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Missing-level statistics in classically chaotic quantum systems with symplectic symmetry
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We present experimental and theoretical results for the fluctuation properties in the incomplete spectra of
quantum systems with symplectic symmetry and a chaotic dynamics in the classical limit. To obtain theoretical
predictions, we extend the random-matrix theory (RMT) approach introduced in Bohigas and Pato [O. Bohigas
and M. P. Pato, Phys. Rev. E 74, 036212 (2006)] for incomplete spectra of quantum systems with orthogonal sym-
metry. We validate these RMT predictions by randomly extracting a fraction of levels from complete sequences
obtained numerically for quantum graphs and experimentally for microwave networks with symplectic symmetry
and then apply them to incomplete experimental spectra to demonstrate their applicability. Independently of their
symmetry class, quantum graphs exhibit nongeneric features which originate from nonuniversal contributions.
Part of the associated eigenfrequencies can be identified in the level dynamics of parameter-dependent quantum
graphs and extracted, thereby yielding spectra with systematically missing eigenfrequencies. We demonstrate
that, even though the RMT approach relies on the assumption that levels are missing at random, it is possible
to determine the fraction of missing levels and assign the appropriate symmetry class by comparison of their
fluctuation properties with the RMT predictions.
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I. INTRODUCTION

The manifestation of characteristics of a classical dynam-
ics in the spectral properties of the corresponding quantum
system, like nuclei, atoms, molecules, quantum wires, and
dots or other complex systems [1–9], is well understood by
now. It has, for instance, been established that the spec-
tral properties of generic quantum systems with chaotic
classical counterparts are universal. According to the Bohigas-
Giannoni-Schmit (BGS) conjecture [10–13], they coincide
with those of random matrices from the Gaussian ensembles
of corresponding universality classes [14], as proven rigor-
ously based on a semiclassical approach [15]. Berry and Tabor
showed in Ref. [10] that for typical systems with integrable
classical dynamics (see Ref. [16] for a detailed specifica-
tion of typical), they agree well with those of Poissonian
random numbers, explicitly excluding the harmonic oscilla-
tor, which is a paradigm example for an untypical system
[17]. Numerous studies with focus on problems from the
field of quantum chaos have been performed both theoret-
ically and experimentally with microwave billiards [18–24]
and microwave networks [25,26] as model systems. In the
experiments, the analogy between the Helmholtz equation for
flat microwave cavities and networks of coaxial cables with
the Schrödinger equation for quantum billiards [23,27–29]
and quantum graphs [30–32], respectively, is exploited.

Quantum graphs were originally proposed by Pauling to
emulate certain features of organic molecules [33] and are
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used as models for quantum wires [34], optical waveguides,
and mesoscopic quantum systems [35]. They also serve as
an ideal test bed for the investigation of universal properties
of closed and open quantum systems with chaotic classical
dynamics [28,36]. Indeed, the spectral properties of closed
quantum graphs with incommensurable bond lengths were
proven rigorously to coincide with those of random matri-
ces from the Gaussian ensemble of the same universality
class [37,38]. Furthermore, the semiclassical approximation
of their spectral density in terms of classical periodic orbits
is exact [31,39] and the correlation functions of the scattering
matrix elements of open quantum graphs coincide with the
corresponding random matrix theory (RMT) results [38,40–
43] for quantum chaotic scattering systems. From the ex-
perimental point of view, their most important property is
that quantum graphs belonging to the orthogonal, the uni-
tary, and the symplectic universality class can be realized
with microwave networks of coaxial cables [25,26,44–51]. In
quantum systems with unitary symmetry, time-reversal (T )
invariance is violated. Systems belonging to the orthogonal
or the symplectic universality class preserve T invariance,
where, in the orthogonal case T 2 = 1 and in the symplec-
tic one T 2 = −1, corresponding to integer and half-integer
spin systems, respectively [28,52]. Note that the eigenval-
ues of systems with symplectic symmetry exhibit Kramer’s
degeneracy, so in numerics and experiments only half of
them are found. According to the BGS conjecture, the spec-
tral properties of quantum systems with chaotic classical
counterparts and orthogonal, unitary, or symplectic sym-
metry coincide with those of random matrices from the
Gaussian orthogonal ensemble (GOE), the Gaussian unitary
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ensemble (GUE), or the Gaussian symplectic ensemble
(GSE), respectively.

Yet, quantum graphs have one drawback. Namely, they
exhibit nongeneric features originating from nonuniversal
contributions of eigenstates, which, due to backscattering at
the vertices terminating them, are localized on individual
bonds, closed loops, or combinations of loops within the quan-
tum graph, that is, on a fraction of it [8,31]. These loop states
lead to topological resonances [53] in open quantum graphs
and to deviations of the spectral properties from RMT predic-
tions in closed ones. Modes which are localized on a small
part of the quantum graph are nongeneric because they do
not sense the chaoticity of the underlying classical dynamics,
which results from the scattering at all vertices. The associated
eigenenergies depend on the lengths of the associated bonds,
implying that such modes are nonuniversal. Their effect on the
spectral properties is, e.g., comparable to that of bouncing-ball
orbits in a stadium billiard [54]. It becomes visible in the
short- and long-range correlations in the eigenvalue spectra
for level distances larger than about two to three mean spac-
ings and thus does not prevent level repulsion or modify its
degree, that is, it does not disguise the characteristics that
enable the determination of the universality class of a chaotic
quantum graph, e.g., from the degree of level repulsion [28].
This property, actually, justifies the exclusion of these eigen-
states in the proof of the equivalence of the spectral properties
of quantum graphs and of random matrices of the Gaussian
ensembles in Refs. [37,38,41,42]. However, these localized
states are unavoidable in microwave networks and quantum
graphs, since they comply with the particular boundary con-
ditions obeyed by the microwaves or wave functions at the
vertices. In Ref. [51], modes localized on individual bonds
were identified in the level dynamics of parameter-dependent
quantum graphs and microwave networks and extracted. This
led to an improvement of the agreement of parametric spectral
properties with RMT predictions. Extracting eigenfrequencies
from a spectrum yields incomplete spectra, yet the RMT pre-
dictions for generic quantum systems with chaotic classical
dynamics apply only if the spectrum is complete.

Incomplete spectra are, actually, a general problem one
has to cope with in experiments with microwave billiards
and microwave networks [46,55,56] and in nuclear, atomic,
and molecular systems [2,6,7,57–60]. An RMT approach was
developed in the context of nuclear physics already with the
emergence of the field of quantum chaos [1,61–65]. This
problem can be circumvented by restricting to statistical mea-
sures which do not rely on completeness. This is possible,
e.g., in microwave billiards or microwave networks where
scattering matrix elements are available whose fluctuation
properties also provide measures for the chaoticity, e.g., in
terms of their correlation functions, the distributions of their
cross sections [66–69], or the enhancement factor [26,70,71].
Complete spectra were obtained in experiments with super-
conducting microwave billiards [24,72] by choosing either
resonators made from niobium or from lead-covered brass.
This, however, is impossible for microwave networks con-
structed from coaxial cables, since they contain a dielectric
medium, which prevents superconductivity, even if the cables
are made from niobium instead of copper. In Ref. [65], sta-
tistical measures were derived for the fluctuation properties

in incomplete spectra of quantum systems with orthogonal
symmetry and a chaotic classical counterpart on the basis
or RMT. They were extended to systems with unitary sym-
metry and tested with microwave networks and billiards in
Refs. [46,56]. In the present paper, we derive RMT predictions
for quantum systems with symplectic symmetry by proceed-
ing as in Ref. [65] and validate them by randomly extracting
levels from complete spectra obtained from numerical calcu-
lations for quantum graphs and experiments with microwave
networks. Furthermore, we will test their applicability using
experimental spectra of microwave networks, for which the
identification of all eigenfrequencies was not possible and also
to the spectra of GSE graphs after extraction of nonuniversal
contributions [51].

We briefly introduce in Sec. II microwave networks and
quantum graphs. In Sec. III, we present the RMT approach
developed in Ref. [65] for the fluctuation properties in the
spectra of classically chaotic quantum systems. Then, in
Sec. IV, we test the RMT predictions both numerically and
experimentally for various realizations of GSE graphs and
also compare them to those obtained for GUE graphs. Finally,
the results are discussed in Sec. V.

II. MICROWAVE NETWORKS AS A MODEL FOR GSE
QUANTUM GRAPHS

A quantum graph consists of V vertices i = 1, . . . ,V that
are connected by B bonds where the wave function component
ψi j (x) on the bond connecting vertices i and j is a solution of
the one-dimensional Schrödinger equation,

− d2

dx2
ψi j (x) = k2ψi j (x), (1)

with the boundary condition that ψi j is continuous and cur-
rent is conserved at the vertices i and j. Imposing these
boundary conditions on the wave function components ψi j

yields the quantization condition of the quantum graph, that
is, an equation for its eigenwave numbers kn [31]. A quantum
graph is characterized by the lengths Li j of the bonds and
the connectivity matrix Ĉ with diagonal elements Cii = 0 and
nonzero off-diagonal elements Ci j = 1 for connected vertices
i and j. It has been shown in Refs. [37,38] that a quantum
graph exhibits spectral properties of a typical quantum system
with chaotic classical counterpart, if the bond lengths are
incommensurable.

The upper part of Fig. 1 exhibits one of the GSE graphs,
constructed from vertices of valency three, which were used
in this paper. The lower part shows the corresponding experi-
mental realization which consists of a network of microwave
coaxial cables, whose optical lengths correspond to the bond
lengths in the quantum graphs, connected by T joints. The
coaxial cables consist of an inner and concentric outer conduc-
tor and Teflon with an experimentally determined dielectric
constant ε � 2.06, which fills the space between them. The
analogy to a quantum graph of corresponding geometry holds
below the cut-off frequency for the first transverse electric
mode [73,74], where only the fundamental transverse electro-
magnetic mode can propagate in the coaxial cables. Denoting
by Ui j (x) the difference between the potentials at the conduc-
tors’ surfaces in the coaxial cable connecting joints i and j,
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FIG. 1. Schematic view (upper panel) of the GSE quantum
graph and photograph (lower panel) of the corresponding microwave
network. They are constructed from two GUE subgraphs. Here, time-
reversal invariance violation is induced by replacing the T joints
marked by 6, 6̄ by T -shaped circulators which induce unidirectional-
ity as indicated by the arrows. The two subgraphs are identical except
for the orientation of the circulators, where corresponding vertices
are marked by n and n̄, with n = 1, . . . , 8. They are connected by two
coaxial cables and phasers (marked PS01 and PS02) which induce
a relative phase of π . An ensemble of GSE graphs was realized
by increasing the lengths of two corresponding bonds with phasers
(marked by PS03 and PS04) by the same amount.

by c the velocity of light in vacuum and by ω the angular fre-
quency, respectively, the associated telegraph equations read

d2

dx2
Ui j (x) + ω2ε

c2
Ui j (x) = 0. (2)

This set of equations is applicable to lossless coaxial cables,
that is, for vanishing Ohmic resistance. At the vertices Ui j (x)
obeys the continuity equation and Neumann boundary con-
ditions implying that current is conserved. Thus, the wave
equations 2 governing the Ui j (x) are mathematically iden-
tical to the Schrödinger equation of a quantum graph with
Neumann boundary condition at the vertices [29,31] when
identifying

√
ε ω

c of the microwave network with the wave
number k of the quantum graph. Hence the eigenfrequencies
νi of a microwave network which is constructed from coaxial
cables of lengths L̃i j with optical length Li j = √

εL̃i j yield

the eigenwave numbers ki = 2πνi
c of the quantum graph of

corresponding connectivity composed of bonds of lengths Li j .
More details on the experiments are provided in Ref. [51].

The GSE graphs consist of two connected GUE graphs
[47]. Time-reversal invariance violation is induced by T -
shaped circulators [26,46] at the vertices 6 and 6̄, which
cause unidirectionality of propagation of microwaves through
them as indicated by the arrows in Fig. 1. The GUE graphs
are identical except for the orientations of the circulators,
where corresponding vertices are denoted by n and n̄, with
n = 1, . . . , 8. They are connected by two bonds of the same
length. A total relative phase of π of the microwaves traveling
through the connecting cables was generated by phase shifters
(marked PS01 and PS02 in Fig. 1) which change the lengths
of the coaxial cables by some increment �l̃ yielding a phase
increment

�ϕ = k�l̃ = 2πν

c
�l̃. (3)

To attain an optimum tuning of the relative phase to π , we
measured transmission amplitudes |S11̄(ν)| and |S1̄1(ν)| be-
tween antennas attached at ports P1 and P2 at the T joints
marked by 1 and 1̄ in Fig. 1 and used the fact that transmission
is completely suppressed for a precise relative phase of π

since then microwaves traveling through the connecting bonds
from port P1 to port P2 interfere destructively at port P2 and
vice versa.

An ensemble of quantum graphs and corresponding mi-
crowave networks was realized by varying the lengths of
bonds stepwise by a fixed increment �l [46]. This is achieved
by introducing two phase shifters, denoted by PS03 and PS04
in Fig. 1. In part of the experiments, two additional phasers
were used and the total length L of the microwave network
was kept fixed. Thus, the average of the integrated spectral
density N (ν), that is, the average number N̄ (ν) of eigenfre-
quencies below frequency ν, which is given by Weyl’s law,

N̄ (ν) = 2L
c

ν, (4)

didn’t change. Accordingly, the lengths of two correspond-
ing bonds were increased in Nmax steps by an increment �l
and decreased for another pair by the same amount [31]. In
the experiments described in Ref. [51], the lengths of four
coaxial cables were changed in Nmax = 43 steps of size �l =
0.84 mm, where the total length of the GSE graph equaled
L = 6.68 m.

The eigenfrequencies νi of the microwave networks cor-
respond to the positions of the minima exhibited by the
reflection amplitude |S11(ν)| when measured as a function of
the microwave frequency ν. Due to the unavoidable absorp-
tion of microwaves in the coaxial cables, these resonances
are broadened and thus may overlap depending on the size
of absorption, thus turning the identification of eigenfre-
quencies into a cumbersome, if not impossible task. The
problem of absorption has been eliminated in experiments
with flat, cylindrical microwave resonators simulating quan-
tum billiards [18,19,21,75] by performing the measurements
with superconducting cavities [19,24,76]. This is not possible
with microwave networks, because they contain Teflon. In the
experiments described in Ref. [51], we were able to identify
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all eigenfrequencies in the frequency range where the analogy
to a quantum graph holds by means of the measured level dy-
namics. Since the average integrated spectral density was kept
fixed, missing levels were, e.g., identified at jumps in N̄ (ν)
when comparing the eigenfrequency spectra for two neigh-
boring parameter values λ. For the experimental investigation
of the fluctuation properties in incomplete spectra of quantum
systems belonging to the symplectic universality class, we
used among others the thus obtained complete spectra and
randomly extracted up to 30% of the eigenfrequencies.

Furthermore, we used the eigenvalues which were obtained
from numerical simulations of parametric quantum graphs
in Ref. [51]. Here, instead of employing the vertex secular
equation deduced from the quantization condition for closed
quantum graphs [31], we applied the scattering formalism for
open quantum graphs which, actually, is more appropriate
for the description of the experimental situation. Namely,
for the measurement of reflection and transmission scatter-
ing amplitudes, the microwave networks are slightly opened
through the antennas. Within this scattering approach, the
eigenvalues of the corresponding closed quantum graph with
B bonds correspond to the solutions of the secular equation for
the 2B × 2B-dimensional bond scattering matrix ŜB(k; {
i j})
[29,77],

ζB(k) = det[1 − ŜB(k; {
i j})] = 0, (5)

where

ŜB(k; {
i j}) = D̂(k; {
i j})T̂ (6)

in the 2B space of directed bonds, and

D̂i j,nm = δi,nδ j,meikLi j+
i j , (7)

T̂ji,nm = δn,iCj,iCn,mσ̂
(i)
ji,nm. (8)

The relative phase of π is accounted for in the phases 
i j

and the directionality at the circulators is incorporated by
appropriately choosing the vertex scattering matrix σ̂ (i), which
enters the transition matrix T̂ji,im from vertex m to vertex j via
vertex i [51].

III. RMT APPROACH FOR THE SPECTRAL PROPERTIES
OF INCOMPLETE SPECTRA

Before comparing the spectral properties of the quantum
graphs with RMT predictions for universal quantum systems
with chaotic classical counterparts, their system specific prop-
erties need to be eliminated. This is done by unfolding their
eigenvalues such that their spectral density, that is, their mean
spacing is uniform, and rescaling them to mean spacing unity.
The mean spectral density of quantum graphs and microwave
networks,

ρ̄(ν) = 2L
c

, (9)

is frequency independent. This implies that unfolded eigen-
values εi of mean spacing unity are attained from the ordered
eigenfrequencies νi, with their size increasing with the index
i, by multiplying them with a constant factor, εi = 2νiL/c.

To obtain information on short-range correlations in the
eigenvalue spectra of the quantum graphs and microwave

networks, we analyzed the nearest-neighbor spacing distribu-
tion P(s) of adjacent spacings si = εi+1 − εi and its cumulant
I (s) = ∫ s

0 ds′P(s′), which has the advantage that it does not
depend on the binning size of the histograms yielding P(s).
Furthermore, we considered the variance

�2(L) = 〈(N (L) − 〈N (L)〉)2〉 (10)

of the number of unfolded eigenvalues N (L) in an interval of
length L where 〈N (L)〉 = L, and the rigidity

�3(L) =
〈
min
a,b

∫ e+L/2

e−L/2
de[N (e) − a − be]2

〉
, (11)

which provides information on the stiffness of a spectrum.
Here, 〈·〉 denotes the average over an ensemble of random
matrix or quantum graph realizations. These statistical mea-
sures provide information on long-range spectral fluctuations,
a further one being the power spectrum of a sequence of N
levels [60,78–80]. It is given in terms of the Fourier transform
of the deviation of the qth nearest-neighbor spacing from its
mean value q, δq = εq+1 − ε1 − q, from q to τ :

S(τ ) =
〈∣∣∣∣∣ 1√

N

N−1∑
q=0

δq exp

(
−2π iτq

N

)∣∣∣∣∣
2〉

. (12)

It was demonstrated in Refs. [8,46] that for the GOE and
GUE �2(L) and S(τ ) are particularly sensitive to missing
levels. The power spectrum S(τ ) only depends on the ratio
τ̃ = τ/N and exhibits for τ̃ � 1 a power law dependence
〈S̃(τ̃ )〉 ∝ (τ̃ )−α [78,79], where for regular systems α = 2. For
chaotic ones, α = 1 independently of whether T invariance is
preserved or not [81–85], that is, it does not depend on the
underlying universality class.

The objective of the present paper is the experimental
and theoretical investigation of the fluctuation properties in
incomplete spectra of GSE quantum graphs. For the derivation
of RMT predictions for statistical measures of the spec-
tral properties of such systems, we followed the procedure
outlined in Ref. [65]. The number of missing levels is char-
acterized by the fraction 
 of eigenfrequencies that could be
identified. In the case of quantum graphs, the expected number
of eigenfrequencies is obtained from Weyl’s law Eq. (4). The
procedure is based on the assumption that levels are missing
randomly, that is, are extracted randomly from the com-
plete sequence. This implies that the probability to observe
a level is 
, and generally, the joint probability distribution
Rn(E1, . . . , En)dE1 . . . dEn of finding levels at E1, . . . , En is
just reduced by a factor 
n,

rn(E1, . . . , En) = 
nRn(E1, . . . , En), (13)

yielding for the spectral density Eq. (9) r1(ν) = 
ρ̄(ν) so
the mean spacing increases by a factor of 
−1. The nearest-
neighbor spacing distribution is expressed in terms of the
(n + 1)st nearest-neighbor spacing distribution P(n, s), with
P(0, s) = P(s), of the corresponding complete spectrum,

p(s) =
M∑

n=0

(1 − 
)nP
(

n;
s




)
, (14)

042212-4



MISSING-LEVEL STATISTICS IN CLASSICALLY … PHYSICAL REVIEW E 103, 042212 (2021)

FIG. 2. Nearest-neighbor (black histogram), next-nearest neigh-
bor (red [gray] histogram), and second-nearest neighbor (blue [dark
gray] histogram) spacing distributions for the GSE. The dashed
curves were obtained from a fit of P̃(s) = γ sμe−χs2

to the histogram
of corresponding color [65,86].

�
K−1∑
n=0

(1 − 
)nP
(

n;
s




)
+

M∑
n=K

(1 − 
)n 1√
2πV 2(n)

× exp

(
− 1

2V 2(n)

[ s



− n − 1

]2
)

, (15)

where

V 2(n) � �2(L = n) − 1
6 . (16)

Equation (14) is derived from the relation

P(n; s) = d2

ds2

n∑
l=0

(n − l + 1)E (l; s), (17)

where E (l; s) is the probability that an interval of length s
contains l levels. Using that for randomly missing levels, the
probability to miss a level is 1 − 
 yields for the incomplete
sequence

e(n; s) =
∞∑

l=n

(
l
n

)

n(1 − 
)l−nE

(
l;

s




)
, (18)

and thus for n = 0 Eq. (14).
For the GOE and GUE, P(1; s) is given in Ref. [86]. We

found out that for the GSE the approximation of P(n; s) by a
Gaussian with variance V 2(n) centered at n + 1 [87], as done
in the second sum in Eq. (14) is good for n � 3. Therefore, we
chose K = 3 and obtained P(n; s) with n = 1, 2 by computing
the ensemble averages of the normalized next and second-next
nearest-neighbor spacing distributions of 500 500 × 500 ran-
dom matrices from the GSE, where the spacing s was scaled
to average spacing unity, and fitting P̃(s) = γ sμe−χs2

to the
resulting distributions, as illustrated in Fig. 2. Furthermore,
for n � 10, the contributions to p(s) are negligibly small, so
that we chose M = 10. For larger values of n P(n; s) is well
approximated by a Gaussian with variance V 2(n) centered at
n + 1 [87], thus yielding the second sum in Eq. (14). We con-
sidered spectra with up to 30% missing levels and obtain good

agreement with Eq. (14) for M � 10. Similarly, the number
variance �2, the rigidity �3 and the power spectrum [60] are
deduced from those for complete spectra (
 = 1),

σ 2(L) = (1 − 
)L + 
2�2
( L




)
, (19)

δ3(L) = (1 − 
)
L

15
+ 
2�3

( L




)
, (20)

and

s(τ̃ ) = 


4π2

[
K (
τ̃ ) − 1

τ̃ 2
+ K (
(1 − τ̃ )) − 1

(1 − τ̃ )2

]

+ 1

4 sin2(πτ̃ )
− 
2

12
. (21)

Here, K (τ ) = 1 − b(τ ) denotes the spectral form factor where

b(τ ) =
∫ ∞

−∞
Y2(r)e−irτ dr (22)

is the Fourier transform of the two-point cluster function
Y2(e1, e2) = Y2[r = (e1 − e2)] which for the GUE equals [14]

Y2(r) =
(

sin[πr]

πr

)2

(23)

and for the GSE

Y2(r)=
(

sin[2πr]

2πr

)2

− d

dr

(
sin[2πr]

2πr

)
·
∫ r

0

(
sin[2πx]

2πx

)
dx .

(24)

For the GUE, b(τ ) = 1 − |τ | for |τ | � 1 and zero otherwise,
whereas for the GSE it vanishes for |τ | � 2 and is given by

b(τ ) = 1 − 1
2 |τ | + 1

4 |τ | ln |1 − |τ || (25)

otherwise.
The two-point cluster function is obtained from the two-

point correlation function by choosing in Eq. (13) n = 2 and
rescaling the eigenvalues Ei to mean spacing unity, yielding

y2(r) = Y2

( r




)
. (26)

Using this feature of the two-point cluster function, we com-
puted from Eqs. (19)–(21) RMT predictions for the variance
�2(L), the rigidity �3(L) and the power spectrum based on
their relation to Y2(r), which for the latter is given in Eqs. (21),
(22), and (25), whereas

�2(L) = L − 2
∫ L

0
(L − r)Y2(r)dr (27)

and

�3(L) = L

15
− 1

15L4

∫ L

0
(L − r)3(2L2−9rL − 3r2)Y2(r)dr .

(28)

IV. FLUCTUATION PROPERTIES IN THE INCOMPLETE
SPECTRA OF GUE AND GSE QUANTUM GRAPHS

We first validated Eqs. (14)–(21) for incomplete spectra
of quantum systems belonging to the symplectic universality
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class based on the numerically obtained level dynamics of
GSE graphs. To ensure statistical independence, we consid-
ered an ensemble of 25 out of these 500 complete sequences
comprising 1000 eigenvalues each and extracted up to 30%
of them. The results are shown for 
 = 0.95, 0.85, 0.7 in
Fig. 3 (blue curves). For comparison, we also show the result
for the complete sequence (red curves). They are compared to
the GSE curves for complete spectra (full black lines) and to
the curves obtained from Eqs. (14)–(20) (dashed black lines).
For the nearest-neighbor spacing distribution, the agreement
between numerics and RMT predictions is good for complete
and incomplete spectra. However, for the number variance
�2(L) and rigidity �3(L) the agreement is only good be-
low L � 2 − 3 [8,51], whereas for L � 2 − 3 the curves lie
above the RMT predictions for both complete and incomplete
spectra. These discrepancies were shown to occur due to the
presence of periodic orbits that are confined to individual
bonds by backscattering at the vertices bordering them or to
loops, that is, to a part of the quantum graph. They correspond
to wave functions in the associated quantum graph that are
localized on the individual bonds or on loops within the graph,
and thus do not sense the chaoticity of the underlying classical
dynamics resulting from scattering at all vertices [8,51]. In
distinction to the bouncing-ball orbits in the stadium billiard
[19,54,88], the nonuniversal contributions of these periodic
orbits [31] can only partly be removed since their number is
large [51].

Deviations due to nonuniversal contributions are similar in
size for the complete and incomplete spectra, and their effect
on �3(L) is larger than on �2(L). Note that the former is
given as an integral over the latter. Integration corresponds
to a smoothing of the oscillatory features in �2(L) and we
may conclude that thereby deviations originating from the
nonuniversal contributions are enhanced. Yet, the effect of
the nonuniversal contributions on the spectral properties is
nonnegligible only for spacings s � 1 or distances L � 2 − 3,
and does not distort the characteristic behavior, i.e., the degree
of level repulsion, which manifests itself in the shapes of P(s),
�2(L), and �3(L) for small s and L, respectively, and depends
on the universality class of the underlying quantum systems.
Thus, the unambiguous determination of the universality class
of a quantum graph from the statistical measures is possible
despite the nonuniversal features [37,38] for complete and
incomplete sequences. Beyond a certain value of L �2(L) and
�3(L) saturate below the RMT prediction as expected for the
long-range correlations of pairs of eigenvalues of any generic
quantum system if their distance is beyond a certain number L
of mean spacings, which is inversely proportional to the length
of the shortest periodic orbit [54,89] or for spectra of short
length.

Since the asymptotic behavior of the power spectrum S̃(τ̃ )
for small values of τ̃ of a quantum graph with chaotic classical
counterpart does not depend on the universality class, the
fraction of missing levels can be unambiguously determined
from it, also from P(s) and I (s) since the effect of missing
levels on them is particularly large for GSE quantum graphs.
To illustrate this, we show in Fig. 4 corresponding curves for
GUE graphs, which are based on complete eigenvalue spectra
computed in Ref. [51]. Red and blue curves correspond to
the numerical results for complete and incomplete spectra,

FIG. 3. Comparison of the spectral properties of the numerically
obtained eigenvalues of a quantum graph with symplectic symmetry
with the corresponding GSE curves obtained from Eqs. (14)–(20).
The red [gray] (quantum graph) and black (RMT) curves show the
results for complete eigenvalue sequences (
 = 1). The blue [dark
gray] (quantum graph) and dashed black (RMT) curves show the
results after randomly extracting eigenvalues. The fraction of levels

 taken into account is indicated in each panel.
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FIG. 4. Same as Fig. 3 for a GUE quantum graph with unitary
symmetry. The numerical results are compared to those deduced
from 21.

respectively, black full and dashed lines to the corresponding
results for the GUE. The effect of missing levels on GUE and
GSE graphs is comparable for the long-range correlations,

FIG. 5. Power spectrum of the quantum graph (blue [dark gray]
dots and dashed lines) for the same sets of eigenvalues as in Fig. 3
and the corresponding GSE curves. The fraction of eigenvalues taken
into account is indicated in each panel.

whereas that on the nearest-neighbor spacing distribution is
considerably larger for GSE graphs. Deviations due to the
nonuniversal contributions of periodic orbits confined to a
fraction of the GUE graph are again visible in the long-range
correlations and comparable for complete and incomplete
spectra.

In Fig. 5, we compare the numerical results for the power
spectrum (blue) to the RMT predictions Eq. (21) (black
dashed lines). To illustrate the effect of missing levels, we
also show the GSE prediction for complete spectra (black
full line). The agreement is very good, which implies that the
effect from nongeneric contributions is diminished. We may
conclude that s(τ̃ ) is particularly suited for the determination
of the fraction of missing levels, since its asymptotic behavior
does not depend on the universality class, thus confirming the
supposition of Ref. [46] and then �2(L) and P(s) may be used
to obtain or confirm the universality class from their behavior
at small L � 2 − 3 and s � 1, respectively.

To validate the RMT predictions Eqs. (14)–(21) experi-
mentally, we performed a similar analysis for the 43 complete
sequences of 178 eigenfrequencies which were determined in
the experiments described in Ref. [51], that is, we randomly
extracted from each spectrum up to 30% of the eigenfre-
quencies and analysed their spectral properties. Results are
shown in Figs. 6 and 7. To illustrate the effect of missing
levels (blue curves) we also show the result for the complete
spectra (red curves). Again deviations due to nonuniversal
contributions are especially visible in the number variance
�2(L) and rigidity �3(L) and are comparable in size for
the complete and incomplete spectra. Deviations between the
experimental nearest-neighbor spacing distribution and the
RMT prediction Eq. (14) for small spacings are attributed
to experimental inaccuracy. Except for these discrepancies,
the agreement between the experimentally obtained curves
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FIG. 6. Same as Fig. 3 for the experimentally determined eigen-
frequencies of microwave networks with symplectic symmetry
presented in Ref. [51] for incomplete (blue [dark gray]) and complete
(red [gray]) spectra. Here, eigenfrequencies were extracted randomly
from the complete sequences. The fraction of eigenfrequencies is
indicated in the panels.

FIG. 7. Same as Fig. 5 for the power spectrum.

and the RMT predictions is as good as for the numerically
obtained ones, thus validating the RMT predictions Eqs. (14)–
(20). However, discrepancies are clearly visible in Fig. 7 for
the power spectrum around log10(τ̃ ) � −0.6. They, actually,
are largest for the spectra with smallest number of extracted
eigenfrequencies, i.e., largest value of 
 and therefore may be
attributed to the nongeneric contributions.

In further studies, we used incomplete spectra that were
obtained from ten independent measurements with microwave
networks simulating distinct GSE quantum graphs. According
to Weyl’s formula Eq. (4), about 5% of the eigenfrequencies
are missing in each spectrum. Note that the nearest-neighbor
spacing distribution increases around s � 0 as P(s) ∝ s4 for
the GSE, implying that the probability that the spacing be-
tween neighboring minima in the reflection amplitude S11(ν)
is much less than the average spacing is small for GSE graphs
and thus should ease the identification of eigenfrequencies of
GSE microwave networks. This indeed is the case when com-
paring the efforts needed to determine the eigenfrequencies
to those for GOE and GUE graphs. Still, due to absorption
in the coaxial cables, we were not able to determine com-
plete sequences for individual graphs, that is, to identify all
eigenfrequencies we would need to proceed as in Ref. [51],
which is time consuming. For this reason, the development
of theoretical results for the case of incomplete spectra is
indispensable. Indeed, the agreement between the statistical
measures obtained by averaging over the ensemble of ten
independent GSE quantum graphs (blue curves in Figs. 8 and
9) with RMT predictions Eqs. (14)–(21) for 
 = 0.95 (black
dashed lines) is as good as in Figs. 3–7.

In Ref. [51], nongeneric contributions of modes that are
localized on individual bonds could be extracted by exploiting
the fact that the associated eigenfrequencies do not change,
when the length of another bond is varied to generate a
parametric eigenfrequency sequence or a local perturbation
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FIG. 8. Spectral properties obtained from an ensemble average
over the statistical measures deduced from eigenfrequency sequences
obtained from measurements with 10 different realizations of mi-
crowave networks with symplectic symmetry (blue [dark gray]
curves). In all sequences, approximately 5% of the eigenfrequencies
are missing. The black solid curves show the RMT predictions for
complete eigenvalue sequences, the dashed black curves show the
corresponding results the incomplete sequence with 
 = 0.95.

is induced when the length of the bond on which the wave
function is localized is varied. Accordingly, the eigenfrequen-
cies corresponding to these localized wave functions do not
change with the parameter and thus they could be identified
and extracted. For a fixed parameter, the spectral proper-
ties will be effected because of incompleteness of the level
sequence, thus demanding an analysis as proposed in this
paper. Note that it is difficult to identify eigenfrequencies
with wave functions that are localized on a few bonds, and
thus it is impossible to remove all nongeneric contributions.
For the GSE graph studied in Ref. [51], about 9% of the
eigenfrequencies correspond to such parameter-independent
states, so their extraction leads to an incomplete spectrum
with 
 = 0.91. In Fig. 10, we compare the resulting curves

FIG. 9. Same as Fig. 8 for the power spectrum.

FIG. 10. Fluctuation properties in the experimentally determined
eigenfrequency sequences of the microwave networks with symplec-
tic symmetry presented in Ref. [51] after extraction of nonuniversal
contributions (blue [dark gray] dashed lines and dots) (see main text)
and randomly extracting (red curves) a fraction 
 = 0.91 of the
levels.

(blue) to the corresponding RMT predictions. Discrepancies
are clearly visible in the nearest-neighbor spacing distribution
for large spacings. These may be attributed to the fact that
the RMT predictions are applicable to incomplete spectra
where levels are randomly missing, whereas eigenfrequen-
cies were extracted systematically in the sense that the same
eigenfrequencies were removed from each sequence of the
ensemble leading to gaps in the level dynamics. To see the
difference between both procedures of removing levels from
a complete spectrum, we show as red curve the result for
randomly extracted eigenfrequencies. The agreement with the
RMT predictions is similar and even better for the latter case
for larger spacings s and L, respectively. This implies that
we do not obtain an improvement for the agreement between
the experimental curves and RMT predictions after partly
removing nongeneric contributions, which is in contrast to
the findings for parametric spectral properties [51], a reason
being that the latter do not rely on completeness of the spectra.
Nevertheless, for small values of s and L, agreement with the
RMT predictions allows us to specify the universality class of
the quantum graph and fraction of missing levels.

V. CONCLUSIONS

We extended the missing-level statistics approach intro-
duced in Ref. [65] to derive statistical measures for the
fluctuation properties in incomplete spectra of quantum
graphs belonging to the symplectic universality class. We val-
idated them based on ensembles of eigenfrequency sequences
obtained numerically for several GSE quantum graphs and
experimentally for microwave networks. The data sets were
attained recently for the investigation of parametric properties
in GSE and GUE graphs [51]. The derivation of the RMT
predictions is applicable to generic quantum systems and
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relies on the assumption that eigenfrequencies are missing
randomly, which might be a drawback when comparing to
experimental data. In the experiments with microwave net-
works, eigenfrequencies may not be detected if the spacing
between them and adjacent ones is too small or if the mi-
crowave intensity vanishes at the position of an antenna. Yet,
for GSE graphs, the probability of close lying eigenfrequen-
cies is very small and thus randomness may be complied
with by considering ensembles of statistically independent
spectra. However, the spectra of quantum graphs comprise
nongeneric contributions originating from eigenstates with
wave functions that are localized on individual bonds or on
a fraction of the quantum graph that can only partly be
removed [51]. Extraction of these nongeneric contributions
corresponds to removing the same eigenfrequencies from each
of the sequences forming the level dynamics and thus to a
systematic missing of levels. Still, after extracting part of the
nongeneric contributions, the short- and long-range correla-
tions between eigenfrequencies are in accordance with RMT
predictions for moderate spacings between them and similar
to those obtained by randomly removing eigenfrequencies.
Generally, despite the presence of nongeneric contributions,
we find good agreement between the spectral properties of
the experimental microwave networks and numerical quan-
tum graphs and the RMT predictions for the nearest-neighbor
spacing distributions and in the long-range correlations for
values of L corresponding to two to three mean spacings,
and thus demonstrate the applicability of the missing-level

statistics approach introduced in Ref. [65]. Since the power
spectrum Eq. (12) asymptotically exhibits a power-law be-
havior which does not depend on the universality class, this
measure is suitable for the determination or confirmation of
the fraction of missing levels [46] obtained based on Weyl’s
law Eq. (4). Then, the universality class may be obtained by
comparing the nearest-neighbor spacing distribution P(s) for
s � 1 and the number variance �2(L) for L � 2 − 3 with
the RMT predictions for the GOE, GUE, and GSE, respec-
tively, since in these ranges of s and L, contributions from the
nonuniversal features are negligible [37,38]. These findings
are of particular importance for the still ongoing experimen-
tal studies of quantum systems with symplectic symmetry
where one has to cope with the problem that, generally, the
identification of complete sequences of levels is impossible.
On the other hand, the analytical results presented in this
paper can be used to unambiguously verify the chaoticity of
the classical dynamics and determine the universality class
based on the complete sequence of a quantum system by ex-
tracting a certain fraction of levels and comparing with these
prediction.
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