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Arnold tongues in oscillator systems with nonuniform spatial driving
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Nonlinear oscillator systems are ubiquitous in biology and physics, and their control is a practical problem
in many experimental systems. Here we study this problem in the context of the two models of spatially
coupled oscillators: the complex Ginzburg-Landau equation (CGLE) and a generalization of the CGLE in which
oscillators are coupled through an external medium (emCGLE). We focus on external control drives that vary in
both space and time. We find that the spatial distribution of the drive signal controls the frequency ranges over
which oscillators synchronize to the drive and that boundary conditions strongly influence synchronization to
external drives for the CGLE. Our calculations also show that the emCGLE has a low density regime in which
a broad range of frequencies can be synchronized for low drive amplitudes. We study the bifurcation structure
of these models and find that they are very similar to results for the driven Kuramoto model, a system with
no spatial structure. We conclude by discussing qualitative implications of our results for controlling coupled
oscillator systems such as the social amoebae Dictyostelium and populations of Belousov Zhabotinsky (BZ)
catalytic particles using spatially structured external drives.
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I. INTRODUCTION

Collective oscillations are ubiquitous in biology, playing
important roles in a broad range of biological processes.
Some notable examples include voltage oscillations in neu-
ral systems [1], oscillatory insulin secretion in the pancreas
[2], entrainment of circadian rhythms in cyanobacteria [3,4],
glycolytic oscillations in yeast [5], and internal and external
biochemical oscillations during aggregation in social amoebae
such as Dictyostelium discoidium [6]. Across all of these
systems, these oscillations play an important biological role
in coordinating the behavior of cells across a population with
each other as well as with external environmental stimuli.

An important class of these biological oscillations is found
in dynamical quorum sensing where the activity of individual
cells is controlled by collective population-level oscillations
[7]. For example, in Dictyostelium, oscillations play an impor-
tant role in mediating the collective response to changes in the
environment by coordinating aggregation and then collective
migration. The way that environmental perturbations or other
drives affect the collective dynamics is an important element
of these processes, not only in terms of understanding biolog-
ical function but also for developing mechanisms to control
experimental systems. Here we address an important aspect of
control of collectively oscillating systems: the effectiveness of
control stimuli on spatially structured cellular populations.

In the context of nonlinear oscillators, the question of con-
trol can be understood as the problem of synchronizing an
oscillator to an external drive. Studies of how driving forces
can control and coordinate oscillations date back to Huygens
[8], and have found applications in electronic systems, laser

control, and many biological systems [9]. A common way
of understanding synchronization to external drives is using
“Arnold tongues” which characterize the relationship between
the amplitude of the drive B necessary to induce synchro-
nization and the difference between drive frequency and the
oscillator’s free running frequency, �ω. This relationship gen-
erally takes the form B2 = (�ω/W )2 when B and �ω are
small, with W the width of the Arnold tongue. This width W
can be interpreted as a representation of how easy the medium
is to control since a larger W means that a weaker drive can
synchronize the oscillator to the same band of frequencies.

For a single oscillator, synchronization to an external
drive is governed by two competing processes with different
timescales. When the drive is weak the natural frequency
controls the dynamics, and when the drive is strong enough
the system synchronizes to the drive frequency. In more re-
alistic oscillator models such as dynamical quorum sensing
that have multiple timescales (e.g., due to different media
being produced or degraded at different rates), each of these
timescales contribute to the effective “natural frequency” of
the oscillating medium and hence can play a role in determin-
ing which frequencies can be synchronized. We show below
how introducing an external medium with its own dynamics
introduces such additional timescales and how they affect
synchronization, introducing new complexities to the control
problem. Specifically, we focus on how coupled oscillators
organized in space respond to spatially structured external
drives, taking inspiration from biological oscillations such
as Dictyostelium, as well as within and between microbial
biofilms [10,11]. In Dictyostelium, for example, the spatial
organization of their self-driven oscillations plays a key role
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because these oscillations mediate the spatial partitioning of
the population into multiple multicellular units which take on
their own dynamics.

The introduction of spatial organization in these coupled
oscillator systems brings with it several complicating factors,
such as the impacts of boundary conditions and the possibility
of linear instabilities that can lead to spatial patterning or
chaos [12]. Boundary conditions in particular can play a subtle
role in determining the types of solutions that are observed.
Periodic boundary conditions, which are often practical for
analytic calculations and simulations, generally cannot be re-
alized experimentally. Even so, they can often provide useful
intuition for the behavior of very large systems far away from
the boundaries. Zero-flux boundary conditions are often the
most appropriate choice for modeling biological oscillations.
We demonstrate below that the choice of boundary conditions
can play an important role in determining the persistence and
stability of synchronization when populations are confined to
live in a one-dimensional space.

In many systems of interest, such as cellular populations,
nonlinear oscillators are not directly coupled but instead com-
municate with each other through an external medium that
possesses its own dynamics. In the context of dynamical
quorum sensing, the external media is often a single chemi-
cal species which cannot oscillate autonomously. Instead, the
concentration of the external medium changes due to produc-
tion of the chemical species by the oscillators and can also
be degraded at some rate. This introduced three additional
timescales to the dynamical quorum sensing problem: the
difference in the oscillation period of the oscillators and the
media, a “coupling” time which represents the time it takes for
the medium to respond to the oscillators, and a “relaxation”
time which sets the memory lifetime for the medium. The
first timescale is a relative timescale between the oscillators
and the external medium, and the latter two are characteris-
tic of the external medium itself. The relationships between
these timescales have been shown to play an important role in
controlling the dynamics for mean-field models of dynamical
quorum sensing lacking spatial structure, and we show below
how the relationships between these timescales describe the
behavior of the system of oscillators.

One notable complication that can arise due to having mul-
tiple independent timescales in coupled oscillator systems is
that the oscillation itself can become inhibited. This is known
as “amplitude death” in the literature on coupled oscillator
systems [13]. Amplitude death occurs when a time delay
disrupts coupling between the oscillators to such a degree that
the individual oscillators cease to oscillate and decay to zero
amplitude. Previous work [14–16] has studied the boundary of
the amplitude death phase in oscillator systems coupled by an
external medium in the mean-field limit, and we will extend
this to the case of spatial oscillators with a drive.

Motivated by the considerations discussed above, we in-
vestigate the use of spatially structured external drives to
synchronize and control cellular populations. We focus on
two generic models that have been argued to be generic de-
scriptions of oscillatory, diffusively coupled media near the
onset of oscillations: the complex Ginzburg-Landau equa-
tion (CGLE) and a generalization of CGLE to the case in
which the oscillatory medium is coupled through an external

medium [external medium complex Ginzbug-Landau equa-
tion (emCGLE)] [9,17,18]. In Sec. II we derive the Arnold
tongue conditions describing the drive amplitude and fre-
quency ranges for which the medium can be synchronized
to the drive. Notably, we show that the spatial distribution
of the drive controls temporal aspects of the synchronization
process; in particular, the wavelength of the drive can tune
the frequency ranges to which the medium can synchronize.
This section generalizes the results of Ref. [19] which focused
on uniform drives for the CGL with periodic boundary condi-
tions, and show that the range of frequencies which can be
synchronized depends on the drive wavelength. In Sec. II D
we show that zero-flux boundary conditions can disrupt syn-
chronization and induce higher-order spatial locking.

In Sec. III we generalize the Arnold tongue results from the
CGLE to the emCGLE, a model that accounts for nonlocal
coupling via a diffusable signaling molecule. The emCGLE
has dynamics that are qualitatively different from the standard
CGLE [16,17], and although there is a literature on noisy
states such as turbulence or “chimera” states [20–23], it is
much less well studied than the CGLE. In the paper we
emphasize that the emCGLE shows nontrivial deterministic
behavior not found in the standard CGLE that can have impor-
tant impacts on synchronization dynamics. In particular, we
derive the Arnold tongue condition for the emCGLE and show
that the wave number of the drive competes with memory
effects in the medium itself for influence on the width and
location of the Arnold tongue. We show that the emCGLE
exhibits a low-density parameter regime, not found for the
standard CGLE, in which the width of the Arnold tongue
becomes very large and very low drive amplitudes can syn-
chronize the medium to a wide range of drive frequencies. We
show that this new regime is related to the amplitude death
phase in mean-field oscillator models.

II. COMPLEX GINZBURG-LANDAU
EQUATION WITH DRIVING

A. Model introduction

The standard CGLE,

Ȧ = (1 + iω0)A − (1 + iα)|A|2A + (1 + iβ )∇2A, (1)

arises from general reaction diffusion equations as the
medium undergoes a supercritical Hopf bifurcation [24,25],
and can be derived by an amplitude equation approach
[12,26], or more generally, as a low-order approximation us-
ing a center manifold method [25]. This system oscillates at
frequency ω0 − α. The parameter α induces phase-amplitude
coupling and controls the nonlinear dispersion, while β con-
trols the linear dispersion [9]. The CGLE exhibits a gauge
invariance of the type A → Ae�, which can be used to elim-
inate the factor of ω0, indicating that there are no intrinsic
timescales associated with linear response at small amplitudes
in the absence of an external drive. We retain ω0 here since
this gauge symmetry is broken once a drive is added. Because
of its generic character the CGLE has been applied to a very
diverse set of systems, including biological and reaction dif-
fusion systems, superfluidity and Bose-Einstein condensation,
liquid crystals, and even string theory [9,27]. It is valid under
a broad range of conditions [9], and has been suggested to be
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valid far from the onset of oscillations in some cases [28,29].
More detailed information can be found in the following re-
views [9,30].

In order to study how this oscillating medium can be
controlled, we introduce a drive that is harmonic in time
and space:

Ȧ = (1 + iω0)A − (1 + iα)|A|2A + (1 + iβ )∇2A

+ Bei[−(ω0−ν)t+�k0·�x]. (2)

Here ν is the difference between the natural frequency
ω0 and the drive frequency, and is known as the “detun-
ing frequency,” and k0 is the wave number of the spatially
nonuniform drive. In the absence of drive, the CGLE sup-
ports plane-wave solutions with the dispersion relation ωpw =
−ω0 + α + k2

pw(β − α), which are linearly stable only if 1 +
αβ > 0 and kpw is low enough. The condition on α and
β is known as the Benjamin-Feir-Newell criterion and for
1 + αβ < 0 turbulent behavior is observed, which has rich be-
havior and especially when exposed to an external drive [19].
In order to focus on more experimentally tractable questions,
we focus on the nonturbulent parameter regime. We also do
not study drive wave numbers k0 close to 1. One reason is for-
mal, as plane waves in the CGLE with high wave numbers are
unstable. Another is practical; k0 → 1 corresponds to a wave-
length approaching the diffusion length, and wavelengths of
that scale are difficult to create and control for system sizes
at the scale of many spatial oscillator experiments, and the
results would be similarly difficult to observe directly.

B. Analytic results

Beginning with the spatially driven CGLE, Eq. (2) above,
we boost to a gauge corotating with drive frequency, trans-
forming A → Aei(ω0−ν)t . Carrying this out eliminates the
factors of ω0:

Ȧ = (1 + iν)A − (1 + iα)|A|2A + (1 + iβ )∇2A + Bei�k0·�x.
(3)

In this gauge A is synchronized to the drive when it is constant
in time, so looking for synchronized solutions is equivalent
to looking for fixed points of Eq. (3). This can be further
simplified by rewriting this equation as two real equations for
the amplitude and phase of A = Rei�, and changing the gauge
again, this time in space, as � → � − �k0 · �x, giving

Ṙ = R − R3 + ∇2R − R|∇�̃ − k0|2

− β[2(∇R) · (∇�̃ − k0) + R∇2�̃] + B cos(�̃), (4)

R ˙̃� = νR − αR3 + 2(∇R) · (∇�̃ + k0) + R∇2�̃

+ β(∇2R − R|∇�̃ + k0|2) − B sin(�̃). (5)

The drive is now constant in this gauge so we ignore spatial
variations in R and �, giving

Ṙ = R(1 − k2
0 ) − R3 + B cos(�), (6)

R ˙̃� = R(ν − βk2
0 ) − αR3 − B sin(�). (7)

Synchronized solutions are fixed points of these equations.
Taking the fixed-point condition and eliminating � we arrive

at an expression for B2 as a function of the fixed-point ampli-
tude R0:

B2 = R2
[(

R2 − 1 + k2
0

)2 + (
ν − βk2

0 − αR2
)2]

. (8)

In the limit of no drive, where B → 0, k0 → 0, and ν → α,
Eq. (8) (considered as a cubic equation in R2) has a double
root at R2 = 1, generalizing a previous result for uniform
drive [19]. For small B this double root can turn into two real
roots, one of which is stable and represents the synchronized
solution. Therefore we can estimate the boundary of the syn-
chronized region, known as an Arnold tongue, by requiring
that there exist exactly two coinciding positive real solutions.
This is equivalent to requiring that the discriminant of Eq. (8),
considered as a cubic equation in R2, vanishes. If we do so
and identify ε = ν − α + k2

0 (α − β ) we find a simple expres-
sion for the the Arnold tongue that approximates Eq. (8) for
small ε:

B2 = ε2
(
1 − k2

0

)
1 + α2

. (9)

This is a generalization of the result for uniform driving
found in [19], and allows an estimation of the range of fre-
quencies that a drive of a given amplitude can synchronize,
without needing to directly calculate the linear stability of the
full system. This expression has a notable feature: the center
of the Arnold tongue, ν∗ = α + k2

0 (α − β ), depends on k0,
the wave number of the drive. This means that the range of
frequencies that can be synchronized to the drive can itself be
controlled by the spatial distribution of the drive.

C. Periodic boundary conditions

In order to validate the analytic results it is necessary
to perform simulations, which introduces complications not
present in the preceding analysis. In particular, it is neces-
sary to choose the boundary conditions for the full partial
differential equation (PDE) since the preceding Arnold tongue
analysis did not make any assumptions about them. For sys-
tems where one does not expect strong boundary effects or
where one is interested primarily in behavior far from the
boundaries, it is often practical to use periodic boundary con-
ditions. These are especially natural conditions for oscillatory
phenomena, and therefore we test the Arnold tongue described
by Eq. (9) first with simulations using periodic boundary
conditions.

Arnold tongues for several values of k0 are plotted in
Fig. 1(a), along with time-averaged values of the quantity
	 = ∂t�, with angle brackets indicating a spatial and tempo-
ral average. The range of frequencies that can be synchronized
shift noticeably as k0 is varied. Since the system is observed
in the gauge corotating with the drive frequency, solutions
that are synchronized with the drive will have 	 = 0 and
	 �= 0 indicates nonsynchronized behavior. This is shown
in Figs. 1(b) and 1(c) where plots of 	 and the phase �

are shown for a system of size L = 12π/k0, in a gauge
corotating with the drive frequency but not with the drive
wave number to show the spatial nonuniformity. The simu-
lations agree very well with the analytic results, as might be
expected considering that periodic boundary conditions are
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FIG. 1. Changing the wave number of the drive shifts the Arnold
tongue. (a) Plots of 〈|	|〉 = 〈|∂t�|〉 (the spatially averaged time
derivative of the phase) as a function of the drive parameters ν,
the detuning frequency (the difference between the drive frequency
and the natural frequency), and B, the drive amplitude. The drive
wave number k0 increases from left to right, taking the values 0, 0.2,
and 0.4, respectively. Red contours show the approximate Arnold
tongue described by Eq. (9), which estimates the region in which
the medium is synchronized to the drive. The dotted orange contours
show the boundary of the region in which the ODEs describing a
uniform system, Eqs. (6) and (7), are stably synchronized to the
drive. The dashed green contour shows the region within which the
ODE system has exactly three real solutions for R2

0. (b) � and 	 as
a function of space and/or time at the drive parameters indicated in
(a), ν = 1.06, B = 0.2. (c) Same as (b) but for the drive parameters
marked by (c), ν = 0.7, B = 0.2. Distances are measured in units of
the drive wavelength: λ0 = 2π/k0. Parameters: α = 0.5 and β = 4.

a natural choice for solutions that are themselves periodic
in space.

It is also possible to extract information about the bifurca-
tion structure of this system from Fig. 1(a). In addition to the
approximate Arnold tongue Eq. (9), we plot the boundaries
of the region of stability of the fixed point of the ordinary
differential equation (ODE) system describing the uniform
solution, Eqs. (6) and (7), as well as the region where these
ODEs have exactly three fixed points. The structure of the

boundaries of these regions suggests that the type of bifur-
cation between synchronized and desynchronized solutions
changes depending on the drive amplitude B. At low B the
bifurcation appears to be of the SNIPER (saddle-node infi-
nite period) type since the number of fixed points changes
from one to three. At higher B the number of fixed points
remains constant at 1, indicating a Hopf bifurcation. These
two synchronized regions are separated by a boundary where
the number of fixed points changes, suggesting a standard
saddle-node bifurcation.

A structure of this type, with both SNIPER and Hopf
bifurcations connected by a saddle-node bifurcation, has been
shown to exist for the driven Kuramoto model with oscillators
with heterogeneous freqeuencies [31,32]. In this mean-field
model it has been analytically shown that two dynamically
distinct regions of synchronized solutions exist, with different
numbers of fixed points. In the driven Kuramoto model these
regions are separated by a saddle-node bifurcation in a large
region of parameter space, and a much more complex series
of bifurcations close to the point where the two different
synchronized regions meet the desynchronized region. This
correspondence between the driven CGLE and the driven Ku-
ramoto model is surprising at first glance since the CGLE is
a model of a system with spatial extent while the Kuramoto
model is a mean-field system. This suggests that this behavior
may be generic to driven coupled-oscillator models, but much
more work is needed to further tease out this connection.

D. Zero-flux boundary conditions

Boundary conditions play an important role in the behav-
ior of PDEs generally, but the analytic results we presented
were agnostic of them. The results were valid for periodic
boundary conditions which are often practical for bridging
simulation and theory, but other types of boundary conditions
are more appropriate for many experimental applications. For
applications involving diffusing media it is often the case
that zero-flux boundary conditions are the most appropriate
for systems of finite size. Here we show that these boundary
conditions can have a strong effect on the synchronization,
especially close to the border of the Arnold tongue. This is
shown in Fig. 2(a), which takes the same medium parameters
as Fig. 1(a) but with zero-flux boundary conditions as opposed
to periodic boundary conditions.

The system was simulated with the same parameters as
Fig. 1 for k0 = 0.4 and the results are shown in Fig. 2. At low
forcing amplitude B the area within the Arnold tongue shows
nonzero 	, indicating desynchronzation, shown in Fig. 2(b).
The system appears to be stably synchronized to the drive for
early times, at least in the bulk of the system, but a shocklike
effect originates at the x = 0 boundary and travels across the
system, desynchronizing it. Even at higher forcing parameters
where the steady state value of 	 becomes small, there is
still a boundary effect, shown in Fig. 2(c), in which there is
a region close to one of the boundaries that is desynchronized
even though the bulk of the system is synchronized to the
drive. Such regions in solutions of the CGLE are known as
phase reconnections and are accompanied by the amplitude
vanishing locally, shown in Fig. 2(d). While the boundary of
the synchronized region appears similar to the boundary of
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FIG. 2. Zero-flux boundary conditions can cause desynchro-
nization in directly coupled CGL systems even where analytical
calculations predict synchronization. (a) Analytically calculated
boundary of Arnold tongue for k0 = 0.4 (red) using Eq. (9) and
numerical simulations of 	 = 〈∂t�〉 as a function of the detuning
frequency ν and driving amplitude B. (b) The phase � for the point
labeled “(b)” in (a), ν = 1.06, B = 0.2. (c) The phase � for the point
labeled “(c)” in (a), ν = 1.06, B = 0.35. (d) The amplitude R as a
function of spatial position x at t = 100 for the parameter set shown
in (b). Parameters: α = 0.5, β = 4, and k0 = 0.4.

the region where the number of fixed points changes from
one to three, the desynchronization involves a highly spatially
organized process, which cannot be accounted for by the
ODE model.

Additionally, there are regions outside the Arnold tongue
with 	 ∼ 0, indicating that they are synchronized with the
drive (i.e., there is a 1:1 coupling between observed frequency
and drive frequency). However, in these regions we find a
rich synchronization structure in space, with the spatial wave-
lengths of both the phase and amplitude related to spatial

FIG. 3. Zero-flux boundary conditions can lead to more complex
spatial mode-locking patterns in regions: 4:3 spatial locking. (a) The
phase � as a function of space and time for zero-flux boundary
conditions. (b) The winding number, defined in terms of the un-
wrapped phase �u, as �u/2π , as a function of x to t = 900, with
the dashed line showing 1:1 spatial locking and the dotted line 4:3
spatial locking. (c) The amplitude R as a function of spatial position
x at t = 900. Parameters: α = 0.5, β = 4, k0 = 0.4, B = 0.25, and
ν = 0.66.

wavelength of the external drive through the ratio of two
integers. This nontrivial “spatial” phase locking occurs despite
the fact that the oscillators are temporally synchronized with
the drive. While it is well understood that Arnold tongues
can be surrounded by other tongues for other synchronization
ratios [33], this phenomenon is different since each individual
oscillator in the medium is still 1:1 phase locked to the drive
in time. Instead, the higher-order synchronization is in space.

There appear to be a rich variety of types of such syn-
chronized solutions, two of which can be seen in Figs. 4
and 3. For the same value of drive amplitude B two very
similar choices for detuning frequency produce dramatically
different patterns. For ν = 0.66 (Fig. 3) we find a region that
shows an approximate 4:3 “spatial phase locking” in space
(i.e., the spatial wavelength of the phase is three-fourths the
spatial wavelength of the external drive) in addition to the
usual 1:1 phase locking in time. This can be seen more clearly
by observing that at a fixed time, the phase increases in space
[Fig. 3(b)]. Additionally, there is a highly nontrivial phase-
amplitude coupling which can be seen by noting the highly
irregular pattern formed by the amplitude R as a function
of space [Fig. 3(c)]. However, despite this irregularity, the
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FIG. 4. Zero-flux boundary conditions can lead to more complex
spatial mode-locking patterns in regions: 2:1 spatial locking. (a) The
phase � as a function of space and time for zero-flux boundary
conditions. (b) The winding number, defined in terms of the un-
wrapped phase �u, as �u/2π , as a function of x to t = 2900, with
the dashed line showing 1:1 spatial locking and the dotted line 2:1
spatial locking. (c) The amplitude R as a function of spatial position
x at t = 2900. Parameters:α = 0.5, β = 4, k0 = 0.4, B = 0.25, and
ν = 0.68.

amplitude still has a well-defined wavelength characterizing
its spatial modulation. The spatial wavelength of R differs
from both the wavelength characterizing the spatial modula-
tion of the phase and the wavelength describing the external
drive. This can be seen by noting that whereas the amplitude R
completes between 6 and 7 spatial oscillations traversing the
system, the phase completes approximately 18 and the drive
completes 25.

Slightly increasing the detuning frequency ν to 0.68 in-
duces a different pattern [Fig. 4(a)]. Initially, the pattern
appears to desynchronize by a similar traveling shockwave
mechanism as shown in Fig. 2, but at later times the system
enters an approximate 2:1 “spatial phase locking” where the
spatial wavelength of phase is half of the wavelength of the
external drive (i.e., the phase oscillates twice as fast in space
as the external drive). This can be clearly seen in Fig. 4(b).
It also shows a nontrivial phase-amplitude coupling, with the
amplitude completing 36 spatial oscillations while transvers-
ing the system compared to the drive which completes only
24 [Fig. 4(c)].

These complex behaviors are found very close together,
near the point where the boundary between the SNIPER,

Hopf, and saddle-node bifurcations all intersect. In the driven
Kuramoto model this region is known to have a quite complex
bifurcation structure, including a codimension-2 Takens-
Bogdanov point where an additional homoclinic bifurcation
can be found [32]. While we do not reproduce a full bifucation
analysis of the CGLE here, the complexity of this known
system suggests that the complex synchronization structure
we observe here is tied to a rich, local bifurcation structure in
this region of the ν-B plane.

III. DRIVEN OSCILLATORS WITH EXTERNAL MEDIUM

A. Model introduction

In biological applications such as quorum sensing the
components of the chemical oscillators are contained within
individual cells and are usually confined within the cells.
Instead the cells produce a signaling molecule which diffuses
or is excreted out of the cell and acts as an external proxy for
the local population’s internal oscillation state. In the case of
Dictyostelium collective oscillations this extracellular signal
has been identified as cyclic AMP (cAMP) [34]. It is this ex-
tracellular medium that diffuses between the cells and couples
the cellular population. This leads to a nonlocal coupling of
local oscillators which is not equivalent to the standard CGLE,
even close to the onset of oscillations [17,18], and exhibits be-
haviors that are qualitatively distinct from the standard CGLE
[17]. This system is described by the equations

Ȧ = (1 + iω0)A − (1 + iα)|A|2A − D(A − Z ), (10)

Ż = ρD(A − Z ) + (1 + iβ )∇2Z − JZ, (11)

and we will refer to this model as the emCGLE. The pa-
rameter J is the degradation rate of the external medium, D
is a coupling constant between the external medium and the
oscillating field, and ρ is the density of the oscillating field A.
The addition of an external medium Z that does not naturally
oscillate induces “memory” effects in the form of additional
timescales that cannot be transformed away.

We add the drive term to the oscillator field A as before.
This can be understood biologically as using a mechanism
such as an optogenetic control of the individual cells to
activate regulatory pathways that influence the biological
oscillator, inducing increases in internal cAMP that are re-
leased into the external medium and driving other cells
through this medium. The emCGLE with drive then takes the
following form:

Ȧ = (1 + iω0)A − (1 + iα)|A|2A − D(A − Z )

+ Bei[−(ω0−ν)t+�k0·�x], (12)

Ż = ρD(A − Z ) + (1 + iβ )∇2Z − JZ. (13)

Note that by introducing an external coupling medium with
its own dynamics the emCGLE introduces a number of addi-
tional timescales that now can affect the behavior. First, the
addition of the external medium Z has broken the gauge sym-
metry of the CGLE so the factor of ω0 cannot be eliminated.
Instead, the rate (inverse timescale) associated with the fre-
quency mismatch δω = ω0 − ν is absorbed into the dynamics
of the external medium Z . The external medium field Z also
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introduces two other rates: ωZr = J + ρD, the rate associated
with relaxation of the medium to small perturbations, as well
as ωZc = ρD, the rate associated with coupling the oscillators
and the medium.

The relations between these timescales can provide intu-
ition about the dynamics of the emCGLE in a given parameter
regime. If we have ωZr 
 1 (e.g., if the signaling molecule is
degraded quickly), then the medium will be pinned to zero.
On the other hand, if ωZc � 1 the medium responds almost
instantly to the oscillator and in this limit the original CGLE
is recovered. The emCGLE also introduces corresponding
rates for the oscillator field A. There is a relaxation rate
ωAr = 1 − D and a coupling rate ωAc = D. While these are not
independent, we distinguish them to note that the form of ωAr

suggests the possibility of some kind of change in behavior at
D = 1, which we discuss below.

A mean-field version of this model without spatial structure
has been studied previously [14,15] and has been shown to
possess a transition from a collectively oscillating state to
an “amplitude death” state in which delays induced by the
medium can cause individual oscillators to cease oscillating.
This can come about in several ways. It can be caused by the
external medium being degraded to the point where it can no
longer maintain oscillations and couple the oscillators, or by a
“dynamic” mechanism in which the oscillation is too fast for
the medium to keep up. Here we probe how this state can be
accessed and synchronized to a drive.

B. Analytic results and simulations

The emCGLE can be understood using the same methods
that were used to study the standard CGLE. First we exam-
ine the uniform fixed points of the dynamics. To do so we
transform to the gauge in which the drive is constant, taking
A → Aei[(ω0−ν)t−k0x]. This results in the following equations:

Ȧ = (1 + iν)A + (1 + iα)|A| 2A −D(A − Z ) + B, (14)

Ż = ρD(A − Z ) + (1 + iβ )(∇ 2Z +2ik0 · ∇Z )

− [(
J + k2

0

) + i
(
ω0 − ν + βk2

0

)]
Z. (15)

In this gauge it can be seen that, for the purposes of finding
uniform solutions, changing the wave number of the drive
is equivalent to a suitable shift in the “memory parameters”
J and ω0 (except for questions of linear stability which we
do not analytically address in this paper). Therefore we set
k0 = 0 without loss of generality for purposes of calculating
the Arnold tongue. We proceed as before by rewriting the
model in terms of amplitude and phase variables: A = Rei�

and Z = reiθ . Then, assuming a spatially uniform solution we
arrive at the following system of equations:

Ṙ = (1 − D)R − R3 + Dr cos(θ − �) + B cos(�), (16)

R�̇ = νR − αR3 + Dr sin(θ − �) − B sin(�), (17)

ṙ = −ρDr + ρDR cos(� − θ ) − Jr, (18)

rθ̇ = ρDR sin(� − θ ) − (ω0 − ν)r. (19)

The fixed points of these equations represent phase-locked
solutions. The last two equations can be combined to elimi-
nate the sin(θ − φ) and cos(θ − φ) terms. This also gives the

relation qR = r, where q =
√

(ρD)2

(ρD+J )2+(ω0−ν)2 . The sin(�) and
cos(�) terms can then be eliminated just as for the standard
CGLE, giving the following expression:

B2 = R2

{[
(D − 1) + R2 − Dq2

(
J + ρD

ρD

)]2

+
(

ν − αR2 − Dq2 ω0 − ν

ρD

)2}
. (20)

This is a cubic equation in R2, analogous to Eq. (8).
From Eq. (20) we can follow a similar procedure as for

the CGLE and calculate the discriminant. Once this is ac-
complished, we can find the center of the Arnold tongue ν∗
by solving for ν when B = 0. This condition reduces to an
implicit equation for ν∗:

ν∗ = α

[
1 + D

(
q(ν∗)2 J + ρD

ρD
− 1

)]
+ q(ν∗)2D

δω(ν∗)

ρD
.

(21)

Taking ε = ν − ν∗ to be small and solving for the condi-
tion that the discriminant vanishes for small B, we arrive at an
expression for the Arnold tongue:

B2
Jω = |1 + D(q2Ĵ − 1)|

1 + α2
(ν − α[1 + D(q2Ĵ − 1)]

− q2Dδω̂)2, (22)

where we have suppressed the ν dependence in q and δω

and renormalized the memory coefficients Ĵ = 1 + J/ρD and
δω̂ = (ω0 − ν)/ρD.

Equation (22) is richer than the Arnold tongue expression
for the model without the extracellular medium. It is possible
to recover Eq. (9) for k0 = 0 from Eq. (22) in the limit of high
density, ρ → ∞. The reason k0 does not appear in this case
is that k0 enters as shifts in the memory parameters and all
the memory parameters are effectively rescaled to zero in the
limit of large density.

Some intuition can be gained from this theory by exam-
ining how it is affected by the different timescales. First, we
consider the limit in which Z responds infinitely quickly to A,
ωZc → ∞. In this limit we have Z = A, recovering the CGLE.
This limit can also be understood intuitively as the limit of
large density.

In order to understand the opposite limit we can inter-
pret the factor q as a ratio of the timescales associated with

the medium: q =
√

ω2
Zc/(ω2

Zr + δω2). We define a complex
“memory loss” rate as ωm = ωZr + iδω, which combines the
effects of degradation of the medium and the rate of rota-
tion relative to the external medium. We can then rewrite
the expression for q as q = |ωZc/ωm|, showing that as mem-
ory becomes short compared to the coupling response time,
ωm 
 ωZc, then r becomes small. When this occurs, coupling
between individual oscillators is lost and the only interaction
is between the drive and the individual local oscillators. To
see how this affects the process of synchronization, observe
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FIG. 5. CGL model coupled through an external medium exhibits a low-density amplitude death regime in which very wide ranges
of frequencies can be synchronized with small driving amplitudes. Top: 〈|	|〉; middle: R; and bottom: r as a function of ν and B, with
analytic boundaries of the approximate Arnold tongue, Eq. (22) (red solid contour), the existence of a stable, synchronized fixed point (orange
dotted contour), and the area within which there are exactly three synchronized fixed points (green dashed contour). This indicates the same
approximate bifurcation structure as in the driven Kuramoto model and the CGLE, with SNIPER, saddle-node, and Hopf bifurcations. As
the density declines, the coupling to the medium happens at a slower and slower rate compared to the rates associated with medium turnover
(J) or the drive frequency (ω0 − ν). As this happens, the medium has effectively zero amplitude (bottom right) and no longer couples the
individual oscillators. Then, either they oscillate along with the drive or they also decay to a low amplitude. In this limit, the width of the
Arnold tongue increases and becomes proportional to B2/(D − 1). Parameters: α = 0.5, β = 1, k0 = 0.1, D = 1.1, J = 0.5, ω0 = 0.5, and
ρ = 2.0, 1.5, 1.0, 0.5, 0.15, 0.1 from left to right. Note that there are no orange lines in the rightmost plots since the prefactor in Eq. (22) is
zero.

that if D > 1, then Eq. (16) implies that for r = 0 we also
have R = 0 in the absence of a drive. In the study of the
synchronization of systems of coupled oscillators without a
drive this phenomenon is know as “amplitude death,” and has
been studied in mean-field versions of this system [14,15].
Amplitude death is a response characteristic of coupled os-
cillator systems with some kind of delay in the coupling [13].
In this case the delay is induced by the “memory” effects of
the medium.

To study the effects of a drive on the low-density phase we
consider the case where D > 1. When ρ → 0 and D > 1 the
oscillatory medium A will decay to zero without the influence
of the drive. We can observe the onset of this process for
nonzero drive in Fig. 5 in which the density is gradually
decreased.

Most obviously, the Arnold tongue gets much wider as the
density declines, enabling the medium to be synchronized by
a much wider range of frequencies as the coupling through the
medium becomes more difficult.

This process can be observed in Fig. 5. As the density de-
clines the amplitude of both fields declines, with the amplitude
of the external medium having the most dramatic effect, on
both sides of the Arnold tongue. Essentially the oscillatory
field A is not dense enough to produce enough of the coupling
medium Z which does not maintain a nonzero amplitude
beyond the boundary of the exact Arnold tongue, shown as
an orange dotted contour. As this occurs the approximations
to the Arnold tongue break down. The region in which there
are three positive, unique solutions of Eq. (20) essentially

vanishes, altering the accessible dynamical regimes. As this
region shrinks, the approximate Arnold tongue described by
Eq. (22), shown by the red contour, approximates the exact
Arnold tongue much less effectively, as it is an approxi-
mation of the boundary of the three-solution region. The
three-solution region shrinking is also consistent with results
from the driven Kuramoto model, in which the location of the
saddle-node bifurcation scales with the oscillation amplitude.

In summary, we see that at low densities oscillators can
easily synchronize to an external drive over a wide range of
frequencies. This region corresponds to densities at which
the corresponding mean-field model without space exhibits
amplitude death. This suggests that it may be easier to entrain
coupled oscillator systems at low densities where normally
collective oscillations are weak or even absent.

IV. EXPERIMENTAL IMPLICATIONS OF OUR RESULTS

These results have exciting implications for controlling
biological and synthetic oscillatory systems. There are clear
experimental tests to check if the theoretical models studied
here are representative of the experimental systems we seek to
control. One clear prediction of our model is that they should
be controllable using a wide range of drive frequencies if we
can tune the experimental system close to the dynamic death
phase. This can be accomplished by, for example, degrading
the external medium. In particular, our models suggest that
the amplitude of the external drive can be relatively small
compared to the amplitude of the oscillations and still induce
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synchronization. This suggests that relatively small perturba-
tions should still be able to change population behaviors.

Some previous experimental efforts [6,35] have manipu-
lated the external medium either through degradation alone
or adding a uniform stimulus to the population through the
fluid surrounding the cells. These different experimental ma-
nipulations of the medium tune coupling between individuals
and their collective oscillation frequencies, but these new the-
oretical results suggest that one could also take advantage of
the individual oscillators themselves to drive these types of
cellular collectives, either alone or in conjunction with further
manipulations to the external medium.

Specifically, one could imagine using optogenetics to drive
a subpopulation of individuals using a spatially structured
external laser illumination. Optogenetic production of the
molecule that cells use to signal one another should, in
many systems, trigger release of this molecule to the external
environment, mimicking the natural generation and release
that couples the individual oscillators through the external
medium. If the individual cells are seeded densely enough,
simply projecting the desired spatial drive pattern onto the
cells should create the Arnold tongues observed in the results
here, as well as the complex spatially mode-locked patterns.
Crucially, these phenomena should be robust across a wide
range of drive frequencies for the optogenetic control.

Additionally, we show that the synchronization dynamics
of these collective oscillator systems can be dramatically af-
fected by the choice of boundary conditions. In particular, we
showed that zero-flux boundary conditions, as one might find
in an experimental setup involving a channel or plate that has
solid walls, can cause unusual synchronization activity in the
CGLE, deviating substantially from the theoretical results and
the case of periodic boundary conditions. However, we did
not find a similar anomaly for the emCGLE with either type
of boundary condition in the conditions studied.

Together these results have several experimental impli-
cations. First, this difference emphasizes the importance of
using the appropriate model to guide experiment design
and interpretation. In particular, although the emCGLE uni-
versality class is less well known than the CGLE it has
meaningful differences that lead to different synchronization
dynamics. These differences could complicate experimental
interpretation if they are not properly accounted for. Fur-
ther, this difference potentially provides a way to empirically
distinguish the two universality classes under investigation
here: if the experimental setup is consistent with zero-flux
boundary conditions the presence of these unusual synchro-
nization states makes a case for the validity of the CGLE
universality class.

V. DISCUSSION

In this paper we study how generic models of oscillatory
media can be controlled by spatially varying harmonic drives.
We derived simple conditions that can be used to estimate
when a drive of a given detuning frequency ν and ampli-
tude B will synchronize a medium in the CGLE. We showed
that the spatial arrangement of the drive, in particular the
wavelength, can control the temporal aspect of the synchro-

nization process, in particular the frequency band that can be
synchronized.

We compared the analytically convenient periodic bound-
ary condition with the more experimentally appropriate
zero-flux boundary conditions in the CGLE and found that
they can cause a dramatic effect on the observed synchro-
nization phenomena. Regions that synchronize to the drive
for periodic systems were destabilized by traveling shocks
for zero-flux systems. Additionally, some regions that were
unsynchronized for periodic systems showed temporal syn-
chronization with complex spatial structure for zero-flux
systems.

We also investigated using a drive to control the emCGLE,
since this model more closely mimics cell-based oscillations
such as those in yeast glycolysis or Dictyostelium aggregation.
This system also showed a variable range of frequencies that
can be locked to a drive, but the drive wavelength is absorbed
into a complex memory loss rate in the external medium
that competes with a coupling rate from the oscillator field.
When the coupling from the oscillators is weak compared to
memory loss the external medium ceases to couple individual
oscillators and they interact only with the drive. In this regime
the system synchronizes to a much broader range of drive
frequencies and the oscillator amplitude declines dramatically
when it is not synchronized to the drive.

We demonstrated that the two models share a common
bifurcation structure. For both models the region in the ν-B
plane in which the system is synchronized to the drive is
broken up into two components, one with three fixed points
and one with only one. Furthermore, the region in which
there are exactly three fixed points does not extend into the
desynchronized region. From this we can infer that this region
is connected to the desynchronized region by a SNIPER bifur-
cation, and to the other synchronized region by a saddle-node
bifurcation. This second region must then be connected to the
desynchronized region by a Hopf bifurcation. This structure is
qualitatively similar to the bifurcation structure of the forced
Kuramoto model with heterogeneous oscillator frequencies
[31,32], although the ODEs from which these conditions were
derived are quite different. However, the similarity suggests
that this type of bifurcation structure could arise for an even
broader family of forced coupled oscillator systems. Further
work is necessary to understand this connection.

These results also have broader implications to the study of
general nonlinear systems. The study of generic models such
as amplitude equations, or models derived from center mani-
fold methods, has been a very productive avenue in the study
of nonlinear systems due to analytic guarantees of validity.
However, care must still be taken; it is important to ensure
that the appropriate generic model is applied to the system of
interest. In particular, if one is attempting to control a spatial,
nonlinear oscillatory medium one must consider the dynamics
of the coupling. If the oscillatory medium does not itself
diffuse it is possible that the simpler results for controlling
the CGLE must be replaced by the more complex rules for
controlling the emCGLE, with the possibility of complexities
arising due to memory effects in the medium such as ampli-
tude death.

These complications can be of practical importance for
control of experimental systems, depending on whether the
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oscillator medium itself diffuses or the local oscillators are
fixed and couple by diffusing an external medium. Examples
of the latter case include populations of cells that commu-
nicate with oscillating signals or chemical systems such as
BZ droplet systems [36–38]. In these cases it is possible to
gain additional control over the system by controlling the
medium. In populations of Dictyostelium it is possible to
affect the degradation rate of cAMP, the signaling molecule
that couples the oscillating cells, in order to change the dy-
namics of a freely oscillating population (e.g., by expressing
a protein that actively degrades it, or even by washing the
medium out) and we show that this mechanism can also be
used to affect the susceptibility of such populations to external
control.

It is also important to note the importance of boundary
conditions in the case of the standard CGLE on the type of
synchronization achieved. With realistic, zero-flux boundary
conditions several higher-order synchronization regimes were
observed. This indicates not only that there is a rich bifurca-
tion structure present in the spatially driven CGLE but that this
bifurcation structure is strongly dependent on the boundary
conditions of the system. This suggests avenues for future
work in analyzing the linear stability of the driven system in
these different cases.

Furthermore, while these models are generically valid for
oscillatory systems close to the onset of oscillations, many
oscillatory systems in biology are strongly nonlinear in char-
acter; for example, relaxation oscillations with strong positive
feedback. Previous work has shown that phenomena such as
amplitude death and memory effects can play an important
role in the behavior of such systems [16], but how they will
respond to drives is less well understood.

Our results show that by controlling the spatial variation in
a drive, it is possible to vary the frequency range that an oscil-
latory medium will synchronize to. They also demonstrate that
there are universal, qualitative phenomena associated with
driving local oscillators coupled by an external medium, and
that these features may have important practical applications
for experimentally controlling complex, biological systems
such as cellular populations.
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