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Discordant synchronization patterns on directed networks of identical phase oscillators with
attractive and repulsive couplings
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We study the collective dynamics of identical phase oscillators on globally coupled networks whose inter-
actions are asymmetric and mediated by positive and negative couplings. We split the set of oscillators into
two interconnected subpopulations. In this setup, oscillators belonging to the same group interact via symmetric
couplings while the interaction between subpopulations occurs in an asymmetric fashion. By employing the
dimensional reduction scheme of the Ott-Antonsen (OA) theory, we verify the existence of traveling wave and
π -states, in addition to the classical fully synchronized and incoherent states. Bistability between all collective
states is reported. Analytical results are generally in excellent agreement with simulations; for some parameters
and initial conditions, however, we numerically detect chimera-like states which are not captured by the OA
theory.
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I. INTRODUCTION

The Kuramoto model of coupled phase oscillators has
become over the years a paradigmatic tool for the study of
emergent synchronization phenomena in nonlinear sciences.
In its first formulation, globally coupled oscillators interact
via the sine of the differences of their phases; this interaction
is weighted by a positive coupling strength, and by increas-
ing its magnitude, the phases are gradually pulled towards a
common value, creating then a synchronization phase tran-
sition [1–3]. Initially conceived as a solvable extension of the
model proposed by Winfree [4], the Kuramoto model attracted
great attention due to its analytical tractability and its later
discovered potential to describe synchronization phenomena
in a diverse set of systems, such as in optomechanical cells
[5], Josephson junctions [6], chemical oscillators [7], power
networks [8], and even the synchrony among violin players
[9]. For a long list of examples of the use of Kuramoto models
in real applications see the reviews in Refs. [1–3].

Many variations of the original model by Kuramoto have
been inspired by particular features found in different physical
systems [1]. One example is the seminal work carried out by
Daido [10], who, inspired by spin-glass models, treated the
couplings between oscillators in a Kuramoto model as random
variables which could be either positive or negative. Daido’s
results provided evidence for an analogous glass phase tran-
sition in oscillatory systems; however, the precise conditions
for the existence of those “oscillator glasses” have remained
unclear, and still some debate surrounds the problem [11–15].
After the early works by Daido and others [10–14,16], the
discussion on oscillator glasses was brought back to attention
by Hong and Strogatz, who in a series of papers [17–19]
further exploited the role of negative and positive couplings.
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In the first coupling setting considered by them [17,18], oscil-
lators were divided into two globally coupled subpopulations
characterized by distinct coupling strengths. In a scenario
resembling sociodynamical models, oscillators within the first
subpopulation were modeled to have the tendency to align
with the mean-field (conformist oscillators), whereas the sec-
ond subpopulation was defined by oscillators that are repelled
by the other units (contrarian oscillators). In the second model
[19], a fraction of the oscillators was considered to provide
positive coupling inputs to other nodes, while the remainder
contributed with negative couplings; that is, in mathematical
terms, the coupling variable was placed inside the summation
term of the interaction function. Despite being very simi-
lar, the two coupling formulations have been shown to yield
significantly different collective dynamics; in fact, only the
model in Refs. [17,18] was found to lead to different transi-
tions other than between incoherence and classical partially
synchronized states.

Although Hong and Strogatz did not bring new evidence
to support or discard the existence of oscillator glasses, their
papers motivated several other studies on discordant synchro-
nization patterns—i.e., states characterized by the separation
of the population of oscillators into partially synchronized
clusters—induced by the coexistence of attractive and re-
pulsive couplings (see, e.g., Refs. [15,20–32]). Of particular
interest here is the work by Sonnenschein et al. [24], where
the authors unified the coupling settings of Refs. [17–19] into
a single model that also included the influence of stochastic
fluctuations on the frequencies. More specifically, in Ref. [24],
Kuramoto oscillators were set to interact concomitantly via a
coupling Ki, which was placed outside the summation term of
the interaction function, regulating the neighboring influence
perceived by oscillator i, and a coupling Gi placed inside the
sum, endowing the oscillators with the ability to contribute
differently to the mean field. By employing the dimension
reduction framework offered by the Gaussian approximation
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[33], the authors showed that all states previously reported
in Refs. [17–19] (namely, traveling waves and π -states, and
conventional incoherent and synchronous states) persisted in
the model with both types of couplings, but under new routes
outlining the transitions between different states.

The relevance of mixing positive and negative couplings in
phase-oscillator models actually goes beyond the theoretical
interest in oscillator glasses: It turns out that certain types of
physical, biological, and chemical systems can indeed be de-
scribed as oscillators coupled through attractive and repulsive
interactions. Noteworthy real-world examples showing simi-
lar characteristics and phenomena as those described above
include laser arrays [34,35] and electrochemical oscillators
[36,37]. Furthermore, the balance between phase attraction
and repulsion has been recently shown to be a key factor in
the regulation of circadian rhythms by pacemakers cells in the
suprachiasmatic nucleus (SCN) [38].

Motivated by the aforementioned contributions, here we
investigate the model in Ref. [24] of identical oscillators in the
absence of stochastic fluctuations acting on the frequencies.
We divide the oscillators into two subpopulations asymmetri-
cally coupled, and employ the theory by Ott and Antonsen
(OA) [39,40] to obtain a reduced set of equations that de-
scribes the evolution of the system. By studying the linear
stability of the reduced system, we analytically derive several
conditions that delineate the transitions between synchro-
nized, incoherent, traveling waves and π -states. Interestingly,
we find the dynamics of the present model to be overall more
intricate than its stochastic version [24], with wider regions in
the parameter space exhibiting coexistence between different
synchronization patterns. As we shall see, simulations with
large populations of oscillators in general confirm with excel-
lent agreement the predictions by the theory; for a small set
of parameters, however, we report strong deviations from the
dynamics yielded by the reduced system.

II. MODEL

Following Sonnenschein et al. [24], we study here the
system made up of N identical Kuramoto oscillators whose
equations are given by

θ̇i = ω0 + Ki

N

N∑
j=1

Gj sin(θ j − θi ), (1)

where i = 1, . . . , N , and ω0 is the natural frequency. Notice
that, in contrast to Ref. [24], we do not consider identical
oscillators under the influence of stochastic fluctuations in
the phase dynamics; instead, the only source of disorder is
the one inflicted by the coupling strengths. We henceforth
refer to parameters Ki and Gj as the in- and out-coupling
strengths, respectively. As defined in Eq. (1), these couplings
set the interactions between the oscillators to be asymmetric
(or directed): oscillator i contributes to the dynamics of neigh-
boring nodes with weight Gi, while the input arising from
other oscillators is weighted by Ki. The first model by Hong
and Strogatz [17] is recovered when Gi = 1∀i in Eq. (1) (no
out-coupling strengths), while the second model investigated
by the same authors [19] is obtained by symmetrizing the
in-coupling strengths, i.e., Ki = 1∀i. Bifurcation conditions

have been calculated recently for a stochastic system with a
coupling scheme similar to Eq. (1) [41]. Other similar forms
of the coupling setting of Eq. (1) have also been addressed
recently in Refs. [15,42], considering a phase frustration
term in the interaction function (Kuramoto-Sakaguchi model
[43]) and in populations of asymmetrically coupled Rössler
oscillators [44].

III. DIMENSIONAL REDUCTION

In the continuum limit N → ∞, we rewrite the original
Eq. (1) by omitting the subindexes as

θ̇ = ω0 + KR sin(� − θ ), (2)

where R and � are the “weighted” order parameter and the
mean-field phase, respectively, defined by

Rei� =
∫∫

GrK,GeiψK,G P(K, G) dK dG. (3)

P(K, G) is the joint distribution of in- and out-coupling
strengths; variables rK,GeiφK,G are the local order parameters
that quantify the synchrony within subpopulations:

zK,G = rK,GeiψK,G =
∫

ρ(θ, t |K, G)eiθ dθ, (4)

where ρ(θ, t |K, G) is the probability density function of
observing an oscillator with phase θ at time t for a
given coupling pair (K, G). Henceforth we adopt the nota-
tion ρK,G(θ, t ) ≡ ρ(θ, t |K, G). The normalization condition∫ π

−π
ρK,G(θ, t ) dθ = 1 leads to the following continuity equa-

tion:

∂ρK,G

∂t
+ ∂

∂θ
{ρK,G[ω0 + KR sin(� − θ )]} = 0. (5)

Next we expand the phase density ρK,G(θ, t ) in a Fourier
series and apply the ansatz by Ott and Antonsen [39,40] to
its coefficients to get

ρK,G(θ, t ) = 1

2π

{
1 +

N∑
n=1

[αK,G(ω0, t )]neinθ + c.c.

}
, (6)

where αK,G(t ) ≡ α(K, G, t ), and c.c. stands for the complex
conjugate. Substituting Eq. (6) into Eq. (5) yields

α̇K,G + iω0αK,G + K

2

(
α2

K,GR − R∗) = 0. (7)

Inserting Eq. (5) into Eq. (4), we have that the local order
parameters become zK,G = α∗

K,G. Hence, for a general distri-
bution of coupling strengths P(K, G), we get

ṙK,G = K

2

(
1 − r2

K,G

)〈〈G′rK ′,G′ cos(ψK,G − ψK ′,G′ 〉〉,

ψ̇K,G = ω0 − K

2

(
rK,G + r−1

K,G

)〈〈G′rK ′,G′ sin(ψK ′,G′ − ψK,G)〉〉,
(8)

where 〈〈· · · 〉〉 = ∫∫
P(K ′, G′) · · · dK ′dG′.

The boundaries of the asynchronous state (R = 0) can be
obtained straightforwardly for arbitrary distributions P(K, G).
By considering small perturbations δrK,G around the inco-
herent state rK,G = 0, and setting ψK,G = 0, without loss of
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FIG. 1. Schematic illustration of a finite system composed of two
intertwined subpopulations. Oscillators belonging to subpopulation 1
(2) interact among themselves via couplings K1G1 (K2G2), while os-
cillators from different subpopulations interact asymmetrically with
effective couplings K1G2 and K2G1, as depicted in the figure.

generality, we get from Eq. (8)

δ̇rK,G = K

2
〈〈G′δrK ′,G′ 〉〉. (9)

By multiplying the previous equation by G and averaging over
the distribution P(K, G), we rewrite Eq. (9) in terms of a
perturbation to the global order parameter δR = 〈〈G′δrK ′,G′ 〉〉,
˙δR = [〈〈KG〉〉/2]δR, which leads to the critical condition

〈〈KG〉〉 = 0. (10)

Therefore, for 〈〈KG〉〉 < 0, the oscillators remain incoherent,
while for 〈〈KG〉〉 > 0 the incoherent state loses stability, and
a partially synchronized state sets in. Notice that Eq. (10) is
similar to the condition obtained in Ref. [24] for identical
oscillators subjected to Gaussian noise.

Let us consider now the case in which the oscilla-
tors are coarse-grained into n intertwined subpopulations
with joint distribution of couplings given by P(K, G) =
1
n

∑n
q=1 δ[(K, G) − (Kq, Gq )]. Substituting the previous ex-

pression for P(K, G) into Eqs. (8) yields

ṙq = −Kq

2n

(
1 − r2

q

) n∑
p=1

Gprp cos(ψp − ψq),

ψ̇q = ω0 − Kq

2n

(
rq + r−1

q

) n∑
p=1

Gprp sin(ψp − ψq), (11)

where q = 1, . . . , n. In what follows we investigate a special
case of the above system, namely, the setup of two intertwined
subpopulations [24]. In this case, we have n = 2, and Eqs. (11)
are reduced to

ṙ1 = K1

4

(
1 − r2

1

)
[r1G1 + r2G2 cos δ],

ṙ2 = K2

4

(
1 − r2

2

)
[r2G2 + r1G1 cos δ],

δ̇ = − sin δ

4

[(
r1 + r−1

1

)
r2K1G2 + (

r2 + r−1
2

)
r1K2G1

]
, (12)

where we have defined the phase lag δ = ψ1 − ψ2. An
illustration of a finite network with two intertwined sub-
populations can be seen in Fig. 1. We measure the global

synchronization with the classical Kuramoto order parameter
as

r(t )ei�(t ) = 1
2 [r1(t )eiψ1(t ) + r2(t )eiψ2(t )]. (13)

Note that r(t )ei�(t ) in the above equation is different from
the “weighted” order parameter Rei� = 1

2 [r1(t )G1eiψ1(t ) +
r2(t )G2eiψ2(t )] [Eq. (3)], which can be larger than one.

Equations (12) are very similar to the set of equations
for identical oscillators under the influence stochastic fluctua-
tions obtained via Gaussian approximation [24,33]. Actually,
the only difference between the reduced system obtained in
Ref. [24] and Eqs. (12) is that the former exhibits terms r4

1,2

instead of r2
1,2 in the equations for ṙ1,2 and terms propor-

tional to (r−1
1,2 + r3

1,2) in place of (r−1
1,2 + r1,2) in the equation

for δ̇. Notice also that Eqs. (12) could be obtained via the
Watanabe-Strogatz theory [45,46] under uniform distribution
of constants of motion (Ott-Antonsen manifold) [18,40,47].

From Eqs. (12), we expect to observe the following sta-
tionary states for the two subpopulation system (see the
illustration in Fig. 2): (1) the classical incoherent state in
which r = r1,2 = 0; (2) the perfectly synchronized state in
which r1,2 = 1 and δ = 0 (we denominate this state as a
“zero-lag sync” state); (3) partially synchronized states char-
acterized by r1,2 < 1 and δ = 0, which we refer to as “blurred
zero-lag sync” states; (4) the so-called “π -state” for which the
subpopulations are perfectly synchronized (r1,2 = 1), while
remaining diametrically opposed in the phase space (δ = π ),
yielding, hence, a vanishing global synchronization (r = 0);
(5) “blurred“ π -states, in which at least one of the subpop-
ulations is partially synchronized (r1,2 < 1) and the peaks of
their phase distributions are separated by δ = π ; and, finally,
(6) the traveling-wave (TW) state [17,24,48] in which the
subpopulations can be either partially or fully synchronized,
0 < r1,2 � 1, while keeping a constant phase-lag separation
within 0 < δ < π . The interesting feature of this state is that,
in contrast to standard formulations of the Kuramoto model,
the oscillators no longer rotate with a common frequency
given by the frequency ω0 of the corotating frame—or ω̄ =∫

ωg(ω) dω in the case of nonidentical oscillators, where g(ω)
is a frequency distribution [17,48]; instead, they settle on a
new stationary rhythm whose magnitude will also depend on
the coupling parameters. Deviations from the mean frequency
ω̄ can be calculated either by the average (or mean-ensemble)
frequency


 = 1

N

N∑
j=1

〈θ̇ j〉t , (14)

where 〈· · · 〉t denotes a long-time average or by the locking
frequency �̇, defined in Eq. (3) [see also Eq. (18)]. TW
states typically appear in phase-oscillator systems when cer-
tain symmetry patterns are broken in the model, such as by the
presence of a phase frustration in the sine coupling term [43],
asymmetric coupling strength distributions [17,18], or natural
frequencies asymmetrically distributed [48].
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FIG. 2. Long-time profile on the complex unit circle of the states observed for a finite system [Eq. (1)] with two intertwined subpopulations
coupled as depicted in Fig. 1: (a) Incoherent state, (b) zero-lag sync, (c) π -state, (d) TW1, (e) blurred zero-lag sync, and (f) blurred π -state.
Only in the TW1 state (d), the collective frequencies �̇ [Eq. (18)], �̇ [Eq. (13)] and 
 [Eq. (14)] are different from zero, and the oscillators
travel across all possible phase values in the corotating frame defined by the natural frequency. The configuration of the TW2 state is obtained
by interchanging the subindexes and colors in panel (d).

IV. BIFURCATION ANALYSIS OF THE REDUCED SYSTEM
WITH TWO SUBPOPULATIONS

For convenience, we adopt the following parametrization
for the couplings:

K1,2 = K0 ± �K

2
and G1,2 = G0 ± �G

2
, (15)

where K0 and G0 are the average in- and out-coupling
strengths, respectively; parameters �K and �G are defined
as the corresponding coupling mismatches. In our calcula-
tions we always consider positive mismatches (�K,�G > 0).
Therefore, if |K0| < |�K|/2 or |G0| < |�G|/2, half of the
couplings are positive (attractive) and half are negative (re-
pulsive). If one of these conditions is satisfied, we say that the
oscillators interact via mixed couplings.

By setting δ̇ = 0, we uncover two possible fixed-point so-
lutions for phase lag δ:

δ = mπ , m ∈ Z, (16)

0 = (
r1 + r−1

1

)
r2K1G2 + (

r2 + r−1
2

)
r1K2G1. (17)

Equation (16) corresponds to the solution of partially synchro-
nized states with no separation between populations (even m)
and π -states (odd m), while Eq. (17) gives the condition for

the existence of TW states. We can verify that TWs appear
only for 0 < δ < π by rewriting the equations for ψ̇1,2 to-
gether with Eq. (17) as

lim
t→∞ ψ̇1,2 = lim

t→∞ �̇ = ω0 − sin δ
r2 + r−1

2

4
K2G1r1. (18)

Therefore, spontaneous drifts in the collective frequencies oc-
cur only for intermediate values of the phase lag δ; otherwise,
for δ = mπ , oscillators rotate with collective frequencies
ψ̇1,2 = ω0, which here is set to ω0 = 0.

From the parametrization in Eq. (15), we realize the critical
conditions K1,2 = 0, or

K0 = ±�K

2
. (19)

When one of the above conditions holds, it follows that
one subpopulation is deprived of receiving inputs from other
nodes (including from the same subpopulation), and its oscil-
lators have instead only out-couplings towards nodes external
to their subpopulation. Similarly, if one of the out-couplings
vanishes, G1,2 = 0, the corresponding subpopulation ceases
to influence the dynamics of the rest of the network and starts
acting only as a link receiver. As we shall see, these conditions
play an important role in the phase diagram of Eqs. (12). In the
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sequel, we calculate the coupling ranges in which the states
discussed in the previous section appear.

A. Incoherent state

The first critical condition of Eqs. (12) is given by
the stability analysis of the incoherent state performed
in the last section. For the case of two subpopula-
tions with P(K, G) = 1

2δ[(K, G) − (K1, G1)] + 1
2δ[(K, G) −

(K2, G2)], Eq. (10) reads K1G1 + K2G2 = 0, and by solving
it in terms of the average in-coupling strength we have

K0 = −�K�G

4G0
. (20)

The above equation, therefore, delineates the boundary of the
incoherent state.

B. π-states

For the π -state, the fixed point solutions read r1,2 = 1 and
δ = π . Linear stability reveals that the π -state is stable for
average in-couplings given by

−�K

2
< K0 < min

{
�K

2
,
�K�G

4G0

}
, for G0 > 0;

max

{
−�K

2
,
�K�G

4G0

}
< K0 <

�K

2
, for G0 < 0.

(21)

The other state characterized by subpopulations diametri-
cally opposed is the blurred π -state, and its fixed points are
defined by r1G1 = r2G2 and δ = π . Linearizing the dynamics
about this state, we find that the corresponding Jacobian ma-
trix has a single nonzero eigenvalue, λ = K1G1(1 − r2

1 )/4 +
K2G2(1 − r2

2 )/4. Hence, and because couplings G1 and G2

must have the same sign so that r1G1 = r2G2 is a physical
solution, we have that blurred π -states appear when

K0 <
�K�G

4G0
, for |G0| >

�G

2
. (22)

Thus, both π -states with fully synchronous subpopulations
(r1,2 = 1) and with partial synchronization (r1,2 < 1) are
yielded by systems described by Eqs. (12). Observe also that
r1G1 = r2G2 defines a one-parameter family of fixed points.
Furthermore, from Eq. (22) we notice that incoherent and
blurred π -states may coexist in a large region of the parameter
space defined by coupling strengths G0 and K0.

C. Zero-lag sync and partially synchronized states

For the zero-lag sync state, we linearize Eqs. (12) around
r1,2 = 1 and δ = 0, and seek a zero eigenvalue of the re-
lated Jacobian matrix. By following this calculation, we find
that the zero-lag sync state emerges for average in-coupling
strengths given by

K0 > max

{
�K

2
,
�K�G

4G0

}
, for G0 > 0;

K0 < min

{
−�K

2
,
�K�G

4G0

}
, for G0 < 0.

(23)

Next, by linearizing Eqs. (12) around an arbitrary partially
synchronized solution (r1G1 = −r2G2 and δ = 0), we find

that such states, which we have denominated blurred zero-lag
sync states, must occur for parameters in the range

K0 <
�K�G

4G0
, for |G0| <

�G

2
. (24)

Any state that satisfies r1G1 = −r2G2 and δ = 0 is a fixed
point of Eqs. (12). From this we foresee that several partially
synchronized states should coexist in the region delimited
by Eq. (24). As in the case of blurred π -states, blurred
zero-lag sync solutions yield a single nonzero Jacobian
eigenvalue, λ = K1G1(1 − r2

1 )/4 + K2G2(1 − r2
2 )/4; hence,

the latter states do not coexist with zero-lag sync or with
π -states, because in regions where r1,2 = 1 we have λ = 0,
and the blurred zero-lag sync states lose stability. Notice fur-
ther that in order to r1G1 = −r2G2 be a physical solution,
out-couplings G1 and G2 must have opposite signs; thus, par-
tially synchronized states with δ = 0 are expected to appear
only in the presence of mixed-out coupling strengths, i.e., for
|G0| < �G/2, as indicated in Eq. (24).

D. Traveling waves

We now turn our attention to the stationary TW states.
Numerical results show us that two possible TW states are
manifested by the system (12). In the first state, which we
refer to as “TW1,” the first subpopulation remains fully syn-
chronized (r1 = 1), whereas the second one exhibits partial
synchronization (r2 < 1). We label as “TW2” the opposite
situation, i.e., when r2 = 1 and r1 < 1. In both states we have
0 < δ < π and 
 > 0. By setting r1 = 1 in Eqs. (12), we find
the following fixed point solutions for r2 and δ:

r2 =
√

− K2G1

K2G1 + 2K1G2
and cos δ = −G2

G1
r2. (25)

Since 0 < r2 < 1, we have that the solution of the TW1 exists
for

−K1G2 < K2G1 < 0. (26)

By writing Eq. (26) in terms of the parametrization in Eq. (15),
and considering �K,�G > 0, we find that the regions with
TW1 are outlined by the following conditions:

�K�G

4G0
<K0 <

�K

2
, for G0 >

�G

2
. (27)

The linearization of Eqs. (12) about the fixed points of
Eq. (25) also reveals a second region in which the TW1 state
is stable:

�K

2
< K0 <

�K

8

[
�G

G0

]2

, for − �G

2
< G0 < 0;

�K

2
< K0 <

�K�G

4G0
, for 0 < G0 <

�G

2
.

(28)

The solutions for r1 and δ, and the critical conditions for the
TW2 state are obtained by interchanging the indexes “1” and
“2” in Eqs. (25) and (26). By following the same procedure
for the corresponding TW2 solutions, one uncovers that this
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(a) (b)

(c) (d)

FIG. 3. Bifurcation diagram of the reduced system [Eqs. (12)] for (a, b) �K = 8 and �G = 2; and (c, d) K0 = 3 and G0 = 2. Zero-lag sync
corresponds to the perfectly synchronized state (r1,2 = 1 and δ = 0). “π -state” refers to the state in which r1,2 = 1 and phase-lag separation
δ = π . Similarly, blurred zero-lag and blurred π -states denote the states with r1,2 < 1 along with δ = 0 and δ = π , respectively. Traveling
wave states are characterized by r1 = 1, r2 < 1 (TW1), and r2 = 1, r1 < 1 (TW2). Both TW1 and TW2 exhibit 
 �= 0 [Eq. (14)]. Solid lines
are obtained from Eqs. (20)–(24) and Eqs. (27)–(29). Dashed line in panels (a) and (c) depict the condition K0�G − �KG0 = 0 for which the
couplings are symmetric, i.e., when the network connections are undirected. Panels (b) and (d) show zoomed-in regions of panels (a) and (c),
respectively.

state appears for average in-coupling strengths given by

−�K

2
< K0 <

�K�G

4G0
, for G0 < −�G

2
;

�K�G

4G0
< K0 < −�K

2
, for − �G

2
< G0 < 0;

−�K

8

[
�G

G0

]2

< K0 < −�K

2
, for 0 < G0 <

�G

2
.

(29)

Alternatively, the conditions of the TW2 state [Eqs. (29)]
could be obtained by letting (�K,�G) → (−�K,−�G) in
the TW1 conditions [Eqs. (27) and (28)].

Figure 3(a) depicts the bifurcation diagram outlined by
the critical conditions in Eqs. (20)–(24) and Eqs. (27)–(29).
As can be seen, for high values of both K0 and G0, the
dynamics converges either to perfect synchronization or to
incoherence/blurred π -state; for intermediate values, how-
ever, multiple regions of bistability appear. Interestingly,
although simpler, the model in Eq. (1) exhibits a more com-
plex dynamics than its stochastic version [24]. By comparing
the diagrams of Fig. 3 with their counterparts in Ref. [24], we
see that the regions with coexistence between different states
become proportionally larger when noise is absent. A similar
effect was observed by Hong and Strogatz when comparing
the findings in Refs. [17,18].
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TW2 -state TW1 -stateBlurred -state TW1 Zero-lag
sync TW2 -state TW1 Zero-lag

sync
B. zero-lag

sync

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 4. Order parameters r1,2, r, phase lag δ, and collective frequencies �̇ [Eq. (18)] and 
 [Eq. (14)] for (a, d, g) G0 = 0, �K = 8, and
�G = 2; (b, e, h) G0 = 2, �K = 8, and �G = 2; and (c, f, i) G0 = 2, �K = 3 and �G = 10. Dots are obtained by numerically integrating
the original system [Eq. (1)] using Heun’s method with N = 104 oscillators. For each coupling value K0, the quantities are averaged over
t ∈ [500, 1500] with a time step dt = 0.005. In all panels, initial conditions θi(t = 0) ∀i are randomly distributed according to a uniform
distribution between [−π, π ]. Solid lines correspond to the analytic solutions obtained in Sec. IV.

By rewriting the critical couplings in Eqs. (20)–(24) and
Eqs. (27)–(29) in terms of coupling mismatches, we derive
the stability diagram spanned by the parameters �G and �K .
Similarly to what was verified in Ref. [24], the arrangement
of the transitions in Fig. 3 evidences some rules for the oc-
currence of the collective states manifested by the system
(1). First, in order to observe π -states, mixed in-couplings
are required [see the blue areas in Fig. 3(c) occurring for
�K > 2K0]. States TW1 and TW2 emerge when either mixed
in- or out-coupling exist, but never when both types of cou-
plings are mixed; in the latter case, only incoherence and
π -states are possible. Bistability of TWs and incoherence
with π -states appear when mixed in-coupling strengths exist,
whereas we observe bistable regions TW or zero-lag sync
and TW or incoherence when only out-couplings are mixed.
Finally, we emphasize the importance of the directness in the
network connections for the emergence of traveling waves.
For K0�G − �KG0 = 0, the coupling strengths connecting
the subpopulations become equal, and the interaction is no
longer asymmetric. By projecting this expression onto the
stability diagram (see the dashed lines in Fig. 3), we see
that the symmetry condition does not intersect TW regions;
therefore, asymmetric interactions are necessary for the emer-
gence of such states. Nevertheless, as seen in Fig. 3, π -states
are crossed by the line imposed by the symmetry relation,
meaning that asymmetric couplings are not required for the
existence of π -states.

The diagrams in Fig. 3 also allow us to reexamine the
results in Refs. [17–19] as particular cases of the present
model. As mentioned previously, in Refs. [17,18], the authors
studied Kuramoto oscillators subjected to attractive and re-
pulsive in-couplings strengths (�G = 0 in our notation). In

that setting, the couplings are regarded as a property of the
nodes; thus, a fraction of the oscillators tends to align with the
mean field (conformists oscillators), while the rest is repelled
by it (contrarian oscillators). As shown in Refs. [17,18], the
absence of out-coupling strengths does not impede the system
from reaching π -states and traveling waves. Indeed, if we
set �G = 0 in Fig. 3(c) and follow the transitions along the
K0-axis, we see that the system switches from TW1 to TW2
via crossing the central zero-lag sync area. In their follow-
up study [19], the couplings were treated as properties of
the links, that is, the coupling terms were placed inside the
summation over the neighbors’ connections instead of outside
as in Refs. [17,18]. This coupling setting is equivalent to
the model in Eq. (1) in the absence of in-coupling strength
mismatches (�K = 0). Interestingly, despite the presence of
mixed couplings, neither traveling waves nor π -states were
detected, but rather only partially synchronized and incoher-
ent states [19]. The fact that mixed out-couplings under no
mismatch in the in-couplings yield only a classical mean-field
behavior is evident in Fig. 3, where we see that for �K = 0
the only possible state is zero-lag sync.

V. SIMULATIONS

Let us now compare the results of the bifurcation analysis
in the previous section with numerical simulations of the finite
original dynamics [Eq. (1)]. Figure 4 shows the evolution
of order parameters, phase-lag separation δ, and collective
frequencies, 
 and �̇, as a function of K0 for different choices
of G0. All the simulations are performed by integrating Eq. (1)
with Heun’s method with a time step dt = 0.005 and con-
sidering total number of oscillators N = 104 (see the caption
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FIG. 5. Comparison between simulations (colormaps) and theory (solid lines). (a) Total order parameter r; (b) local order parameter r1 of
subpopulation 1; (c) phase lag δ measuring the separation between the two subpopulations; and (d) average frequency 
 [Eq. (14)]. For each
pair of couplings (G0, K0), Eq. (1) is evolved numerically with the Heun’s method considering N = 104 oscillators and with an integration time
step dt = 0.005. The long-time behavior of each parameter is quantified by averaging the trajectories over t ∈ [500, 1000]. For all (G0, K0),
the initial phases θi(t = 0) are drawn uniformly at random over the interval [−π, π ]. Coupling mismatch parameters: �K = 8 and �G = 2.
G0 × K0 grid resolution: 100 × 100 couplings

of Fig. 4 for more details). This value for the system size
was chosen so that temporal fluctuations due to finite-size
effects of O(N−1/2) become negligible in comparison to the
magnitude of r and r1,2. For G0 = 0 [Figs. 4 (a), 4(d), and
4(g)] we observe that the system transitions from TW2 to
π -state, and then subsequently to TW1, as correctly predicted
by the critical conditions depicted in the diagram of Fig. 3. In
Fig. 4(b) we see that at K0 = −2 the subpopulations abruptly
synchronize as they switch from blurred π -states to π -state. A
similar discontinuous transition of the local order parameters
r1,2 was observed for similar parameter configurations in the
stochastic version of the system (1) [24]. Abrupt transitions
are also seen in Fig. 4(c), but this time as a consequence of
the transition from blurred zero-lag sync to TW2 state. In
Fig. 4(c) we also observe irregular points in the “B. zero-lag
sync” region. Those points correspond to partially synchro-
nized states and display such an irregular pattern because of
the one-parameter family of solutions that exists in that re-
gion; specifically, different initial conditions drive the system
to different stationary states that satisfy r1G1 = −r2G2. The
solid branches in “B. zero-lag sync” area correspond to TW2
solutions, which are also stable for K0 � −3.9 in Fig. 4(c)
[see also Fig. 3(b)], but are not obtained numerically with the

initial conditions used in Fig. 4. We shall return to this point
shortly.

Notice in Figs. 4(g)–4(i) that |
| � |�̇|. The reason for
this resides in the fact that 
 is a microscopic average of the
instantaneous frequencies 〈θ̇i〉, while �̇ [and equivalently �̇ in
Eq. (13)] quantifies how fast the center of the bulk formed by
entrained oscillators rotates. Therefore, oscillators that are not
locked with the mean-field contribute to the sum in Eq. (14)
with 〈θ̇i〉t ≈ 0, thus reducing the value of 
 in comparison
with its upper bound �̇. The latter frequency offers in the
present case the slight advantage of being calculated directly
from the solutions in Eq. (18). Analogously, 
 can be es-
timated analytically (not shown here) through the ensemble
average 
 = ∫ π

−π

∫∫
θ̇ρ(θ, t |K, G) P(K, G) dK dG dθ .

To conclude this section, in Fig. 5 we compare the theoret-
ical results with simulations considering coupling parameters
over a G0 × K0 grid. Our goal with this approach is to inspect
for a larger set of parameters whether the analysis performed
in the previous section correctly predicts the stability regions
shown in Fig. 3. For each coupling pair (G0, K0), Eq. (1) is
integrated numerically, and the global variables are averaged
over t ∈ [500, 1500] with a time step dt = 0.005. As can
be seen in Fig. 5, the boundaries of the collective states are
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FIG. 6. Comparison between simulations (colormaps) and the-
ory (solid lines) for different sets of initial conditions: (a) θi(t = 0)
randomly chosen from the uniform distribution [−π, π ] (same as
in Fig. 5); (b) for each coupling pair (G0, K0) the initial phases of
subpopulations 1 and 2 were drawn from Gaussian distributions with
standard deviation σ = 2, and means θ1 and θ2, respectively, which
were chosen uniformly at random between [−π, π ]. The “+” marks
a point in the diagram for which the behavior observed in the sim-
ulation departs from the dynamics predicted by the theory. Figure 7
shows the temporal evolution of the collective variables at the “+”
point depicted in panel (b). Other parameters: N = 104, �K = 8
and �G = 2. In both panels the resolution of the grid is 100 × 100
couplings. Integration was performed with Heun’s method using a
time step dt = 0.005.

predicted very accurately by the theory. Seeking to verify
the bistable behavior of the model, in Fig. 6 we show sim-
ulations results for a zoomed region of the space in Fig. 5
considering different initial conditions: in Fig. 6(a), phases
θi are initiated with values distributed uniformly at random
between [−π, π ]. Initial conditions were chosen differently
for Fig. 6(b); specifically, for each point in the grid G0 × K0,
the phases of populations 1 and 2 were chosen from Gaussian
distributions with standard deviation σ = 2, and means θ1 and
θ2, which were taken uniformly at random between [−π, π ].
By initiating the oscillators in this way, we observe in Fig. 6

(a)

(b)

(c)

FIG. 7. Temporal evolution of (a) local order parameters r1,2,
(b) phase lag δ, and (c) locking frequency �̇ [Eq. (18)]. Solid lines
are obtained from simulations, while dashed lines correspond to the
results yielded by the numerical integration of the reduced system
[Eq. (12)]. In panel (a) the solid and dashed lines of r2 overlap each
other at r2 = 1. Average in- and out-coupling strengths are taken
from the “+” point in Fig. 6(b), that is, (G0, K0) = (−0.5,−5.95).
Other parameters: N = 104 oscillators, �K = 8, �G = 2, and dt =
0.005.

that the system converges to TW2 in the region where this
state was predicted to coexist with partial synchronization.

VI. ACCURACY OF THE OTT-ANTONSEN REDUCTION

Although we have observed a good agreement between
simulations and the theory for the states previously discussed,
there are also dynamical patterns which seem not to be cap-
tured by the OA reduction. Figure 6 shows an example: there
we observe a set of points with �̇ = 0 in the TW2 area, i.e., a
region where one would expect stationary states with �̇ �= 0.
By inspecting the temporal trajectories of the local order
parameters r1,2 in Fig. 7 we see that such states do have a dif-
ferent nature from traveling waves. The trajectories in Fig. 7
actually resemble breathing chimera states [49] in which one
subpopulation remains fully locked, while the other exhibits
an oscillating synchrony. In the figure, we compare the time
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evolution of the original model [Eq. (1)] with the numerical
integration of the reduced system [Eq. (12)] using the same
initial conditions. As it is seen, while the finite subpopulation
1 shows oscillating synchrony, the solution provided by the
theory converges to a constant value. Although chimera states
have been studied extensively with the OA reduction, Figs. 6
and 7 suggest that such solutions in the present model might
lie outside the OA manifold. Interestingly, Refs. [17,18,24]
did not report solutions akin to the ones shown in Fig. 7.
Actually, in light of the recent results by Engelbrecht and
Mirollo [50], we may expect even more complicated states
to emerge off the OA manifold. As demonstrated in Ref. [50],
the dynamics of multipopulation systems such as the one con-
sidered here is often more complex off the OA manifold than
on it. Thus, the technique of multiple Poisson manifolds dis-
cussed in Ref. [50] offers a way to address the shortcomings of
the analyses restricted to the Poisson and OA manifolds, and
may thereby unravel phenomena that might have remained
undetected with other methods.

VII. CONCLUSION

In this paper we have studied a variant of the Kuramoto
model in which identical oscillators are coupled via in-
and out-coupling strengths, which in turn can have positive
and negative values. Similarly to the setting considered in
Ref. [24], heterogeneity in the interactions was introduced
by dividing the oscillators into two mutually coupled sub-
populations (each one characterized by a distinct pair of
couplings), so that connections within the same subpopulation
remain symmetric, while connections between subpopula-
tions are asymmetric. In the infinite size limit, we applied
the theory by Ott and Antonsen [39] to obtain a reduced
set of equations. With the reduced description of the orig-
inal system, we performed a thorough bifurcation analysis
whereby a rich dynamical behavior was revealed. We showed
that the present system exhibits different types of π -states
and traveling waves, along with classical incoherent and par-
tially synchronized states. Though the transitions among these
states bear some similarity to those uncovered for the model
with Gaussian white noise in Ref. [24], we have found that
our model exhibits a more intricate long-term dynamics than
that of observed for its noisy version. The reason for this
conclusion resides in the different types of π - and zero-lag
sync states uncovered here (which may consist of either per-
fectly or partially synchronized subpopulations), and in the
observation of wider regions in the parameter space displaying
bistability. These findings for the seemingly simpler system
are in line with previous studies [17,18] comparing the dy-
namics of identical oscillators with that of nonidentical ones.
[Although the system in Eq. (1) and the one of Ref. [24] are
both models of identical oscillators, the inclusion of Gaussian
white noise yields equivalent phenomenology—with respect
to the linearized dynamics—to the case of phase oscillators
with natural frequencies drawn from Lorentzian distributions;
see the discussion in Ref. [51].]

Despite the excellent agreement between simulations and
theory, for a small set of parameter combinations we verified
dynamical states which turned out not to be reproduced by
the reduced system. As discussed in Sec. VI, we verified

vanishing values for the temporal average of the mean-field
frequency for couplings inscribed in a TW region. By visu-
alizing the time series of such unanticipated states, we found
that one local parameter evolved with an oscillatory dynamics
akin to breathing chimera states [49], in sharp contrast to the
evolution predicted by our calculations for the same param-
eters and initial conditions. It is worth noting, nonetheless,
that disagreements of this nature are somewhat expected to
occur: for the identical frequencies case there exists a one-
parameter family of invariant manifolds (of which the OA
manifold is a special solution) that are neutrally stable with
respect to perturbations in directions transverse to themselves
[40,46,52,53]. Hence, there could be certain types of pertur-
bations that may drive the system away from the manifold
contemplated by the OA ansatz, thus generating unexpected
results such as the ones discussed in Sec. VI. Another de-
viation from the theory was observed in the appearance of
zero-lag sync and π -states over a region in the parameter
space initially believed to manifest traveling waves solely
[see Fig. 4(c)]. Future works should further investigate the
emergence of chimeras and other states with respect to per-
turbations off the OA manifold for populations of identical
oscillators coupled asymmetrically; the framework introduced
in Ref. [50] offers a promising way to approach this problem.

As mentioned in the introduction, there are many systems
whose dynamics can be modeled by phase oscillators inter-
acting via positive and negative couplings. Our results can
thereby serve as a guide in the search for clustered states in
different contexts. For instance, as shown in Ref. [38], phase
attraction or phase repulsion alone cannot account for the
regulation of circadian rhythms; a phase model incorporating
mixed couplings linked asymmetrically, on the other hand,
does reproduce the outcome of experiments with neuronal
networks of the SCN. Therefore, system (1) with two inter-
twined subpopulations may be a suitable model to describe
the synchronization between the dorsal and ventral subregions
of the SCN [38].

The multistable behavior of our model certainly calls for
an analysis of the basins of attraction of the several states
we observed. This problem can be tackled by following the
methodologies in Refs. [54,55]; these possibilities, however,
we leave for future works. Finally, there are a number of
potentially relevant extensions for the present model: given
the nontrivial behavior uncovered here, it would be inter-
esting, for instance, to investigate more than two coupled
populations, as well as to study the effect of attractive and
repulsive interactions on the collective dynamics of oscillators
with higher-order harmonics in the coupling function [56,57].
In particular, preliminary results (not shown here) with mul-
tipopulation systems reveal that the number of distinct TW
states may grow exponentially with the number of subpopu-
lations. For instance, for a three-subpopulation system, there
may be TWs in which one subpopulation rotates, while the
other two remain fully synced and static, and vice versa.
One could also consider oscillators coupled on structures
that allow interactions beyond the classical pairwise, such
as hypergraphs [58] and simplicial complexes [59]. On the
experimental domain, realizations of the dynamical transitions
reported here may be obtained in populations of chemi-
cal [60,61] and optical arrays [62], which are experimental
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FIG. 8. Comparison between simulations (colormaps) and theory (solid lines). (a) Total order parameter r; (b) local order parameter r1 of
subpopulation 1; (c) phase lag δ measuring the separation between the two subpopulations; and (d) average frequency 
 [Eq. (14)]. For each
pair of couplings (G0, K0), Eq. (1) are integrated numerically with the Heun’s method considering N = 104 oscillators and with an integration
time step dt = 0.005. The long-time behavior of each parameter is quantified by averaging the trajectories over t ∈ [500, 1000]. For all
coupling pairs (G0, K0), Eq. (1) is initiated with the exact same configuration for θi(t = 0): phases in subpopulation 1 were randomly chosen
from a Gaussian distribution with mean θ1 
 0.17 and standard deviation σ1 
 0.85, yielding r1(t = 0) 
 0.69; phases of subpopulation 2
were also Gaussian distributed, but with mean θ2 
 1.09 and standard deviation σ2 
 1.053, yielding r2(t = 0) 
 0.57. Coupling mismatch
parameters: �K = 8 and �G = 2. G0 × K0 grid resolution: 100 × 100 couplings.

setups that have been shown to reproduce chimeras and other
dynamical states found in phase oscillator models.
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APPENDIX: SUPPLEMENTAL DIAGRAM

In this Appendix we recalculate the diagrams of Fig. 5
by initiating the oscillators differently than in Sec. V.

Specifically, in Fig. 8 we choose the phases of each sub-
population to be distributed according to distinct Gaussian
distributions whose peaks are separated by a phase lag (see
the caption of Fig. 8 for details). Comparing Fig. 5 with
Fig. 8 we see that a blurred π -state region in the former is
converted into a π -state area in the latter [notice the regions
with r1 = 0 in Fig. 5(b) and r1 = 1 in Fig. 8(b)]. In addition to
the bistability between TWs and blurred zero-lag sync states
confirmed in Sec. VI, another significant difference between
Fig. 5 and Fig. 8 lies in the “Incoherence/Blurred π -state”
areas: in Fig. 5 these regions exhibit small values for the order
parameters (a consequence of choosing the initial conditions
uniformly at random between [−π, π ]), along with δ = π ; in
Fig. 8, on the other hand, we observe higher values for r1,
thus confirming that multiple local synchronization levels are
possible in those regions as revealed by the analysis in Sec. IV.
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