−tsds

=
(

1 + (n + 1)t

pn + k + 1

)−pn−k−1

∼
n→∞ exp

[
− t (p − k − 1)

p + t

](
1 + t

p

)−pn−k−1

. (48)

As the direct summation over n is singular it is convenient to
reexpress g(t ) as the sum of two terms,

g(t ) = f (t ) + exp

(
− t (p − k − 1)

p + t

) ∞∑
n=0

(
1 + t

p

)−pn−k−1

,

(49)
where

f (t ) =
∞∑

n=0

[(
1 + (n + 1)t

pn + k + 1

)−pn−k−1

−
(

1 + t

p

)−pn−k−1

exp

(
− t (p − k − 1)

p + t

)]
. (50)

The function f has a finite limit at t → 0 and verifies
f (0) = 0. The second term in (48) is easily calculated and
yields

g(t ) = f (t ) +
(
1 + t

p

)p−k−1(
1 + t

p

)p − 1
exp

(
− t (p − k − 1)

p + t

)
. (51)

Whereas (47) diverges when evaluated numerically, the form
(49) and (50) allows to obtain a theoretical prediction for the
form factor using Eq. (46). This expression will be compared
with numerical computations in the next section.

From the second term it follows that

g(t ) ∼
t→0

1

t
− p − 1

2p
+ O(t ). (52)

The behavior of g(t ) at small t yields using (46) χ ≡ K (0) =
1/p, which coincides with the expression in Eq. (43).

IV. COMPARISON WITH NUMERICAL CALCULATIONS

We now turn to the numerical determination of the differ-
ent correlation functions for the families of random matrices
considered above. The ensembles are constructed by taking
all independent real matrix elements of these matrices (or all
real and imaginary parts for complex entries) as Gaussian ran-
dom variables with zero mean and unit variance. The spectra
were obtained by diagonalization of matrices with dimension
N = 210, and for each family 20 000 realizations of random
matrices were taken.

A. Mean density of eigenvalues

The most basic quantity that characterizes the spectrum of
a matrix of size N is the density of eigenvalues, defined as

ρ̄(E ) = 1

N

〈
N∑

j=1

δ(E − Ej )

〉
, (53)

where the average is taken over different realizations of ran-
dom parameters.

It is well known that for the usual Wigner-Dyson ran-
dom matrix ensembles the mean density of states follows the
Wigner semicircle law. On the other hand, for real symmetric
Toeplitz and Hankel matrices, it was shown in Refs. [46,47]
that the mean densities (rescaled by

√
N) converge when

N → ∞ to nontrivial symmetric distributions depending only
on the variance of matrix elements. To meaningfully compare
mean densities of different matrix ensembles it is convenient
to rescale them in such a way that∫

E2ρ̄(E )dE = 1. (54)

This can be achieved by rescaling energy levels as ε = E/σ

with σ 2 = 〈Tr(M2)〉/N . For matrices (1) with independent
entries of zero mean and unit variance, one readily gets that
for large N the rescaling factor is σ 2 = N for real symmetric
Toeplitz matrices and Hankel matrices, σ 2 = 2N for complex
Toeplitz matrices and real Toeplitz-plus-Hankel matrices with
independent entries, and σ 2 = 3N for complex Toeplitz-plus-
Hankel matrices. The rescaled mean densities are presented in
Fig. 2.

B. Nearest-neighbor distributions

In order to compare numerical data with universal analytic
predictions, we need to perform what is known as an “un-
folding” procedure. Assuming that eigenvalues are ordered
Ej+1 � Ej , unfolded eigenvalues e j are defined as

e j = N̄ (Ej ), (55)

where N̄ (E ) is the cumulative mean density,

N̄ (E ) =
∫ E

−∞
ρ̄(E ′)dE ′. (56)

The unfolded eigenvalues have unit mean density. Nearest-
neighbor distributions Pn(s) are then calculated from a small
interval of the unfolded spectrum around the maximum of
ρ̄(E ). In practice we took an interval containing 1/4 of the
total number of levels around the center of the spectrum. For
Hankel matrices, however, because of the unusual two-peak
form of the density (see Fig. 2), eigenvalues were taken around
the right peak only.

The results for nearest-neighbor distributions Pn(s) with
0 � n � 5 are presented in Fig. 3 for complex Toeplitz
matrices and for special T ± H matrices together with the the-
oretical γ distributions (13). The same quantities for Hankel
matrices and for real and complex independent Toeplitz-
plus-Hankel matrices are plotted in Fig. 4. The theoretical
distributions (13) agree quite well with numerical calcu-
lations, despite the fact that these formulas have no free
parameters. Note that numerically calculated spectral cor-
relation functions of Hankel and real Toeplitz-plus-Hankel
matrices are close to each other (see Fig. 4 top), although their
spectral densities, plotted in Fig. 2, are very different.

In order to further improve the formulas for Pn(s), one
can replace the term sγ in Eq. (13) by a polynomial in s as
happens in the short-range plasma model [32]. This is briefly
discussed in Appendix B. A drawback of such an approach
is that normalization of the expressions lead to quite cumber-
some formulas. We found that the simplest way to improve
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TABLE II. Values of fitted γn with n = 0, . . . , 5 for different matrices.

Matrix type γ0 γ1 γ2 γ3 γ4 γ5

Complex Toeplitz matrices 1.12 3.28 5.45 7.66 9.88 12.12
Special Toeplitz-plus-Hankel matrices 0.86 2.86 4.95 7.08 9.24 11.42
Hankel matrices 1.17 3.77 6.48 9.27 12.09 14.96
Real Toeplitz-plus-Hankel matrices 1.22 3.96 6.83 9.81 12.84 15.92
Complex Toeplitz-plus-Hankel matrices 2.00 5.58 9.33 13.20 17.13 21.08

our surmise for Pn(s) is to use the same γ distribution (13)
with normalization (14) but with a value of γn obtained from
a one-parameter fit of the data (the only free parameter being
γn). Surprisingly, such ad hoc fits work very well. The results
are displayed in Figs. 3 and 4, and the fitting curves in the bulk
entirely go through numerical points. In the insets of these
figures we compare the fitted values of γn, given in Table II
with the predictions of Table I.
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FIG. 3. Pn(s) for 0 � n � 5 for (top) complex Toeplitz matrices
(open black squares) and (bottom) special T + H matrices (filled
black circles) and special T − H matrices (open black squares) given
by (16). Black dashed lines are γ distributions (13) with γn = 2n + 1
(semi-Poisson distribution). Black solid lines are γ distributions
fitted with a single fitting parameter γn. The corresponding fitted
values of γn are given in Table II and plotted in the insets (filled
black circles) together with the semi-Poisson prediction γn = 2n + 1
(solid black line).

C. Two-point correlation form factor

The two-point correlation form factor K (τ ) is the Fourier
transform of the spectral two-point correlation function R2(s).
It can be expressed in terms of the unfolded spectrum as

K (τ ) = 1

N

〈∣∣∣∣∣
N∑

j=1

e2π ie jτ

∣∣∣∣∣
2〉

(57)
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FIG. 4. (Top) Pn(s) for 0 � n � 5 for Hankel matrices (open
black circles) and real Toeplitz-plus-Hankel matrices (filled black
circles). The black dashed lines are the γ distributions (13) with
γn = 3n + 1. The inset displays the values of γn obtained by a
one-parameter fit (same symbols as in the main panel) and given in
Table II, and the black solid line is the prediction γn = 3n + 1. (Bot-
tom) The same for complex Toeplitz-plus-Hankel matrices (filled
black circles). The black dashed lines are the γ distributions (13)
with γn = 4n + 2, and the black solid lines are the γ distributions
obtained by a one-parameter fit. The inset shows the fitted values of
γn (filled black circles) and the prediction γn = 4n + 2.
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FIG. 5. The form factor of (left) complex Toeplitz matrices (filled black circles), (right) special T + H matrices (filled black circles), and
special T − H matrices (open black circles). Circles are the numerical computations using (57), and the solid black line is the form factor of
the γ distribution with γn = 2n + 1 (i.e., the semi-Poisson distribution) calculated from (49) and (50).

(see, e.g., Ref. [48]). The form factor of complex Toeplitz
matrices and special T ± H matrices (16), computed nu-
merically from (56), is displayed in Fig. 5. In Fig. 6(a)
we plot the same function for Hankel and real independent
Toeplitz-plus-Hankel matrices and in Fig. 6(b) for complex
independent Toeplitz-plus-Hankel matrices. The form factors
for γn = 2n + 1, 3n + 1, 4n + 2, calculated from the above
formula (45) are presented in Figs. 5 and 6 together with
the exact form factors of corresponding short-range plasma
models presented in Appendix B.

It is known that numerical calculation of the spectral com-
pressibility from finite-dimensional matrices is subtle. The
point is that the compressibility is defined either from the
large-L behavior of the number variance (37) or from the
limiting value of the form factor at small argument (44). In
such definitions it is implicitly assumed that the limit N → ∞
is taken first, but in numerics one fixes the matrix dimension.

This inevitable inversion of the limits is responsible for the
sudden increase in K (τ ) evident in the above figures. The
same phenomenon is clearly seen even in (57) where formally
K (0) = N −→N→∞ ∞ [cf. also the discussion after Eq. (49)].
More and more realizations of random parameters are needed
to get correctly the limiting value K (0). This is illustrated in
the inset of Fig. 6. The discussion of different interpolation
procedures is beyond the scope of the paper. Nevertheless,
from Figs. 5 and 6 it is clear that the γ distribution prediction,
K (0) = 1/p with p from Table I, is in a reasonable agreement
with numerical calculations.

D. Fractal dimensions

Previous sections have shown that spectral statistics of
Toeplitz and Hankel matrices, or their sums, are of interme-
diate type. Such a behavior of spectral fluctuations has been
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FIG. 6. (left) The form factor of Hankel matrices (filled black circles) and independent real Toeplitz-plus-Hankel matrices (open black
squares). The inset: evolution of the form factor near the origin for Hankel matrices with increasing matrix dimension N = 2n with (from
right to left at small τ ) n = 10 (black), n = 11 (green), n = 12 (blue), and n = 13 (red). (right) The form factor of independent complex
Toeplitz-plus-Hankel matrices (filled black circles). The solid black line is the form factor of γ distribution with: (left) γn = 3n + 1, and
(right) γn = 4n + 2 calculated from (49) and (50). The dashed line is the form factor for short-range plasma model with the same value of γn,
given by (B9) and (B10).
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associated with multifractal properties of eigenstates [33–35].
Multifractals are objects that display fluctuations at all scales
and are characterized by the existence of a whole range of
fractal dimensions.

Contrary to eigenvalues, eigenvectors (and, thus, multifrac-
tality and fractal dimensions) depend on the chosen basis. For
models with intermediate-type statistics eigenfunctions are
typically fully extended in coordinate space but multifractal in
Fourier space. We, thus, introduce eigenfunctions �̂p(E ), de-
fined as the Fourier transform of eigenvectors � j (E ) through
the usual expression,

�̂p(E ) = 1√
N

N∑
j=1

e2π i j p/N� j (E ) , (58)

where � j (E ) is the eigenvector corresponding to the eigen-
value E and it is assumed that this vector is normalized as∑N

j=1 |� j (E )|2 = 1. These functions could be also calculated
by the diagonalization of Fourier transform of matrices (1).
The Fourier transform of the Toeplitz matrix is given in
Ref. [23]. For Hankel matrices one gets

Ĥmn = 1

N

N∑
j,k=1

h j+ke2π i(km− jn)/N

= ξndmn(N ) − [1 − dmn(N )]

×
[

ηn

1 − e−2π i(m+n)/N
+ η∗

m

1 − e2π i(m+n)/N

]
. (59)

Here matrix dmn(N ) was defined in (30) and

ξn = 1

N

N∑
r=2

(hr − hr+N )(r − 1)e−2π irn/N +
N∑

r=1

hr+N e−2π irn/N ,

ηn = 1

N

N∑
r=2

(hr − hr+N )e−2π irn/N . (60)

In order to define multifractal dimensions one calculates
the moments of eigenvectors and their scaling with matrix
dimension (see, e.g., Ref. [49] and references therein),〈

N∑
p=1

|�̂p(E )|2q

〉
∼

N→∞
C N−τ (q). (61)

The average in the above expression is taken over different
realizations of random parameters and over all eigenvalues
in a small energy window around E . The exponent τ (q) de-
termines the dependence of the qth moment with N . If an
eigenvector has a small number of large components then
τ (q) = 0. If all components are of comparable magnitudes
then, from normalization, |� j (E )|2 ∼ N−1, and, thus, τ (q) =
q − 1. The ratios,

Dq = τ (q)

q − 1
(62)

are called (multi)fractal dimensions, and they are the main
characteristics of statistical properties of eigenvectors. For
localized states Dq = 0 and for fully extended states Dq = 1.
Systems for which Dq differs from these extreme values and
depend on q are called multifractal.

For the ensembles of random matrices considered here,
eigenvectors � j (E ) were obtained by exact diagonalization
and Fourier transformed according to (58). The exponents
τ (q) were extracted from a linear fit of the logarithm of
moments (61) as a function of ln N , for data from N = 27

(8000 realizations) to N = 212 (200 realizations) in a small
window of eigenvalues around the maximum of the density.
The numerical results are displayed in Fig. 7. A first obser-
vation is that for all the matrix ensembles considered here,
fractal dimensions are nontrivial (i.e., different from 0 and 1).
As was the case for the spectra, fractal dimensions of Hankel
and independent real Toeplitz-plus-Hankel matrices are very
close to each other. Although for q < −1 they seem to deviate,
big numerical uncertainties in this region due to small wave
function values taken at a negative power, do not permit to get
a clear-cut conclusion.

There are practically no general results for fractal dimen-
sions. In Ref. [50], based on the nonlinear σ model, it was
conjectured that the anomalous dimensions defined by

�q = (Dq − 1)(q − 1) (63)

should satisfy the following symmetry relation,

�q = �1−q. (64)

In the inset of Fig. 7, values of �q and �1−q are plotted for
Toeplitz, Hankel, and complex Toeplitz-plus-Hankel matrices.
It is clear that the relation (64) is valid only in the interval
|q| < 1 where fractal dimensions are practically linear. At
larger values of q this relation numerically breaks down.

The quantity D1 has a special importance as it is a kind of
eigenfunction entropy,

N∑
p=1

|�̂p|2 ln |�̂p|2 ∼
N→∞

−D1 ln N. (65)

In Ref. [51] it was conjectured that

D1 + χ = 1, (66)

where χ is the level compressibility discussed in Sec. III A.
Numerically one finds that for complex Toeplitz matrices
D1 ≈ 0.52 for special T ± H matrices D1 ≈ 0.52, for Hankel
matrices D1 ≈ 0.65, for real Toeplitz-plus-Hankel matrices
D1 ≈ 0.67, and for complex Toeplitz-plus-Hankel matrices
D1 ≈ 0.75. These numerical values are quite close to the the-
oretical values of 1/2, 2/3, and 3/4 expected from Eqs. (43)
and (66), which indicates that the conjecture (66) (approxi-
mately) extends to the all the above random matrix ensembles.

V. SUMMARY

Toeplitz, Hankel, and Toeplitz-plus-Hankel matrices are
probably the oldest and the best investigated classes of matri-
ces. Although it was known for a long time that these matrices
are examples of low-complexity matrices, the investigation
of statistical properties of such matrices with very irregular
(which may and will be naturally substituted by random)
elements did not attract wide attention.

In the present paper such Hermitian matrices with inde-
pendent and identically distributed random elements were
investigated in detail. The main spectral correlation functions
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FIG. 7. Fractal dimensions in the Fourier space for (left) complex Toeplitz matrices (solid black line) and for special T + H matrices
(filled black circles) and T − H matrices (open black circles) given by (16) and (right) Hankel matrices (filled black circles), independent
real Toeplitz-plus-Hankel matrices (open black squares), and independent complex Toeplitz-plus-Hankel matrices (solid black line). Points
corresponding to D1 are indicated by thin straight lines. In the insets �q and �1−q are plotted together for (left) complex Toeplitz matrices
(solid line is �q and dashed line is �1−q) and for (right) Hankel matrices (�q is indicated by solid line and �1−q by dashed line), and
for independent complex Toeplitz-plus-Hankel matrices (�q is indicated by filled black circles connected by a thin line and �1−q by
dashed-dot line).

were calculated using large matrix dimensions and large num-
ber of realizations. Special attention was given to the careful
determination of nearest-neighbor distributions of these matri-
ces. It is demonstrated that these families of matrices display
level repulsion at small distances, as for usual Wigner-Dyson
ensembles of random matrices, but their nearest-neighbor dis-
tributions decrease exponentially at large argument, contrary
to the Wigner-Dyson ensembles where they have Gaussian
tails. Combination of these two properties is the character-
istic feature of the so-called intermediate spectral statistics
observed until now only in rare special systems, such as the
Anderson model at the point of metal-insulator transition,
certain pseudointegrable billiards, intermediate kicked quan-
tum maps, and matrix ensembles related with Lax matrices of
integrable models.

The form factor (the Fourier transform of the two-point
spectral correlation function) is a key characteristic of spec-
tral statistics, and its value at 0, the level compressibility,
provides a signature of the nature of these statistics: It takes
the value of 0 for the Wigner-Dyson ensembles, 1 for the
Poisson statistics, and an intermediate value for intermediate
statistics. For all matrices considered here the form factors
were calculated numerically, and it was demonstrated that
they are different from standard random matrix ensembles.
In particular, the data indicate that the spectral compressibil-
ity of Toeplitz, Hankel, and Toeplitz-plus-Hankel matrices is
nontrivial, which is another characteristic feature common
to all known intermediate-type statistics. Moreover, numeri-
cal calculations of statistical properties of the corresponding
eigenvectors show that their fractal dimensions are also non-
trivial (i.e., different from 0 or 1) for all considered matrices,
which shows that such eigenfunctions are multifractal.

Exact analytic results for such statistical distributions are
nonexisting. Here we developed a simple heuristic method
to get approximate formulas of the nearest-neighbor distri-
butions for the considered classes of random matrices. They

correspond to the normalized γ distribution with parameter
γn given in Table I. The obtained expressions have no free
parameter and approximate well the numerical results. Adding
a single fitting parameter (the parameter γ of the γ distribu-
tion) gives almost perfect agreement with the data in the bulk.
Therefore, in the same way as the celebrated Wigner surmise,
and because of their simplicity, our formulas can serve as
approximations to unknown distributions. We also observed
that numerically calculated correlation functions for Hankel
random matrices and independent real Toeplitz-plus-Hankel
matrices are surprisingly close to each other, although their
spectral densities are very different.

The fact that all low-complexity matrices discussed in the
paper have this type of statistics clearly shows that interme-
diate statistics are more widely spread than was considered
before and opens new perspectives in random matrix theory.
As this type of matrices pervades all branches of physical and
mathematical sciences, it is an important challenge to derive
analytically correlation functions in these models.

APPENDIX A: DISPLACEMENT STRUCTURE
FOR TOEPLITZ, HANKEL, AND

TOEPLITZ-PLUS-HANKEL MATRICES

Let Z be the n×n matrix,

Zjk = δ j−k−1. (A1)

This matrix shifts any matrix M as

(ZM )i j = Mi−1, j�(i − 1) −→ shift down,

(ZT M )i j = Mi+1, j�(n − i) −→ shift up,

(MZ )i j = Mi, j+1�(n − j) −→ shift left,

(MZT )i j = Mi, j−1�( j − 1) −→ shift right, (A2)

where �(n) = 1 for n > 0 and �(n) = 0 for n � 0. When
applied to a Toeplitz matrix Tjk = t j−k with j, k = 1, . . . , n,
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the operation ZT Z† shifts it along the main diagonal by one
unit (hence, the name displacement structure),

(ZT ZT )i j = ti− j�(i − 1)�( j − 1). (A3)

Therefore, all terms in the displacement operator ∇Z,ZT (T ) =
T − ZT ZT cancel except for i, j = 1, and

T − ZT ZT =

⎡
⎢⎢⎢⎢⎣

t0 t−1 t−2 · · · t1−n

t1 0 0 · · · 0
...

. . .
. . .

. . .
...

tn−2 0 · · · 0 0
tn−1 0 · · · 0 0

⎤
⎥⎥⎥⎥⎦. (A4)

Consequently, the displacement rank for any Toeplitz matrix
is at most 2.

For Hankel matrices, Hjk = h j+k with j, k = 1, . . . , n it is
convenient to use the operation,

(ZH − HZT )i j = hi−1+ j�(i − 1) − hi+ j−1�( j − 1). (A5)

All terms in the displacement operator
�Z,ZT (H ) = ZH − HZT cancel except for i, j = 1,

and

ZH − HZT =

⎡
⎢⎢⎢⎢⎣

0 −h2 −h3 · · · −hn

h2 0 0 · · · 0
...

. . .
. . .

. . .
...

hn−1 0 · · · 0 0
hn 0 · · · 0 0

⎤
⎥⎥⎥⎥⎦. (A6)

Therefore, the displacement rank of a Hankel matrix is also at
most 2.

For a Toeplitz-plus-Hankel matrix, (T + H )i j = ti− j + hi+ j

with j, k = 1, . . . , n, Eq. (A3) yields the identities,

[Z (T + H )]i j = (ti− j−1 + hi+ j−1)�(i − 1), (A7)

[ZT (T + H )]i j = (ti− j+1 + hi+ j+1)�(n − i), (A8)

[(T + H )Z]i j = (ti− j−1 + hi+ j+1)�(n − j), (A9)

[(T + H )ZT ]i j = (ti− j+1 + hi+ j−1)�( j − 1). (A10)

Defining the displacement operator by [8]

�A,A(T + H ) = A(T + H ) − (T + H )A, A = Z + ZT ,

(A11)

all terms in �A,A(T + H ) cancel except the boundary terms
with i = 1, n and j = 1, n, so that it has the block structure,

�A,A(T + H ) =

⎡
⎢⎣

t1 − t−1 −(t− j + h j )n−1
j=2 h2+n − hn

(ti + hi )n−1
i=2 (0)n−1

i, j=2 (ti−n+1 + hi+n−1)n−1
i=2

hn − h2+n −(tn− j−1 + hn+ j+1)n−1
j=2 t−1 − t1

⎤
⎥⎦. (A12)

In general, the displacement rank of a Toeplitz-plus-Hankel matrix is at most 4.

APPENDIX B: SHORT-RANGE PLASMA MODELS

The usual semi-Poisson distribution corresponds to the case where only the nearest levels (from the ordered set) interact
by the factor f (λ, λ′) = |λ′ − λ|β . For this model all correlation functions are known [32,52]. Pn(s) are γ distributions with
γn = 2n + 1 for β = 1 and γn = 3n + 2 for β = 2. The two-point correlation form factors are given by the following formulas:

K (τ ) = 2 + π2τ 2

4 + π2τ 2
, K (0) = 1

2
, β = 1, (B1)

K (τ ) = 1 − 486

729 + 108π2τ 2 + 16π4τ 4
, K (0) = 1

3
, β = 2. (B2)

But one can also consider the case when there exists also an interaction with the next-to-nearest neighbors. Here we consider
two such models. The first one has been discussed in detail in Ref. [32]. It corresponds to a model where the nearest and
next-to-nearest levels interact by the same interaction: If λ1 < λ2 < λ3 is any triple of nearest levels then they have the usual
interaction with β = 1,

|λ3 − λ2||λ2 − λ1||λ3 − λ1|. (B3)

It is easy to see that at small arguments the nearest-neighbor distributions have sγn behavior with γn = 3n + 1. The calculations
in Ref. [32] give

P0(s) = 9

2
(3 −

√
6)s exp(−3s)

(
1 +

√
6

2
s

)2

,

P1(s) = 34

23
(5

√
6 − 12)s4 exp(−3s)

(
1 +

√
6

2
s + 3

10
s2

)
,

P2(s) = 38

7×5×25
(27 − 11

√
6)s7 exp(−3s)

(
1 + 11

36

√
6s + s2

8

)
. (B4)
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The second model is chosen in such a way that the nearest levels interact with β = 2 but the next-to-nearest levels interact with
β = 1,

|λ3 − λ2|2|λ2 − λ1|2|λ3 − λ1|. (B5)

In this case,

Pn(s) ∼
s→0

sγn , γn = 4n + 2. (B6)

Such a case has not been considered in Ref. [32] but the calculations can be performed similarly as in the first model and the
results are the following:

P0(s) = 25(2 −
√

3)s2 exp(−4s)

(
1 + 2

√
3

3
s

)2

,

P1(s) = 211

5×32
(7

√
3 − 12)s6 exp(−4s)

(
1 + 2

√
3

3
s + 2

7
s2

)
, (B7)

P2(s) = 214×13

7×52×34
(26 − 15

√
3)s10 exp(−4s)

(
1 + 60

√
3

143
s + 4

33
s2

)
. (B8)

Similar formulas can be derived for the two-point correlation form factors. The direct calculations show that the Laplace
transform of the form factor has the following form:

g2(t ) = 9

4(3 + t )

[
(6 + t )2

(3 + t )3 − 33
+ t2(5 − 2

√
6)

(3 + t )3 + 33(5 − 2
√

6)

]
, γn = 3n + 1, (B9)

g2(t ) = 16

4 + t

[
(8 + t )2

(4 + t )4 − 44
+ t2(7 − 4

√
3)

(4 + t )4 + 44(7 − 4
√

3)

]
, γn = 4n + 2. (B10)

The two-point form factor is related with the Laplace transform by (46). The values of the form factor at zero are 1/3 for the first
model and 1/4 for the second one, in accordance with results of Sec. III A. The corresponding curves are presented in Fig. 6.
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