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Geometry of complex instability and escape in four-dimensional symplectic maps
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In 4D symplectic maps complex instability of periodic orbits is possible, which cannot occur in the 2D case.
We investigate the transition from stable to complex unstable dynamics of a fixed point under parameter variation.
The change in the geometry of regular structures is visualized using 3D phase-space slices and in frequency space
using the example of two coupled standard maps. The chaotic dynamics is studied using escape time plots and
by computations of the 2D invariant manifolds associated with the complex unstable fixed point. Based on a
normal-form description, we investigate the underlying transport mechanism by visualizing the escape paths and
the long-time confinement in the surrounding of the complex unstable fixed point. We find that the slow escape
is governed by the transport along the unstable manifold while going across the approximately invariant planes
defined by the corresponding normal form.

DOI: 10.1103/PhysRevE.103.042208

I. INTRODUCTION

There are different ways in which orbits of a dynamical
system may become unstable under variation of some parame-
ter. One famous example is the Hamiltonian-Hopf bifurcation
as has first been studied for the triangular equilibrium points
of the planar circular restricted three-body problem [1,2],
for which instability occurs beyond a critical mass ratio [3].
This is also found for many other examples in celestial and
galactic dynamics [4–12], for the hydrogen atom [13–15],
in the context of molecular dynamics [16,17], and is also
of relevance to particle accelerators [18]. The impact of the
Hamiltonian-Hopf bifurcation on the phase space geometry
has been studied in much detail in Refs. [19–21]. Additional
insight is provided by computations of invariant manifolds
and normal-form descriptions [22–25]. For further results see,
e.g., Refs. [26–29]. The impact in quantum mechanical sys-
tems has been investigated in Ref. [30].

Often it is helpful to reduce the time-continuous dynamics
to a discrete-time mapping by means of a Poincaré section.
For conservative Hamiltonian systems with three degrees of
freedom this leads to the study of four-dimensional (4D)
symplectic maps, which are therefore of importance in many
areas of physics. Similar to the Hamiltonian case, a transition
from stable to complex unstable dynamics is possible for 4D
(and higher-dimensional) symplectic maps [31,32]. This has
been investigated in detail in the pioneering work [33,34] for
a variant of the 4D coupled standard map [35]. In such a
transition to complex unstable dynamics two eigenvalue pairs
of the linearized dynamics collide on the unit circle and after-
wards form a so-called Krein quartet. This may happen only
if the Krein signature is mixed [31]. A distinctive feature is
the spiraling motion in the surrounding of a complex unstable
periodic point [6,30]. Moreover, it was found that commonly
an extended region around a complex unstable fixed point

emerges to which the dynamics is confined for rather long
times [11,36–38]. Important approaches to understand the
complex unstable dynamics are based on computations of
the invariant manifolds [36,38,39] and normal form descrip-
tions [15,40,41]. Hamiltonian-Hopf bifurcations have also
been studied in much detail for reversible maps; see, e.g.,
Refs. [42,43].

In this paper, we investigate how the transition from stabil-
ity to complex instability of a fixed point affects the geometry
of invariant objects in its surrounding in the phase space of
a 4D symplectic map. This transition is accompanied by the
possibility that orbits can escape from the vicinity of the fixed
point which is quantified by the average escape times of an
ensemble of orbits. The underlying escape mechanism is in-
vestigated in terms of the geometry of the stable and unstable
manifolds. We provide evidence that the escape occurs across
the invariant planes of the normal-form description showing
that it is a genuinely higher-dimensional mechanism.

The text is organized as follows. In Sec. II we recall some
fundamental properties of linear stability of fixed points and
the requirements for complex instability in 4D symplectic
maps. Section II B summarizes a normal-form description for
the transition to complex instability as introduced in Ref. [40].
In Sec. III we introduce a variant of the 4D coupled stan-
dard map and define a set of parameters for investigating the
transition from elliptic-elliptic stability to complex instabil-
ity. We visualize the dynamics in the 4D phase space using
three-dimensional (3D) phase-space slices [44] which is com-
plemented by a frequency space representation [45–47]. The
escape dynamics is investigated in Sec. IV for an ensemble
of initial conditions close to the complex unstable fixed point.
To explain the underlying mechanism we compute the stable
and unstable manifolds associated with the complex unstable
fixed point by utilizing the parametrization method [48–50].
The dynamics of the ensemble suggests that the escape occurs
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across invariant planes of the corresponding normal-form de-
scription. Section V gives a summary and outlook.

II. COMPLEX UNSTABLE DYNAMICS

A. Linear stability in 4D maps

In this section we collect some important results on
the stability of fixed points in 4D symplectic maps
[31], the Krein collision [31,51–53], and its normal-
form description [40,54,55], with more details given in
Appendix A and Appendix B. The dynamics of a symplectic
map M in the vicinity of a fixed point, i.e., a point z∗ that
satisfies Mz∗ = z∗, is given by the linearized map DM. The
symplecticity of M implies that the characteristic polynomial
P(λ) of DM is reflexive so that coefficients of P come in
palindromic form. For a 4D symplectic map this can be writ-
ten as

P(λ) = λ4 − Aλ3 + Bλ2 − Aλ + 1, (1)

where A = tr (DM) and 2 B = A2 − tr (DM2). As conse-
quence, the eigenvalues λ j with j ∈ {1, 2} are restricted to
either hyperbolic pairs λ j, λ

−1
j ∈ R, elliptic pairs of λ j, λ̄ j ∈ C

with |λ j | = 1 or a Krein quadruplet of complex eigenvalues
λ, λ−1, λ̄, λ̄−1 ∈ C with |λ| �= 1. This gives a total of four
possible stability types, namely, elliptic-elliptic (EE), elliptic-
hyperbolic (EH), hyperbolic-hyperbolic (HH), and complex
instability (CU). As shown in Ref. [31], different regimes of
stability follow from the reduced characteristic polynomial
Eq. (A1) in dependence on A and B; see Appendix A for
more details. This yields three stability boundaries, namely,
the period-doubling line (PD), the saddle-center line (SC), and
the Krein parabola (KP).

The possible stability types for an arbitrary fixed point of a
4D map in dependence on A and B can be displayed in the so-
called Broucke diagram [1,31]; see Fig. 1. The three stability
boundaries SC, PD, and KP lead to seven stability regions
corresponding to complex instability (CU) and the different
combinations of the elliptic (E), the hyperbolic (H) case, and
the inverse hyperbolic (I) case, for which the eigenvalue pair
lies on the negative real axis. The corresponding arrangement
of the eigenvalues of the linearized map are shown as small
insets.

For an EE fixed point the surrounding consists of a two-
parameter (Cantor) family of two-dimensional (2D) tori as
expected from Kolmogorov-Arnold-Moser (KAM) theory.
The 2D tori are organized around one-parameter (Cantor)
families of elliptic 1D tori. These families are commonly
referred to as Lyapunov families, based on the analogy to the
Lyapunov center theorem for Hamiltonian flows [56]. Such
families of one-dimensional (1D) tori have been studied in de-
tail; see, e.g., Refs. [36,57–62]. As the families of elliptic 1D
tori form the “skeleton” of the surrounding regular dynamics,
they allow for a convenient way to understand the change in
geometry occurring when an EE fixed point becomes CU, as
will be illustrated below in Sec. III B.

As seen from Broucke’s diagram in Fig. 1, there are only
three possible ways to enter the CU regime, namely, the
transition from (a) the elliptic-elliptic (EE), (b) the hyperbolic-
hyperbolic (HH or II) stability regions through the Krein

FIG. 1. Stability of a fixed point in dependence on the coeffi-
cients A and B of the characteristic polynomial (1) of the linearized
map DM. The regions correspond to combinations of elliptic (E),
hyperbolic (H), and inverse hyperbolic (I), or complex unstable (CU).
The regions are separated by the period-doubling line (PD), saddle-
center line (SC), and the Krein parabola (KP).

parabola, or (c) through the intersection points of the Krein
parabola with either the saddle-center or the period-doubling
boundary at (A, B) = (±4, 6).

The inherently 4D case is the transition of an elliptic-
elliptic fixed point, i.e., case (a), as illustrated in Fig. 2 in
dependence on some parameter α, which controls the tran-
sition. For α > 0, two elliptic eigenvalue pairs approach each
other on the complex unit circle until they coalesce at α = 0.
For α < 0, the eigenvalues split off the unit circle and form a
Krein quadruplet.

Whether the eigenvalue pairs of an EE fixed point for a
given map can leave the unit circle or pass through each other
while staying on the unit circle depends on the so-called Krein
signature; see Appendix B for more details. The transition
from EE stability to complex instability is possible only for a
mixed Krein signature, which implies that the linearized map

FIG. 2. Krein collision of two elliptic eigenvalue pairs (red and
blue circles) in dependence of α. The eigenvalues coalesce for α =
0 and split off the complex unit circle for α < 0 forming a Krein
quadruplet (black circles). For nonzero angle ϕ the location of the
Krein collision is moved along the unit circle.
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of the coalesced eigenvalues has nontrivial Jordan blocks, as
described by the first matrix in Eq. (B5).

B. Normal form description

To understand the geometry of regular and invariant struc-
tures around a CU fixed point, it is extremely useful to
consider a normal-form description based on the nontrivial
Jordan block structure of the linearized map [40]. In this
section, only the basic geometry is discussed; see Appendix C
for a more detailed summary of the results of Ref. [40]. When
investigating the dynamics of the actual 4D symplectic map
we will see the importance of the invariant planes of the
normal form for the slow escape dynamics from the complex
unstable fixed point.

As a result of a normalization process one obtains a
nonlinear normal form [see Eq. (C6)] in dependence on
coordinates X = x2

1 + x2
2 and I = y1x2 − x1y2. A straightfor-

ward computation shows that I is an invariant of this normal
form. Therefore, we discriminate two cases in the following,
namely, I = 0 and I �= 0. Since we are interested only in the
geometry in the vicinity of the complex unstable fixed point
which lies in the origin, we are able to truncate the series
representation of the coefficients in Eq. (C6). Furthermore,
we take advantage of the symmetry of the normal form and
visualize the dynamics only in the hyperplane x2 = 0; see
Fig. 3.

With that, we first consider the case I = 0, i.e., I =
−x1y2 = 0. Without loss of generality, we choose y2 = 0 and
Eq. (C6) reduces to a 2D map (x1, y1) �→ (x′

1, y′
1):

x′
1 = |(gx1 + y1|, (2a)

y′
1 = (̃hx1 − y1) sign(gx1 + y1) (2b)

with g = 1 − h̃ and h̃ = α + x2
1. This map has two periodic

points, namely, a trivial fixed point at (0, 0) which is the fixed
point of the original map M in Eq. (C1) and for α < 0 a
nontrivial period-two point at (

√−α/b, 0). A stability anal-
ysis reveals that the trivial fixed point becomes unstable for
negative α as expected. In contrast, the nontrivial periodic
point exists only when α � 0 and is always stable. This par-
ticular situation in the I = 0 plane corresponds to the typical
behavior of a period-doubling bifurcation in a 2D symplectic
map, for which a periodic point looses its stability and a
stable periodic point of twice the period is created; see, e.g.,
Refs. [63–66].

For the second case, I �= 0, the coordinate y2 is given by
the invariant I . Thus, Eq. (C6) reduces to a 2D map with all
structures living on a hyperbolic cylinder y2 = −I/x1 in the
reduced phase space. The map takes the form

x′
1 =

√
(gx1 + y1)2 + I2

/x2
1, (3a)

y′
1 = (gx1 + y1)(y1 − h̃x1) + I2

/x2
1

x′
1

. (3b)

In this case, there is only one nontrivial period-two point,
which is given by an implicit equation that we solve numeri-
cally.

Figure 3(a) shows the reduced phase space in (x1, y1, y2)
coordinates for α > 0, i.e., the stable case. The red sphere rep-

FIG. 3. The reduced Poisson map from Eq. (C6) in (x1, y1, y2)
coordinates. The sphere in the origin denotes the trivial fixed point,
while the gray and the blue planes visualize the I = −0.015 and the
I = 0 plane, respectively. The shown orbits of the map lie on the
corresponding plane. The nontrivial periodic points of the reduced
map are depicted as orange and yellow dots for the EE case (a) for
α > 0 and as magenta dots for the CU case (b) for α < 0.

resents the trivial fixed point which is elliptic-elliptic in this
case. The blue and the gray planes as well as some exemplary
orbits of Eqs. (2) and (3) correspond to I = 0 and I = −0.015,
respectively. As long as α is positive, there exits only one
fixed point in the I = 0 plane. For I > 0 and I < 0 we get
a continuous family of nontrivial periodic points, shown as
red and yellow curves, respectively, which are both attached
to the trivial fixed point at the origin.

Figure 3(b) shows the reduced phase space for α < 0. The
trivial fixed point (gray sphere) has become unstable and the
family of nontrivial periodic points of the I �= 0 plane are de-
tached from the origin similar to a period-doubling bifurcation
in a 2D map. In this way, this family with its surrounding
stable 1D tori forms a foliated tube-like object in phase space.
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III. TRANSITION TO COMPLEX INSTABILITY

A. 4D map with CU fixed point

The widely used 4D standard map [67,68], which has been
investigated in much detail (see, e.g., Refs. [37,44,69–71])
does not allow for CU fixed points. A modified 4D standard
map has been introduced in Ref. [33], which is inspired by
the Cherry-Hamiltonian describing two counter-rotating har-
monic oscillators [72]. As exemplary system to study the
transition from EE to CU stability we use a variant of such
two coupled counter-rotating 2D standard maps given by the
map M(p1, p2, q1, q2) �→ (p′

1, p′
2, q′

1, q′
2) as

p′
1 = p1 + K1

2π
sin 2π (q′

1) + K

2π
sin 2π (q′

1 + q′
2), (4a)

p′
2 = p2 + K2

2π
sin 2π (q′

2) + K

2π
sin 2π (q′

1 + q′
2), (4b)

q′
1 = q1 + p1, (4c)

q′
2 = q2 − p2, (4d)

where K1 and K2 are the kicking strengths of the two 2D
subsystems and K determines the coupling between them. The
phase space is restricted on the torus, i.e., (p1, p2, q1, q2) ∈
[−0.5, 0.5[2×[0, 1[2 with periodic boundary conditions. Note
that the counter-rotating character of the two uncoupled 2D
subsystems in (p1, q1) and (p2, q2) is due in the negative sign
of the second momentum p2 in Eq. (4d) which ensures that
condition (B4) is fulfilled. This sign is the only difference to
the usual 4D standard map, as introduced in Refs. [67,68].
This map has also been investigated in Ref. [73], though with
the negative sign in Eq. (4c) instead of Eq. (4d).

We will focus on the central fixed point at z∗ =
(0, 0, 1/2, 1/2) in the following. Its stability coefficients are

A = −K1 + K2 + 4, (5a)

B = −K1K2 + K1K − 2K1 + K2K + 2K2 + 6. (5b)

Figure 4 shows the stability diagram for fixed coupling
K = 0.1 in dependence on K1 and K2. The fixed point is
complex unstable in the region between the two straight lines

K2 = −K1 and K2 = 4K − K1. (6)

The saddle-center and the period-doubling boundaries,
Eq. (A2), lead to the hyperbolae

− KK1

K − K1
and

−KK1 + 4K1 − 16

K − K1 + 4
. (7)

In order to investigate the transition from EE to CU stability,
we choose the EE region with positive kicking parameters
and fix K2 = 0.1 while K1 is varied. The six equidistant pa-
rameters K1 = 0.31, 0.305, . . . , 0.285, are indicated as black
points, labeled by (A) to (F) with (C) lying directly on Krein’s
boundary, Eq. (A3), for (K, K1, K2) = (0.1, 0.3, 0.1).

Once the fixed point has become complex unstable, we get
a quadruplet of four complex eigenvalues (λ, λ−1, λ̄, λ̄−1) of
DM where λ = exp (β + iθ ) with β ∈ R+ and θ ∈ [0, π [; see
Sec. II A. The corresponding eigenvectors (ξ1, ξ2, ξ̄1, ξ̄2) can
be written as ξ j = u j + iv j with u j, v j ∈ R4 and j = 1, 2. The
stable and unstable invariant subspaces of the linearized map
are spanned by u1, v1 and u2, v2, respectively.

FIG. 4. Stability of the fixed point (0, 0, 1/2, 1/2) for fixed K =
0.1 in dependence of K1 and K2. The magnification shows the se-
lected parameters for the transition from EE to CU, (A) K1 = 0.31,
(B) K1 = 0.305, . . . , and (F) K1 = 0.285.

From this one key feature of the dynamics in the sur-
rounding of a CU fixed point follows: Under the linearized
dynamics these eigenvectors evolve as ξ n

j = λn
jξ j and con-

sequently provides the evolution in the stable and unstable
subspaces by [21]

u(n)
j = exp (±βn)[cos (nθ )u j − sin (nθ )v j], (8a)

v
(n)
j = exp (±βn)[sin (nθ )u j + cos (nθ )v j], (8b)

where the positive sign corresponds to j = 1 and the negative
to j = 2. Any point z in the 4D phase space can be expressed
in the basis of the eigenvectors, i.e., z = c1u1 + c2v1 + c3u2 +
c4v2 with coefficients c1, c2, c3, c4 ∈ R. These coefficients can
be determined with the help of the basis of the dual space of
the matrix of eigenvectors [44]. Using the time evolution of
the eigenvectors Eq. (8) allows for obtaining the linearized
dynamics of an orbit for a given initial condition. Apparently,
the underlying dynamics is governed by an expanding and
contracting part and a rotating part which leads to a spiraling
motion as illustrated in Fig. 5. If c1 or c2 are different from
zero, the expanding dynamics will asymptotically dominate.
Note that this provides a good description for some limited

FIG. 5. Spiraling motion of an orbit started close to the CU fixed
point. Shown are the (p1, q1, q2) coordinates with p2 encoded in
color of the first 170 iterates of the point (0, 0, 0.5, 0.5) + μ for
μ = 10−8. The initial spiraling motion is well described using the
linearized dynamics, Eq. (8), as shown by the black curve. From the
160th iterate deviations become visible in the plot.
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FIG. 6. Sequence of 3D phase-space slice plots of regular tori represented as gray rings in the vicinity of the fixed point shown as red
spheres for elliptic-elliptic stability and as a gray sphere for complex instability. The families of 1D tori (red, yellow, magenta) form the
skeleton of the surrounding 2D tori. The chosen parameters are (a) K1 = 0.31, (b) K1 = 0.3, (c) K1 = 0.285 and correspond to points (A), (C),
and (F) in parameter space; see Fig. 4. The right column (d), (e), (f) depicts the families of 1D tori, which lie in the q1-q2 plane due to the
symmetry of the map. For a rotating view see the Supplemental Material [77].

number of iterations of the map M only, beyond which the
nonlinear dynamics becomes relevant, as can be seen by the
deviations between the real orbit depicted as colored spheres
and the linearized dynamics shown as black curve in Fig. 5.

B. 3D phase-space slice

To get an intuition for the dynamics of the transition from
EE to CU stability of the fixed point in phase space, we use a
3D phase-space slice [44]. The idea is to reduce the 4D phase
space by one dimension by considering a 3D hyperplane 	

and determining those points of an orbit that fulfill the slice
condition

	ε = {(p1, p2, q1, q2) | |p2| � ε}. (9)

For the resulting points the coordinates (p1, q1, q2) are dis-
played in a 3D plot. The parameter ε, i.e., the thickness of
the slice, controls the resolution. Smaller values of ε require
longer orbits to obtain the same number of points in the slice
as the slice condition (9) is fulfilled less often. For all 3D

phase-space slice plots in this paper we choose ε = 10−6.
Typically f -dimensional objects in the full 4D phase space
appear as ( f − 1)-dimensional objects in the 3D phase-space
slice. For example 2D tori lead to two (or more) separate (but
dynamically connected) rings in the 3D phase-space slice and
1D tori lead to two (or more) points in the slice. For further
examples, also including more general slice conditions, and
detailed discussions see Refs. [44,61,62,73–76].

Figure 6 shows a sequence of 3D phase-space slice plots of
regular orbits in the vicinity of the central fixed point for the
parameter sets (A), (C), and (F); see Fig. 4. In Fig. 6(a) for
parameter set (A), i.e., K1 = 0.31, one is in the stable regime
and quite far away from the Krein collision. The EE fixed
point (red sphere) is surrounded by regular 2D tori shown
as gray curves, which form pairs closed loops on either side
of the fixed point. The general arrangement of the 2D tori is
governed by the two (Lyapunov) families of 1D-tori which
are attached to the EE fixed point and shown in yellow and
orange, respectively. Due to the symmetries of the map, both
families lie in the q1-q2 plane. Thus they can be displayed
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in 2D diagrams to clarify the change of the families under
parameter variation; see Figs. 6(d)–6(f). Note that the small
gap in the yellow family in Fig. 6(a) is caused by a reso-
nance; see Sec. III C. Both families of elliptic 1D-tori are
surrounded by regular 2-tori which form pairs of rings in the
3D phase-space representation, depicted in gray. Interestingly,
the regular 2-tori in the direct vicinity of the fixed point show
a strong bending close to the fixed point. This geometry is
similar to the phase space of the normal form for α > 0 in
Fig. 3(a) where the hyperbolic shape of the I �= 0 plane forces
the tori to bend away from the y1-y2 plane. Furthermore, the
families of 1D tori correspond to the family of period-two
periodic points in the normal form.

Figure 6(b) shows the situation for point (C) in parameter
space with K1 = 0.3. For this parameter the two eigenvalue
pairs of the linearized map at the fixed point coalesce at
two places on the complex unit circle; see Fig. 2(b). When
approaching the Krein collision parameter, the angle between
the eigenvectors of the linearized map decreases until the
eigenvectors of the eigenvalue pairs become collinear. Ac-
cordingly, the families of 1D tori are approximately parallel
in the vicinity of the fixed point as can be seen in Fig. 6(b).

Finally, Fig. 6(c) shows the situation after the Krein colli-
sion, i.e., for K1 = 0.285, which corresponds to parameter (F)
in Fig. 4. Once the fixed point has become complex unstable,
the two families of 1D tori detach from the fixed point and
merge into one single family. This corresponds to the normal-
form behavior for α < 0; see Fig. 3(b). The regular tori close
to the family of 1D tori persist. Interestingly, orbits in the
vicinity of the CU fixed point stay in its surrounding for very
long times and only eventually escape. This will be discussed
in more detail in Sec. IV.

To quantify the detachment of the regular 2D tori from
the CU fixed point, we compute the minimal distance dtori

between the complex unstable fixed point and the family of 1D
tori. In the normal-form description of Sec. II B the minimal
distance is given by the distance between the trivial fixed
point at the origin and the period-two periodic point, namely
by dtori = √−α/b. For the 4D map this translates in first
approximation to

dtori ∝ √
K∗

1 − K1 (10)

with K1 � K∗
1 = 0.3. Figure 7 shows the numerically deter-

mined minimal distance dtori in dependence on the kicking
strength K1 as black dots. Good agreement with the square
root behavior (10), shown as a dashed line, is found. Further
away from the Krein collision parameter small deviations
become visible.

C. Frequency space

Complementary to the representation in phase space one
can display regular tori in frequency space, which is partic-
ularly useful for understanding the influence of resonances.
A regular torus is characterized by two frequencies, one
describing the motion along the major radius of the 2-torus
and one for the motion along the minor radius. Numerically
the frequencies ν1, ν2 ∈ [0, 1[ for an orbit started in a phase-
space point (p1(0), p2(0), q1(0), q2(0)) are determined using
a Fourier-transform based frequency analysis [45,46,78,79].

FIG. 7. Minimal distance dtori between the central fixed point and
the family of 1D tori in dependence on K1. The distance follows the
predicted behavior ∝√

K∗
1 − K1, shown as the red dashed line for

K1 � K∗
1 = 0.3.

As signals z j (n) = q j (n) − ip j (n) for each degree of freedom
j = 1, 2 is used, where (qj (n), p j (n)) are the coordinates
obtained from N successive iterates of the map. In order
to distinguish regular and chaotic motion, the frequencies
ν j of the first half of an orbit, i.e., iterates in the interval
n ∈ [0, N/2 − 1], are computed and compared to the frequen-
cies ν̃ j of the second half, i.e., the iterates in the interval
n ∈ [N/2, N]. For the motion on a regular torus, the differ-
ence of these frequency pairs should be rather small. Thus if
the maximal difference max{|ν j − ν̃ j |} is smaller than some
threshold δcut, we consider the orbit as regular. In the follow-
ing δcut = 10−8 is used. Of course, such a numerical criterion
does not guarantee that the orbit eventually could become
chaotic at very large times, as is also the case with other
chaos indicators; see Ref. [80] for a recent overview. Using
an ensemble of 107 initial conditions, randomly chosen in the
4D phase-space volume defined by p1, p2 ∈ [−0.1, 0.1] and
q1, q2 ∈ [0.4, 0.6], and plotting the frequencies (ν1, ν2) of the
regular tori provides the 2D frequency space representation.

Figure 8 shows a sequence of such frequency space plots
for all six parameter sets specified in Fig. 4. The frequencies
of the EE fixed point is indicated by a large red point in
Figs. 8(a)–8(c). For the complex unstable fixed point there
is only one frequency given by the angle of the complex
eigenvalues, which is shown on the −1,1:0 resonance line as
large gray points in Figs. 8(d)–8(f). Although hardly notice-
able, the angle gets smaller with decreasing K1. As for the
3D phase-space slice shown in Fig. 6, the orange, yellow and
magenta points mark the frequencies of the families of 1D tori,
which form the edges of the gray regions of regular tori.

Resonances correspond to straight lines in frequency space,

n1ν1 + n2ν2 = m, (11)

with m, n1, n2 ∈ Z and gcd(m, n1, n2) = 1 and either n1 �=
0 or n2 �= 0. Some relevant resonance lines are shown as
blue dashed lines, labeled by n1:n2:m. Such resonances lead
to resonance channels [46] and gaps in the families of 1D
tori [61].

The typical frequency space around an EE fixed point is
seen in Figs. 8(a)–8(b) for K1 = 0.31 and K1 = 0.305 which
corresponds to parameters (A) and (B) in Fig. 4, respectively.
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FIG. 8. Frequency space for different parameters K1: (a) K1 = 0.31, (b) K1 = 0.305,..., and (f) K1 = 0.285, corresponding to (A)–(F) in
Fig. 4. Light gray dots correspond to regular orbits while the orange, yellow, and magenta dots correspond to the families of 1D tori. The
frequency of the elliptic-elliptic (red) and complex unstable (gray) fixed point is depicted as enlarged dots. The dotted magenta curve in (d)–(f)
is the unimodular transformation of the upper branch of 1D tori. Some relevant resonance lines are shown as dashed lines.

Both families of 1D tori are attached to the fixed point forming
a cusp and the regular tori fill a region in between these
families. As the eigenvalues approach the Krein collision
parameter in Fig. 8(b), the fixed point has to approach the
−1:1:0 resonance line since the eigenvalues of the linearized
map eventually coalesce on the pair e±i2πν with ν = ν1 = ν2.
This shift of the frequencies of the fixed point stretches the
families of 1D tori and the top of the cusp accordingly. During
this process, the density of regular tori close to the −1:1:0
resonance line decreases. This becomes especially apparent
in case of the Krein collision parameter in Fig. 8(c), i.e., for
parameter (C) in Fig. 4 for K1 = 0.3. This corresponds to the
tangency of the families of 1D tori so that only a few regular
tori exist in the surrounding of the fixed point.

Figures 8(d)–8(f) show the frequency space plots for the
complex unstable case for K1 = 0.295, K1 = 0.29, and K1 =
0.285, corresponding to the points (D), (E). and (F) in Fig. 4.
The two former families of 1D tori merge in the Krein col-
lision parameter and subsequently detach from the −1:1:0
resonance line once the fixed point looses its stability. We
observe two branches of the merged family which bend
away from the fixed point and simultaneously from the res-
onance line. Note that these branches are actually connected,
which can be seen by applying the unimodular transformation
(ν1, ν2) �→ (ν2, 2ν2 − ν1) to the upper branch resulting in the

magenta dotted line. The transformed branch connects seam-
lessly to the other branch yielding a complete arc beginning
and ending at ν2 ≈ 0. This illustrates that both branches actu-
ally belong to just one family of 1D tori after the fixed point
has turned CU. In general, such linear transformations with
determinant ±1 can always be applied for systems of periodic
functions [[81], Theorems 5 and 6].

Shortly after the transition of the fixed point to complex
instability, there are no regular tori in its vicinity or the −1:1:0
resonance line in frequency space. However, the regular tori
between the branches of the former cusp still exist directly af-
ter the transition as is visible in Fig. 8(d). Only when the fixed
point becomes more unstable, the distance of the branches in-
creases and the density of regular tori between them decreases
until a gap emerges; see Fig. 8(f). The remaining regular orbits
in Fig. 8(f) are close to the family of 1D tori. This confirms the
observations in the 3D phase-space slice in Fig. 6(c), where
regular tori are found only in the surrounding of the family of
1D tori and no regular structures are left in the direct vicinity
of the fixed point.

Note that the arc like structure in the range of 0.06 �
ν1 � 0.075 below the discussed region of regular tori; see
Figs. 8(a)–8(d), belongs to regular orbits in the surrounding of
a periodic orbit close to the central fixed point. Although these
orbits are not in the focus of this study they illustrate how the
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FIG. 9. Escape time plots in the q1-q2 plane for p1 = 0 and p2 = 0 for (a) K1 = 0.305, (b) K1 = 0.29, (c) K1 = 0.285, and (d) K = 0.27.
The escape time is encoded in color, where white corresponds to those points which have not escaped within nmax = 105 iterations. The fixed
point is shown as red (elliptic-elliptic) or gray dots (complex unstable), and the families of 1D tori are shown as black dots.

complex instability of the fixed point gradually destroys all
stable structures in its vicinity.

IV. ESCAPE FROM THE CU REGION

When the EE fixed point becomes CU, this immediately
affects its direct surrounding as the two elliptic families of 1D
tori become detached from the fixed point. Thus there are also
no regular tori in its direct vicinity. Instead one has a 2D stable
and a 2D unstable manifold which lead to chaotic dynamics.
However, in practice close to the Krein collision parameter,
initial conditions in the vicinity of the fixed point lead to orbits
staying for very long times in a confined phase-space volume.
In this section, we investigate this behavior and the underlying
escape paths in more detail.

A. Escape times

To study the escape of orbits from the surrounding
of the CU fixed point, we use escape time plots as in
Refs. [73,82,83]; see Fig. 9. Using a grid of initial conditions
on a particular plane in the 4D phase space for each initial
point the escape time nesc, required to reach some specific
exit region, is determined. Since we are interested in the
behavior close to the family of 1D tori, we choose the ini-
tial points in the q1-q2 plane through the fixed point with
q1, q2 ∈ [0.25, 0.75] and p1 = 0 and p2 = 0. On this plane,
a 2000 × 2000 grid of initial points is used. We define the
exit region as q1, q2 /∈ [0.25, 0.75] with arbitrary momenta
p1, p2 ∈ [−0.5, 0.5]. Each initial condition is iterated until it
enters the exit region or a maximal number nmax of iterations
is reached.
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Figure 9 shows the escape time nesc encoded in color rang-
ing from yellow for fast escaping points to black for nearly
regular orbits while white points do not escape to the exit
region within nmax = 105 iterations (though they may escape
eventually). In addition, the families of 1D tori are shown
in black and the fixed point as a red or gray dot for EE or
CU stability, respectively. The parameters for Figs. 9(a)–9(c)
correspond to the points (B), (E), and (F) in parameter space
specified in Fig. 4. In addition, the families of 1D tori are
shown in black and the fixed point as a red or gray dot for
EE or CU stability, respectively.

As before, we focus on the structures close to the fixed
point. For the EE case, the vicinity of the fixed point is nat-
urally governed by a white region which corresponds to the
regular 2-tori surrounding the families of 1D tori; compare
with Fig. 9(a). Thus, even for arbitrarily large times these
orbits do not escape. Furthermore, we see the impact of the
−1:3:0 resonance in form of a notch in the white region.
This is consistent with the frequency analysis in Fig. 8(a) for
K1 = 0.31.

If the eigenvalues of the fixed point approach the Krein col-
lision parameter the fraction of the white points only slightly
diminishes and the overall pattern of the escape time plot
does not change much (not shown). After the transition to
complex instability [see Figs. 9(b)–9(d)] the white region
reduces substantially. Starting with the appearance of two
small unstable regions in the white region for K1 = 0.29 in
Fig. 9(b) above and below the fixed point. Still, there are orbits
in the direct vicinity of the fixed point which stay close to
it for more than nmax iterations. Note that at this point it is
not clear whether there are small regular regions which in
higher-dimensional systems typically would lead to power-
law trapping [74,76,84–94]. However, in Sec. IV C we will see
that the origin of the large escape times is of different origin,
in particular as seen in Fig. 12 below, there is an exponential
decay of the cumulative escape time statistics for an ensemble
of orbits started near the complex unstable fixed point.

Quantitatively, the size of the white region depends on the
threshold nmax, but a larger value of nmax does not affect the
shown escape time plots significantly. The reason for this is
that orbits in the vicinity of the CU fixed point are confined
for an extremely long time when the parameters of the map are
sufficiently close to the EE region in Fig. 4. Accordingly, we
fix nmax = 105 since it provides a good compromise between
resolving the relevant structures and computation time.

The more unstable the fixed point becomes, i.e., the smaller
K1 is, the more the two branches of the family of 1D tori
separate and the white region diminishes because the regions
of instability get larger. Finally, for point (F) in Fig. 4 with
K1 = 0.285 all orbits in the direct vicinity of the fixed point
are able to reach the exit region within nmax iterations; see
Fig. 9(c). For this parameter we observe that the unstable
regions in the escape plots reach the fixed point, and conse-
quently the large white region is divided into two smaller ones.
These two white regions correspond to the tubes of regular
motion in the 3D phase-space slice representation [e.g., see
Fig. 6(f)] as well as the attached regular tori of the branches
of the family of 1D tori in frequency space; see Fig. 8(f).

Figure 9(d) shows the escape time plot for K1 = 0.27, i.e.,
far in the CU regime. The branches of the family of 1D

tori moved far away from the fixed point and the unstable
region in between is large. Interestingly, this unstable region
reveals a unique spiral pattern which is attached to the fixed
point. Orbits on this spiral need at least one to two orders
of magnitude more iterations to escape into the exit region
than the neighboring ones. Additionally, there is another spiral
structure on a smaller scale as shown in the magnification in
the inset.

A closer investigation of orbits started in the darker colored
region reveals that the spiral pattern is due to the influence of
the −2:3:0 resonance: In cases where a frequency analysis of
these orbits is possible, i.e., the orbit is confined for long times
and considered as regular by our algorithm (see Sec. III C), we
get frequencies on or close to this resonance line.

The escape time plots raise the following question: Which
structures govern the slow transport in the vicinity of a com-
plex unstable fixed point? An important ingredient to answer
this question are the invariant manifolds of the fixed point,
which are discussed in the next section.

B. Stable and unstable manifolds

The stable and unstable manifolds associated with an
unstable fixed point govern the chaotic dynamics in its sur-
rounding. For a complex unstable fixed point of a 4D map
the manifolds are 2D invariant objects in the 4D phase
space. Numerically the manifolds are computed using the
parametrization method [48–50,75,95,96]; see Appendix D
for details. In the 3D phase-space slice representation they
lead to 1D curves; see Fig. 10, where the red curve corre-
sponds to the unstable manifold and the blue curve to the
stable manifold.

The regular 2-tori (gray loops) as well as the families of 1D
tori (black curves) in Fig. 10(a) are the same as in Fig. 6(f).
Figure 10(b) shows the geometry for a smaller value of K1 =
0.28. The complex unstable fixed point is indicated by a gray
sphere in both plots.

Numerically it is found that the stable and unstable
manifolds intersect in one point. This point therefore is a
homoclinic point whose forward iterates approach the fixed
point on the stable manifold while the backward iterates
approach the fixed point on the unstable manifold. The exis-
tence of a transverse homoclinic point therefore immediately
implies an infinity of such homoclinic points. Note that gener-
ically two 2D manifolds in a 4D phase space will not intersect.
The fact that this happens for the manifolds of the considered
fixed point must be due to the symmetries of the map.

The geometry becomes more clearly visible for smaller
K1 = 0.28 as shown in Fig. 10(b). The arrangement of the
manifolds in the 3D phase-space slice reminds one of the
homoclinic tangle in 2D symplectic maps. In comparison
to Fig. 10(a) the excursions of the manifolds are more
pronounced which corresponds to a larger chaotic region sur-
rounding the complex unstable fixed point.

It has to be emphasized, that even though the geometry
visually resembles the homoclinic tangle in 2D symplectic
maps, the iterate of any of the homoclinic intersections in
general is not contained in the 3D phase-space slice. Actually,
we find numerically that the stable and unstable manifolds
intersect in a 1D line which is itself an invariant set. Therefore,
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FIG. 10. 3D phase-space slice representation of the stable (blue) and unstable (red) manifolds of the CU fixed point together with regular
2-tori (gray) and the family of 1D tori (black) for (a) K1 = 0.285 and (b) K1 = 0.28. Thus (a) corresponds to the point (F) in Fig. 4, compare
with Figs. 6(c) and 6(f). For a rotating view see the Supplemental Material [77].

the intersection point in the 3D phase-space slice and its
iterates are only a subset of the 1D intersection line. Moreover,
as the manifolds are only 2D they cannot enclose a volume, so
that there is no equivalent to the lobe structure and transport
via a turnstile mechanism as in 2D symplectic maps [97–100].

C. Escape statistics

To investigate the chaotic transport in the vicinity of the
CU fixed point we consider an ensemble of initial conditions
in a 4D cube

Uδ = [−δ, δ]2 × [0.5 − δ, 0.5 + δ]2, (12)

with small δ. The exit region is again chosen to be p1, p2 ∈
[−0.5, 0.5] and q1, q2 /∈ [0.25, 0.75]. Figure 11 shows the
average escape time 〈nesc〉 for an ensemble of 104 orbits
in dependence on K1 for different δ = 10−4, δ = 10−6, and
δ = 10−8. When approaching the Krein collision parameter
K∗

1 = 0.3, the average escape time 〈nesc〉 strongly increases
and for K1 > 0.29 exceeds 107 iterations. The same is also
found for the smallest escape time (not shown). Extract-
ing the functional dependence from the data turned out to
inconclusive.

The tail of the distribution P(nesc) of escape times is very
well described by an exponential; see Fig. 12. This provides
a hint at what mechanism could be responsible for such large
escape times: there could be one partial barrier (of unknown
origin) for the dynamics which allows for a small flux to-
wards the escape region [99]. Such a single partial barrier
would lead to a simple exponential [101]. In contrast, in a
generic higher-dimensional system with a mixed phase space,
an overall power law is expected; see Refs. [74,76,84–94] and
references therein. Note that for the small hump of 〈nesc〉 seen
in Fig. 11 around K1 = 0.284 the corresponding P(nesc) shows
a nonexponential behavior in the tail.

To quantify the escape dynamics of the ensemble, we now
consider the extent as a function of the number of iterates.
Explicitly we determine

dmax(n) = maxi�n{||z(i) − z∗|| | with z(0) ∈ Uδ}, (13)

where z(i) is the ith iterate of an initial point z(0) ∈ Uδ and
||zi − z∗|| is the distance to the complex unstable fixed point
at z∗. We use 104 initial conditions in Uδ with δ = 10−6.
Figure 13 shows the result for five different values of K1. The
expansion during the first 100 iterations is similar and after

FIG. 11. Average escape time 〈nesc〉 of an ensemble of 104 orbits
started in Uδ in dependence on K1 for δ = 10−8 (purple downward
triangles), δ = 10−6 (blue triangles), and δ = 10−4 (red circles).
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FIG. 12. Histogram P(nesc ) of the escape times for K1 = 0.287
and K1 = 0.288. The dashed lines show a fit to an exponential for
large nesc.

about 10 iterations follows an overall exponential given by
|λ|n, where λ is the eigenvalue with largest absolute value.
For K1 = 0.28 this is illustrated by the blue dashed curve. On
a finer scale the initial expansion happens in a steplike manner.
This is due to the spiraling motion of each orbit as illustrated
in Fig. 5. This motion has a different extent in the different
directions, so that a larger distance is obtained only periodi-
cally after approximately 10 iterations for the first expansion
phase. This corresponds to half the reciprocal winding fre-
quency of the fixed point.

After the first rapid expansion phase, the maximal distance
shows prominent plateaus extending over several orders of
magnitude in time. These plateaus become longer the closer
the parameter K1 is to K∗

1 = 0.3, i.e., the parameter of the
Krein collision. Thus for a very long time the ensemble is
effectively confined in phase space. Afterwards there is at
least one trajectory which leaves this region very quickly, as
manifested by the sharp increase of dmax.

FIG. 13. Maximal distance dmax of an ensemble of 104 initial
conditions started in the 4D cube Uδ with δ = 10−6 vs the number of
iterations n for K1 = 0.28, 0.2825, 0.285, 0.2875, 0.29 (top to bot-
tom, corresponding to increasing escape time). The initial expansion
is well described by ∝|λ|n, shown for K1 = 0.28 (blue dashed curve).

FIG. 14. Maximal extent d̃max of an ensemble of 104 initial con-
ditions started in the 4D cube Uδ with δ = 10−6 vs the number of
iterations n. The inset shows the maximal extent of a single exem-
plary orbit up to the first 1000 iterations.

A closer look at the plateaus reveals that there is still
a rather slow increase. The occurrence of the plateaus can
be explained by the alternating spiraling in and out of the
dynamics already observed in Refs. [6,11,36,38]: An orbit
initially started near the complex unstable fixed point moves
away from it on a spiral along the unstable manifold until it
reaches a maximal distance to the fixed point. This behavior
corresponds to the first expansion phase up to approximately
100 iterations. Subsequently, the orbit spirals in again and
gets very close to the fixed point with some minimal distance.
When spiraling out again, this can lead to a slightly increased
maximal distance. This process of inward and outward spi-
raling repeats many times before the orbit escapes quickly.
Note that this sequence of outward and inward spiraling holds
only for parameters which are near the elliptic-elliptic region
in the parameter plot in Fig. 4, i.e., if K1 is sufficiently close
to K∗

1 = 0.3. Farther away from the Krein collision parameter
the extent of the plateau of dmax becomes very short or even
nonexistent; see Fig. 13 for K1 = 0.28.

It is also illuminating to consider the extent of the iterated
ensemble at a given number of iterations,

d̃max(n) = max{||z(n) − z∗|| | with z(0) ∈ Uδ}; (14)

see Fig. 14. Initially one has the overall exponential increase
which is superimposed by small oscillation caused by the
spiraling motion. This occurs until the ensemble has expanded
until the homoclinic intersection, which corresponds to the
beginning of the plateaus in Fig. 13. Afterwards, there is a
prominent dip around n = 200 i.e., the extent of the ensemble
has become quite small again and most of the points are
located in a small surrounding of the complex unstable fixed
point. These minima converge to the plateau for growing n
such that the second dip is already barely visible. This effect
is due to the inward and outward spiraling behavior of each
individual orbit. The inset of Fig. 14 shows d̃max of one single
orbit. The position of the first minimum after the expansion
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of one single orbit matches roughly the first minimum in the
plateau of the ensemble. This expansion and contraction of
the ensemble repeats approximately periodically until some
loss of correlations sets in and the dips of dmax become less
and less prominent. Note that such kind of dynamics is also
found for 2D symplectic maps for the dynamics after a period-
doubling bifurcation and also for 4D symplectic maps with a
II fixed point. A more detailed investigation and comparison
of these cases would be very interesting and is left for future
studies.

D. Escape dynamics

The temporal dependence of the extent of the iterates of the
ensemble allows for quantifying the long-time confinement
within the chaotic region surrounding the complex unstable
fixed point. Still, the key question is, what is responsible for
this long-time confinement and what is the escape mecha-
nism? In particular, referring to the normal form description,
there could be either an escape within the I = 0 plane or
across different planes with I �= 0. Escape within I = 0 would
be similar to the case of the period-doubling bifurcation in 2D
symplectic maps, where just after the fixed point has become
unstable there are usually still invariant curves so that an
escape of orbits is possible only when being further away from
the bifurcation in parameter space. In contrast, the escape
across different planes with I �= 0 would be a genuinely 4D
effect. In principle there could also be a competition between
these two escape routes and which of them is relevant could
depend both on parameters and considered timescales.

As a measure of the invariant I of the normal form for a
symplectic map we make use of the quadratic invariant of the
linearized map. With Eq. (B2) we get

Q = −p2
1 + p2

2 − q2
1(K1 − K ) − q2

2(K2 − K )

+ p1q1(K − K1) + p2q2(K2 − K )

+ K (p1q2 − p2q1 + 2q1q2). (15)

By use of a suitable coordinate transformation Eq. (15) de-
generates for the Krein collision parameter into two planes,
namely, the p1 = −p2 and the q1 = q2 plane [33]. These two
planes geometrically correspond to the representation of the
I = 0 plane for the hyperplanes x2 = 0 or alternatively y2 = 0
in the normal form description; see Sec. II B. Hence, the
quadratic invariant at the fixed point is Q(z∗) = 0.

However, away from the Krein collision the two planes are
not degenerate anymore. Therefore Q does not resemble the
I = 0 plane, and we get

Q0 = Q(z∗) = −K1 + K2

4
+ K, (16)

which is not zero in general. Still it turns out, that Q − Q0

is a well-suited quantity to approximate the invariant I of the
normal form for a symplectic map.

To address the question of the possible escape route, it is
helpful to compare for an ensemble of initial conditions the
individual coordinates of the orbits right before they escape.
Figure 15(a) shows the q1 and q2 coordinates as well as the
quadratic invariant Q as function of ñ = n − nesc, i.e., for a
few iterations before and after the escape of an orbit. The

FIG. 15. (a) Shown are the q1, q2-coordinates and the quadratic
invariant of the linearization Q of 1000 orbits started with random
initial conditions in Uδ with δ = 10−6 and K1 = 0.288 over ñ =
n − nesc. The escape criterion is the same as in the previous experi-
ments and marked as a red dashed line, while in the last plot the blue
dashed line represents Q0. (b) 3D phase-space slice representation of
segments of a single exemplary orbit for K1 = 0.288. Each segment
consists of consecutive 10 000 iterates, and shown are those points
fulfilling the slice condition for the segments j = 3, 7, 11, 15, 19,
and 23; see the text for further explanation. The unstable manifold
is shown as a red curve and the Q = Q0 plane as a gray transparent
surface. For a rotating view see the Supplemental Material [77].

initial conditions of the ensemble with 1000 orbits are started
in Uδ with δ = 10−6 and the kicking strength is K1 = 0.288.
The orbits are confined for negative ñ and fulfill the escape
criterion for positive ñ, as indicated by the red dashed hori-
zontal lines. The spread of the distances of q1 and q2 around
the fixed point, i.e., the width of the distribution of distances
around 0.5, is slightly increasing towards ñ = 0. Even though
this trend is visible in both coordinates, the escape condition
is reached first by the q2 coordinate.

In order to understand the escape mechanism in terms of
the phase space geometry, we compare the escape path in the
3D phase-space slice with the geometry of the normal form.
The arrangement of regular tori and the family of 1D tori (see
Fig. 6) suggest that the Q = Q0 plane is a good approximation
to the I = 0 plane, compare to the gray plane in Fig. 15(b).
Therefore, Q − Q0 provides an approximate measure of how
far a point of an orbit is away from the I = 0 plane; see
Fig. 15(a). As for the single coordinates, Q shows an overall
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FIG. 16. The mean width standard deviation (a) and the variance
(b) of the quadratic invariants Q of the ensemble in Fig. 15 are shown.
The blue set corresponds to the set of orbits with Q(̃n = 0) > Q0

and the inverse to the red data points. The black dashed line in
(a) represents Q0.

increase and is spread more widely as ñ approaches 0. How-
ever, about seven iterations before ñ = 0 the distribution of Q
splits into two separate parts, away from 0.

In order to determine if the ensemble escapes through
these two separated escape paths or interchanges between
those two, we split the ensemble in two subsets by either
Q(̃n = 0) > Q0 or Q(̃n = 0) < Q0 and determine their mean
and variance. Figure 16(a) shows the average as dots and their
standard deviation as error bars of the Q(̃n = 0) > Q0 and
the Q(̃n = 0) < Q0 subset in blue and red, respectively. The
ensemble clearly separates in these two sets and fluctuates
around Q0 marked as a black dashed line. Once the escape
criterion is fulfilled, either Q > Q0 or Q < Q0 and initially
no further change in sign occurs. This behavior translates to
escape either across I > 0 or I < 0 planes in the normal-form
picture. Crossing the planes with different I is possible only
because the normal-form geometry provided by Eq. (4) is
broken.

Figure 16(b) shows the time evolution of the variance of
both sets ranging from 2000 iterations before the escape up
to the escape. We observe the same type of increase of the
variance for both subsets towards the escape at ñ = 0. Un-
derstanding the behavior of the variance quantitatively is an
interesting future task.

By following one single orbit we can also get an intu-
ition of how the orbit crosses the different I �= 0 planes;
see Fig. 15(b). Here, we consider a single orbit with ini-

tial condition (p1, p2, q1, q2) = (0, 0, 0.5 + μ, 0.5 + μ) with
μ = 10−5 for K1 = 0.288. This orbit escapes after approx-
imately 266 000 iterations in our numerical implementation
of the map. For this orbit we consider successive segments
[ j · 10 000, ( j + 1) · 10 000] of the iterates of the orbit. For
each segment those points fulfilling the slice condition (9)
with ε = 10−4 are determined. A selection in the surrounding
of the complex unstable fixed point is shown in Fig. 15(b)
together with the 3D phase-space slice of the unstable man-
ifold as a red curve. This plot shows that the iterates of the
initial point are approximately restricted around 1D lines in
the 3D phase-space slice. These lines follow the unstable
manifold and each of the successive segments appears to lie
on a slightly bent surface, similar to the I �= 0 planes of
the normal form, compare with Fig. 3. This suggests that
an escaping orbit is following the unstable manifold which
gives rise to transport through the I �= 0 planes. Note that
the slice segments for j = 7, 19 are located at the excur-
sion of the manifold farther away from the fixed point and
therefore appear only at the edge of the magnification. In
general, the motion along the unstable manifold explains
also the repetitive expanding and contracting behavior of the
orbits.

V. SUMMARY AND OUTLOOK

In this paper the transition of a fixed point with elliptic-
elliptic dynamics to complex-unstable dynamics under pa-
rameter variation is investigated for a 4D symplectic map.
Using 3D phase-space slices we visualize regular dynamics
in the vicinity of the fixed point. While in the elliptic-elliptic
case there exist two families of 1D tori which are attached
to the fixed point and are surrounded by regular 2-tori, these
families merge into one single family and split off the fixed
point. Moreover, the geometry of regular orbits close to the
fixed point in the 3D phase-space slice lie on surfaces as
predicted by the normal form description; see Fig. 3. The
phase-space representation is complemented by a frequency
analysis of regular tori; see Fig. 8. Before the transition to
complex instability the two families of 1D tori are attached to
the fixed point forming a cusplike region which encloses the
regular tori. The fixed point becomes complex unstable under
parameter variation when reaching the −1:1:0 resonance line
and the families of 1D tori split off the fixed point. Applying a
unimodular transformation clarifies that these apparently two
families of 1D tori actually form a single arc in frequency
space.

Once the fixed point has become complex unstable nearby
orbits may eventually escape. However, it turns out that
shortly after the transition orbits are confined to a particular
phase-space region for very long times. This region can be
visualized using escape time plots; see Fig. 9. The extent is
governed by the stable and unstable invariant manifolds of
the complex unstable fixed point. In the 3D phase space they
lead to a geometry which is visually similar to that of the
well-known homoclinic tangle for 2D symplectic maps.

To quantify these observations we consider the escape
statistics for an ensemble of 104 orbits, started in the vicin-
ity of the fixed point in dependence on the distance to the
bifurcation point, i.e., by varying the parameter K1. The av-
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erage escape time strongly increases when approaching the
bifurcation point. Measuring the maximal distance of all or-
bits of the ensemble to the fixed point over the number of
iterations, reveals three different phases of the dynamics; see
Fig. 13. Initially, for the first approximately 100–200 iter-
ations, the distance increases exponentially, followed by a
extended plateaus in the second phase. These plateaus cor-
respond to the long-time confinement and extend over longer
times the closer the parameter is to the Krein bifurcation. A
closer look at the plateaus shows that there is a very slow
increase as function of time. The plateaus are due to the in-
ward and outward spiraling dynamics of the ensemble which
follows the unstable invariant manifold. Thus, the slope cor-
responds to a slowly growing extent of individual orbits; see
Fig. 14. Eventually, in the last phase one orbit of the ensemble
will escape after a critical time and the maximal distance of
the ensemble quickly reaches approximately 1. If the fixed
point is very unstable, the plateau is very short or even not
existent.

Comparing the q1, q2 coordinates and the quadratic invari-
ant Q of the ensemble for the transition from phase two to
three allows for determining the main escape paths close to
the bifurcation; see Fig. 15. This provides evidence that long
confined orbits escape across either I > 0 or I < 0 planes of
the normal form. Thus the escape mechanism is genuinely
higher-dimensional. Thus we can now answer the questions
raised in Secs. IV A and IV D: the long time confinement
of orbits near the complex unstable fixed point is due to a
slow escape along the unstable manifold while going across
approximately invariant planes of the underlying normal form.

Based on the improved understanding of the geometry and
escape of orbits near a complex unstable fixed point, an inter-
esting future task is to explicitly determine the invariant I for
the specific map using a numerical normal form analysis. This
would allow for accurately quantifying the transport across the
approximately invariant planes and to investigate whether the
escape can be described by a diffusive process.
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APPENDIX A: STABILITY ANALYSIS IN 4D MAPS

Here we briefly summarize results on the stability of
fixed points in 4D symplectic maps [31]. A map M:R4 →
R4 is called symplectic if its Jacobian matrix DM fulfills
DMT JDM = J , where J = (0 −I

I 0 ) is the 4 × 4 Poisson
matrix with I being the 2 × 2 identity matrix. An immediate
consequence is that a symplectic map is volume preserving as
det(DM) = 1. As mentioned above, the characteristic poly-
nomial comes in palindromic form Eq. (1), which implies
the existence of four stability types defined by the possible
composition of eigenvalue pairs.

These stability types can be distinguished by introducing
the stability index of an eigenvalue pair ρ = λ j + λ−1

j and
reducing the characteristic polynomial in Eq. (1) to

R(ρ) = P(λ) λ−2 = ρ2 − Aρ + B − 2. (A1)

As shown in Ref. [31], different regimes of stability follow
from Eq. (A1) in dependence on A and B. The linearized map
DM is spectrally stable if and only if all roots of R(ρ) are real
and within the interval [−2, 2]. Therefore R(±2) = 0 yields
two stability boundaries, namely,

B = ±2A − 2. (A2)

Crossing either of these boundaries corresponds to a saddle-
center (SC) or a period-doubling (PD) bifurcation, respec-
tively. Another boundary corresponds to the roots of R(ρ)
becoming complex, which occurs when the discriminant
of the reduced characteristic polynomial � R(ρ) = (ρ1 −
ρ2)2 = 0. This gives the so-called Krein parabola (KP)

B = A2/4 + 2. (A3)

APPENDIX B: KREIN COLLISION

In a Krein collision two elliptic eigenvalue pairs coalesce
on the complex unit circle. Whether they can split off the unit
circle to form a Krein quadruplet depends on the so-called
Krein signature [31,51–53]. The Krein signature is given by
the signature (m+, m−) of the quadratic form

q(x) = xT J DM x, (B1)

which can, for example, be computed numerically from the
eigenvalues of the symmetric matrix 1

2 (J DM + (J DM)T ),
where m+ is the number of positive and m− is the number
of negative eigenvalues. If m+ = 0 or m− = 0 then the fixed
point cannot loose stability and stays elliptic-elliptic. Con-
versely, the fixed point may loose its stability and become
complex unstable if the signature is mixed. Note that the
quadratic form Eq. (B1) allows the construction of an invariant
of the linearized dynamics as

q(x) = xT J DM x = (DM x)T J DM (DM x) (B2)

is preserved under DM [33]. The geometric interpretation of
the Krein signature becomes more clear when considering the
signature of a multiplier λ on the unit circle,

σ (λ) = sgn q(u), (B3)

where u is any real vector in the eigenspace of λ. If eigenval-
ues with the same signature collide on the unit circle, they can-
not split off to form a Krein quartet. Explicitly, consider a 4D
symplectic map which is uncoupled, i.e., M(p1, p2, q1, q2) =
(p′

1, p′
2, q′

1, q′
2) with (p′

1, q′
1) = M1(p1, q1) and (p′

2, q′
2) =

M2(p2, q2). Then using the quadratic form (B1) and (1,0,0,0)
and (0, 1, 0, 0) as vectors of the corresponding eigenspaces
the signatures are given by σ (λi ) = sgn((DMi)12). Therefore
the fixed point can only become complex unstable under some
generic coupling if [103,104]

sgn((DM1)12) sgn((DM2)12) < 0. (B4)

This reflects the counter-rotating nature of the dynamics
in the two independent subspaces, similar to the Cherry-
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Hamiltonian describing two counter-rotating harmonic oscil-
lators [72].

Furthermore, a mixed Krein signature implies that the lin-
earized map of the coalesced eigenvalues has nontrivial Jordan
blocks of the shape m+ × m+ and m− × m− while the matrix
can be diagonalized if the signature is positive or negative
definite. Thus, the linearization takes either the form [33]⎛

⎜⎜⎝
λ 1 0 0
0 λ 0 0
0 0 λ̄ 1
0 0 0 λ̄

⎞
⎟⎟⎠ or

⎛
⎜⎜⎝

λ 0 0 0
0 λ 0 0
0 0 λ̄ 0
0 0 0 λ̄

⎞
⎟⎟⎠, (B5)

where λ = eiθ and θ ∈ ]0, π [.
Besides this, in case (b), i.e., a II or HH fixed point, the sig-

nature is always mixed. Thus in this case there is no constraint
to enter the CU region.

APPENDIX C: NORMAL FORM ANALYSIS

The geometry of the transition to complex unstable dy-
namics can be understood using a normal form analysis. This
section is a review of the results of Ref. [40]. Consider a
symplectic map M,

x′ = M(x, α, ϕ), (C1)

with x, x′ ∈ R4 and parameters α, ϕ ∈ R. The fixed point is
assumed to be at the origin x = 0 such that M(0; α, ϕ) = 0
for arbitrary α and ϕ. Furthermore, the eigenvalues of the
linearized map DM(0; 0, 0) are assumed to coalesce at λ =
exp (±iθ ) with θ = 2πν and irrational ν ∈]0, 1/2[. Note that
the case of the rational Krein collision is, for example, consid-
ered in Ref. [55]. The collision is controlled by the parameters
α and ϕ as shown in Fig. 2. The parameter α controls the
transition from the elliptic-elliptic eigenvalue pair for α > 0
to the complex unstable quadruplet for α < 0. The angle ϕ

rotates the angle of the Krein collision on the complex unit
circle.

In case of the irrational Krein collision with α = 0 and ϕ =
0, the linearized map has nontrivial Jordan blocks and can be
brought into a Williamson normal form L0 by a symplectic
transformation T :

T −1 DM T = L0(0; 0, 0) =
(

Rθ εRθ

0 Rθ

)
, (C2)

where ε = ±1 and

Rθ =
(

cos θ sin θ

− sin θ cos θ

)
. (C3)

For α �= 0 and ϕ �= 0, the Williamson normal form has a
transversal two-parameter unfolding, i.e., there is a two-
parameter family of matrices that preserve the symplectic
form and describes the transition from stability to complex
instability via the Krein collision given by [55]

L = L0(0, α, ϕ) =
(

(1 − εα)Rθ+ϕ εRθ+ϕ

−αRθ+ϕ Rθ+ϕ

)
. (C4)

With that, the transformed map M̃ in the new coordinates y
can be represented as a formal power series

y′ = M̃(y, α, ϕ) ≈ Ly + �2(y, α, ϕ) + · · · , (C5)

where � j (y, α, ϕ) are vector-valued polynomials of degree j.
In Refs. [40,54,55] it is shown that Eq. (C5) can be normalized
by utilizing a symplectic diffeomorphism � j (y) such that
�−1

j ◦ M̃ ◦ � j is in normal form with respect to L up to order
j for arbitrary j ∈ N.

As a result, one gets the nonlinear normal form [40](
x′
y′

)
=

[
(1 − εh)Rθ+ν εRθ+ν

−hRθ+ν Rθ+ν

](
x
y

)
(C6)

with (x, y) = (x1, x2, y1, y2) ∈ R4. With the help of a deduced
underlying generating function with respect to the coordinates
X = x2

1 + x2
2 and I = y1x2 − x1y2,

G(X, I ) = ϕI + αX + 1
2 b1X 2 + b2IX + 1

2 b3I2 + · · · , (C7)

the parameters

h = ∂G

∂X
= α + b1X + b2I + · · · ,

ν = ∂G

∂I
= ϕ + b2X + b3I + · · ·

are obtained. For our purposes we truncate Eq. (C7) after
quadratic order in X and rescale h and ν such that we obtain
ν̃ = ϕ and h̃ ≈ α + bX where b = ±1.

The normal form Eq. (C6) is guaranteed to be equiv-
ariant to a symmetry operation [[54], Theorem 2.7], i.e.,
the normal form commutes with the action of a symmetry
group. A straightforward computation reveals that Eq. (C6)
is S1-equivariant where the symmetry transformation acts as
rotation on all coordinates (Rγ x, Rγ y) for γ ∈ [0, 2π [. The
corresponding invariant of Eq. (C6) is I (x′, y′) = I (x, y) =
y1x2 − x1y2. Consequently, the 4D nonlinear normal form map
can be reduced further by introducing new coordinates.

Hence, we take advantage of the symmetry and visualize
the dynamics of Eq. (C6) in the hyperplane x2 = 0; see Fig. 3.
Note that the full dynamics can be reobtained by applying the
symmetry operation, i.e., by simultaneous rotation in the x and
y coordinates; see Ref. [[40], Eq. (3.1)]. For the sake of clarity,
we stick to the half-space with x1 � 0 since the other half
can be obtained by the transformation (x1, y1) �→ (−x1, y1).
Furthermore, without loss of generality we fix the parame-
ters ε = 1 and b = 1. First, we consider the case I = 0, i.e.,
0 = I = −x1y2. Without loss of generality, we choose y2 = 0
and Eq. (C6) reduces to the 2D map, Eq. (2),

x′
1 = |(gx1 + y1|, y′

1 = (̃hx1 − y1) sgn(gx1 + y1)

with g = 1 − εh. For the second case I �= 0, the coordinate y2

is given by the invariant I . Thus, Eq. (C6) reduces to a 2D map
with all structures living on a hypercolic cylinder y2 = −I/x1

in the reduced phase space. The map takes the form of Eq. (3),

x′
1 =

√
(gx1 + y1)2 + I2

/x2
1,

y′
1 = (gx1 + y1)(y1 − h̃x1) + I2

/x2
1

x′
1

.

APPENDIX D: COMPUTING STABLE
AND UNSTABLE MANIFOLDS

There are various methods to determine the invariant
manifolds associated with an unstable fixed point; see, e.g.,
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Refs. [105–110]. Here we use the parametrization method,
which was introduced in Refs. [48–50] and has been used,
for example, in Refs. [75,95,96].

The parametrization method takes advantage of the
Hartman-Grobman theorem which for symplectic maps states
that the linearization of a fixed point or periodic orbit is conju-
gate to its local stable and unstable invariant manifolds W s,u

loc ,
if the eigenvalues have an absolute value different from one,
i.e., if they are unstable. The key point of the parametrization
method is to find smooth vector-valued functions Fs and Fu

which parametrize the stable and unstable invariant manifolds.
In order to do so, Fs,u have to obey on the one hand the linear
conditions

Fs,u(0) = z∗ and (D1)

∂Fs,u(θ)

∂θ j
= ξ j for 1 � j � ns,u (D2)

with θ = (θ1, . . . , θns,u ) ∈ Cns,u and ξ j ∈ C2ns,u being the as-
sociated eigenvector to the ns stable and nu unstable
eigenvalues λ j .

On the other hand, Fs,u must satisfy the conjugacy equation

M ◦ Fs,u(θ) = Fs,u
(
λ1θ1, . . . , λns,uθns,u

)
(D3)

in order to take the nonlinearity of the map into account.
For a complex unstable fixed point of a 4D symeplectic

map one finds ns = nu = 2. Therefore, we expand Fs,u into
the power series

Fs,u(θ1, θ2) =

⎛
⎜⎝

p1(θ1, θ2)
p2(θ1, θ2)
q1(θ1, θ2)
q2(θ1, θ2)

⎞
⎟⎠ =

∞∑
i=0

∞∑
j=0

f i j θ i
1 θ

j
2 , (D4)

with vector-valued coefficients f i j ∈ C4.
For the considered map (4), the nonlinear terms consist

of sine functions with various input arguments, namely three
different sums of phase-space coordinates. We approximate
these sine functions by their Taylor series representation.
Advantageously, the coefficients of this series can be easily
computed by an auto-differentiation algorithm which is based
on Refs. [111,112]. Using the series representation of the sine
terms of the map M and combining (D4) and the conjugacy
equation (D3) leads to a homological equation which can be
solved iteratively for the coefficients f i j up to a given order
(m, n). The corresponding initial value problem is solved by
the linear conditions (D1) and (D2).
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