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Optimized properties of chaos from a laser diode

Guillaume Bouchez ,* Tushar Malica, Delphine Wolfersberger, and Marc Sciamanna
Chaire Photonique, LMOPS, CentraleSupélec and Université de Lorraine, 2 Rue Edouard Belin, 57070 Metz, France

(Received 15 July 2020; revised 26 November 2020; accepted 16 February 2021; published 12 April 2021)

We perform an experimental parametric study of the chaos generated by a laser diode subjected to phase-
conjugate feedback. In addition to the typical figure of merit, i.e., chaos bandwidth, the corresponding spectral
flatness and permutation entropy at delay is analyzed. Our experimental observations reveal that the chaos can
be generated with a bandwidth of ≈ 29 GHz, a spectral flatness up to 0.75, and a permutation entropy at delay
of up to 0.99. These optimized performances are maintained over a large range of parameters and have not been
achieved in the conventional optical feedback configuration. Interestingly, reducing the pump current reduces the
chaos bandwidth while keeping the spectral flatness and the permutation entropy at delay the same as observed
for increased pump current. Our experimental findings are consistent with the presented numerical simulations
produced using the Lang-Kobayashi model.
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I. INTRODUCTION

Keeping a laser diode stable is usually considered a prior-
ity. However, chaotic laser diodes can be employed in various
fields, such as encrypted communications, random number
generation, and remote sensing [1–3]. The aforementioned
stability of the semiconductor lasers has been perturbed to
introduce chaos in the system through various popular tech-
niques, such as optical or optoelectronic feedback, optical
injection, and current modulation [4]. One particular approach
is the phase-conjugate feedback (PCF) in which the light
reflected into the laser is the phase conjugate of the laser out-
put. This configuration has shown to exhibit a variety of rich
dynamics in addition to chaos, in particular, restabilization un-
der strong feedback strength [5–7] and external-cavity modes
(ECMs). The latter is characterized by the self-pulsating
dynamics regularly oscillating close to a multiple of the
frequency of the external cavity [7,8]. Previously, we also
experimentally demonstrated that the PCF-generated chaos
significantly enhances the chaos bandwidth when compared
to the case of conventional optical feedback (COF) [9] and
can exhibit highly spatiotemporally-complex outputs [10].

To quantify the chaos in the acquired time series, one
widely used indicator is the chaos bandwidth. It is defined
as the span of frequencies that contains 80% of the laser
output power spectrum total energy [11]. Broadband chaos
improves the performances of the chaotic random number
generation [12] and chaos cryptography [13]. In COF the
intrinsic limit of the chaos bandwidth is given by the relax-
ation oscillation (RO) frequency. The chaos bandwidth can be
further enhanced by dual-feedback [14] successive injections
into three different laser diodes [12], mutual coupling [15], or
self-interferences in a fibered Mach-Zehnder interferometer
[16]. In Ref. [15] the chaos bandwidth was shown to reach up
to 38.6 GHz.
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Further analysis of the chaotic complexity can be per-
formed using the spectral flatness, which quantifies the
distribution of the frequencies [17]. Finally, the permutation
entropy quantifies the entropy and measures the predictability
at the operating conditions under consideration [18]. Previous
studies on the PCF systems were limited to the evolution of
chaos bandwidth [9,19] or the permutation entropy [10] versus
the feedback strength.

In this article we extend prior analysis with an extensive
parametric study of the chaos properties, i.e., the chaos band-
width, the spectral flatness, and the permutation entropy, as
a function of the feedback strength, of the time delay in the
external cavity, and the laser pumping current. As a result, we
experimentally and numerically demonstrate that the PCF ap-
proach is a robust method to generate a comprehensive chaotic
system output which is broadband, flat, and spatiotemporally
complex. We show that the higher feedback strength improves
the bandwidth of the chaos. Increasing the pump current in-
creases the chaos bandwidth, while the spectral flatness and
the permutation entropy remain consistently high, indepen-
dent of the other parametric changes. However, the time delay
has negligible impact on the PCF-induced chaos. We therefore
demonstrate that by tuning the experimental parameters the
user can obtain highly complex chaos and simultaneously
adjust its chaos bandwidth.

We observe an optimal bandwidth of 28.7 GHz, an entropy
at delay of up to 0.99, and a flatness of up to 0.75, and these
high values are maintained over a large range of parameters.
Our experiment shows, to the best of our knowledge, the
best chaos performance in the simplest configuration of a
laser diode with a single optical feedback, i.e., without any
additional coupling or injection.

II. EXPERIMENTAL FINDINGS

A. Principle of the experiment

Our experimental setup is presented in Fig. 1 and is similar
to the one in Refs. [7,10,19]. We use a commercial Fabry-
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FIG. 1. Setup of the experiment.

Pérot laser diode emitting at 852 nm, model JDS-Uniphase
SDL-5420. Its threshold current is 13.9 mA, and we oper-
ate it between 30 and 80 mA. At 80 mA the laser output
power is 54.4 mW. 20% of the laser output is sent to a high-
bandwidth photodiode through an optical fiber. A Faraday
isolator prevents parasitic reflections from light coupling into
the fiber. The laser output light is then focused by a lens into
a rhodium-doped barium titanate (BaTiO3) crystal of dimen-
sions 5 × 5 × 5 mm that works as a phase-conjugate mirror.
The phase-conjugate feedback follows the inverse path of the
laser output beam and enters back into the laser internal cavity.
20% of this feedback light is sent to a power meter to know
the feedback strength. It is defined as the ratio of the free
running laser output to the power of the light sent back into
the laser facet. We set the distance between the mirror and the
laser at two different values—53.2 and 14.7 cm. These values
correspond to the round-trip delays of 3.55 ns and 0.98 ns
and external-cavity frequencies of 282 MHz and 1.02 GHz,
respectively. These values were verified by an observation of
the autocorrelation function of the time series. Due to the
chosen experimental configuration, the delay length is always
inferior to the period of the relaxation oscillation frequency,
implying our study lies in the so-called long external cavities
[20].

The laser dynamics is analyzed by a high-bandwidth pho-
todiode (Newport 1474-A, AC coupled, 3dB-bandwidth of
38 GHz) connected to an oscilloscope (Teledyne LeCroy 10-
Zi-A) with a bandwidth of 36 GHz and a sampling rate of 80
GSample/s. The output of the power meter is also connected
to the oscilloscope. We record a 1-μs-long time series.

The phase-conjugate mirror principle is shown on the right
of Fig. 1. The beam enters the crystal and part of it is deviated
by beam fanning, which is a photorefractive effect taking
place inside the crystal. The deviated light is reflected by the
edges of the crystal. Thus, the light deviated at point 1 arrives
at point 2. Similarly, the light deviated at point 2 arrives at
point 1. At point 1, four-wave mixing occurs between the
nondeviated beam, the beam deviated at point 2, and the beam
deviating at point 1. The fourth beam is the counterpropaga-
tive phase conjugate of the input beam. Similar wave mixing
occurs at point 2. This configuration is named a “cat” mirror
[21].

B. Various chaotic dynamics generated by the system

Figure 2 illustrates several dynamics of a PCF system.
Figures 2(a)–2(e) show a 120-ns subset of the acquired time

series measured on 120 ns (on a total length of 1 μs). A zoom
on a time slot of 10 ns is also displayed in Figs. 2(f)–2(i).

Figures 2(a) and 2(f) show the case of low feedback
strength. Irregular pulsations are found with intensity peaks
generally separated by a time span of about 160–200 ps (see,
for instance, the oscillations between 42 and 43 ns). However,
faster dynamics can also be observed on the same time traces.
They are particularly visible between 43 and 44 ns. Such
dynamics match earlier observations of chaos from undamped
relaxation oscillations [6,19,22]. Indeed, in the case of an
increased feedback strength, the system undergoes a first bi-
furcation, leading to a limit cycle at the relaxation oscillation
frequency [5,23].

Figures 2(b) and 2(g) are for higher feedback strengths.
One can notice the time traces display both “slow” (≈ 200
ps) and faster variations, and hence the chaos encompasses a
wider range of timescales. As the feedback is further increased
in Figs. 2(c) and 2(h), the laser is at the edge of a dynamical
change and follows an intermittent destabilized limit cycle,
mixing chaos, and regular oscillations. Between 18 and 41 ns,
the output power is close to periodicity, with a period of ap-
proximately 150 ps (6.8 GHz), while at longer times the signal
is highly chaotic. The system goes back and forth between
chaos and quasiperiodicity and an analysis of the full time
series confirms it. Figure 2(h) is centered on the bifurcation
and shows that the quasiperiodic signal is interrupted for a
few picoseconds every nanosecond. This duration of 1 ns is
a signature of the delay time. The system, therefore, enters
a dynamical regime where both relaxation oscillations and
external-cavity timescales interplay.

The time series in Fig. 2(d) shows an external-cavity mode,
i.e., a limit cycle solution that is a signature of the PCF [7,8].
The output power of the laser oscillates at a period equal to
111 ps (9.02 GHz), which is about the ninth harmonic of the
frequency of the external cavity (9.18 GHz). By comparison,
the period of the ROs at that current is 208 ps (4.8 GHz).
Such a high-frequency pulsed solution is an example of the
previously introduced ECMs, which are peculiar solutions of
the PCF system.

Figures 2(e) and 2(j) show oscillations at various
timescales. These oscillations are often observed to be faster
than in Fig. 2(b). However, this time series displays a strong
signature of the time delay. Short pulses are indeed some-
times generated at a repetition rate equal to 2.55 ns (the
delay used for this specific measurement), for instance, be-
tween 84 and 102 ns. A very limited number of time series
shows such chaotic signatures and all of them simultane-
ously have broadband chaos, as confirmed in the following
text.

C. Quantifying chaos properties

The large diversity of the chaos reported in Fig. 2 calls for
a more quantitative analysis of the chaos properties. Therefore
several indicators have been introduced: the chaos bandwidth,
the spectral flatness, and the permutation entropy.

The chaos bandwidth is defined as the span of frequencies
than contain 80% of the total energy of the rd spectrum [11].
With this definition, a broadband chaos will have strong pref-
erence to higher frequencies.
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FIG. 2. Time traces of the laser output power at several values of feedback strength, delay, and pump current. (a)–(d) were obtained under
a pumping current of 80 mA and a delay length of 0.98 ns, while (e) was measured with a pump of 50 mA and a delay length of 2.55 ns. (f)–(j)
Zooms on the region marked with a red square on (a)–(e). Feedback strength of (e) is 5.6%. The arbitrary units of (a)–(d)/(f)–(i) are similar
but a different scale is used on (e) and (j).

To verify whether the frequencies are broadly distributed,
the spectral flatness SF is defined as the ratio of the arithmetic
mean by the geometric mean of the 80% highest energy part
of the spectrum [17]:

SF =
∏N

n=1 P( fn)1/N

∑N
n=1

P( fn )
N

, (1)

where P( fn) is the nth discrete component of the power spec-
tral density at frequency fn and where fN is the frequency of
the chaos bandwidth (

∑N
n=1 P( fn) contains 80% of the total

spectrum energy). A spectral flatness of 1 is associated with a
flat spectrum, for example, a theoretical white noise, while the
spectral flatness tends to zero for spiky signals [24]. Another
definition, which only considers the span in dB between the
maximum and the minimum, has been introduced in other
works [12]. But such a definition does not satisfy the definition
in signal processing and does not apply to the time series

analysis. The upper limit of the spectral flatness from the noise
generated solely by the oscilloscope fluctuates between 0.83
and 0.84, and therefore the maximum value we can measure.
Indeed, in practice, the power spectral density of a white noise
is distributed around a constant value with a nonzero standard
deviation. Therefore the maximum spectral flatness is strictly
inferior to 1.

Last, we introduce the permutation entropy (PE) as a pre-
cise indicator of the complexity of a time trace [25,26]. We
quantify complexity by measuring the recurrence and the
probability distribution of the carefully chosen, much smaller
subsets of the time series referred to as ordinal patterns (�).
These ordinal patterns are essentially similarly patterned in
relative amplitudes between adjacent data points grouped to-
gether. The algorithm, as explained in [25,26] and previously
used in our work presented in [10], is calculated for two given
user-defined parameters: the PE delay (θ ) and the ordinal
pattern length (D). Mathematically, the normalized PE (ρθ )
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for a given probability distribution p associated with i integral
number of ordinal patterns and timescale θ is

ρθ = −1

ln(D!)

D!∑

i=1

p(�i )ln[p(�i )]. (2)

A maximum of D! number of ordinal patterns may be con-
structed given the total length of the time series is much
larger than the ordinal pattern length, i.e., N � D. The result
will be a value of 0 � ρτ � 1, with zero signifying complete
predictability, while 1 indicates complete stochasticity.

D. Analysis of PCF chaos

Figure 3 shows the power spectra of the time series we
studied in Fig. 2. The drop-off of the spectra at a frequency
of 38 GHz is due to the maximum bandwidth of the oscil-
loscope. Chaotic spectra from lasers with feedback display
resonances at multiples of the frequency associated with the
external cavity, 1.02 GHz for Figs. 3(a)–3(d) and 292 MHz for
Fig. 3(e). These resonances will impact on the complexity of
the chaos, but the spectral flatness will indicate the strength of
these resonances. We use the method of Ref. [19] to measure
the chaos bandwidth. We removed the part of the spectrum
whose components have a power spectral density less than
3 dB superior to the noise levels. The blue part (respectively
red) of the spectra contain 80% (respectively 20%) of the
remaining energy.

The ECM observed in Fig. 3(d) oscillates at a frequency
of 9.02 GHz. This frequency equals 8.84 times the frequency
of the external cavity (1.02 GHz), which is about the ninth
harmonics of the frequency of the external cavity. This ob-
servation agrees with earlier theoretical predictions that tell
us that the frequency of the ECMs is close to but not always
equal to the harmonics of the external-cavity frequency, and
even more, varies with the feedback strength [27,28].

The chaos in Fig. 3(a) is obtained at low feedback strength,
and its frequency spectrum is similar to the chaos obtained
with COF [15]. Most of the energy is centered around the RO
frequency (4.8 GHz), and the chaos bandwidth is 13.6 GHz.
This is comparable to what one would achieve if the PCF
was replaced by a COF. However, the spectral flatness, 0.74,
shows that the energy is well distributed in this limited range
of frequencies. The chaos of Fig. 3(b) shows higher frequen-
cies. The chaos bandwidth rises to 26.1 GHz and the spectral
flatness equals 0.71. It should be noted that these values are
significantly high when considering the high bandwidth, since
high bandwidths are generally associated with limited spectral
flatness in older works [17]. The spectrum shown in Fig. 3(c)
is remarkable because it features clear peaks at 6.80 GHz and
7.86 GHz alongside a standard chaotic spectrum. Its spectral
flatness equals 0.71.

The chaos bandwidth of Fig. 3(e) equals 28.7 GHz and is
even higher than in Fig. 3(b), equalling 80% of the bandwidths
of the oscilloscope (36 GHz) and hence is the maximum
value we can measure. The associated spectral flatness re-
mains high, 0.72. The spectrum also exhibits a bump in the
frequencies between 25 and 30 GHz, and that bump explains
the exceptional value of chaos bandwidth we report. A similar

FIG. 3. Spectra of the laser output powers, corresponding to the
time traces of Fig. 2, at several values of feedback strength, delay,
and pump current. (a)–(d) were obtained under a pumping current of
80 mA and a delay length of 0.98 ns, while (e) was measured with a
pump of 50 mA and a delay length of 2.55 ns. Feedback strength of
(e) is 5.6%. The blue part of the spectrum contains 80% of the total
energy, and the chaos bandwidth is indicated in white. The magenta
region is the low-energy part of the spectrum and is therefore not
taken in account in the calculations of chaos bandwidth.

bump was observed in some spectra of Ref. [10], where we
reported values of chaos bandwidth of up to 30 GHz.

Figure 4 shows the permutation entropies associated with
the time traces of Figs. 3(a)–3(c). Values are calculated with
a pattern length of D = 7, 80 000 point-long time series,
and the PE delay (θ ) varies from 1 to 190. The permutation
entropy of the ECM of Fig. 3(d), at a feedback strength of
5.2%, is very low and oscillates at around 0.6 when varying
the PE delay. For the remaining operating conditions, signa-
tures are observed when PE delay θ equals a submultiple of
the external-cavity delay: θ = τ/4, θ = τ/3, θ = τ/2, θ = τ ,
and θ = 2τ . The time series obtained at a feedback strength
of 4.0% (in blue) has a lower chaos bandwidth and stronger
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FIG. 4. Evolution of the permutation entropy as a function of PE
delay for the three time traces obtained at feedback strengths of 1.6%
(green dashed line), 4.0% (red dotted line), and 4.4% (green dashed
line). The multiples or submultiples of the external-cavity delay are
indicated with arrows. PE delay is expressed in multiples of the
sample time (12.5 ps), and τ is here the external-cavity round-trip
time.

temporal signatures than the time series obtained at a feedback
strength of 1.6% (in red), while the PE remains high. How-
ever, the time series at a feedback strength of 4.4% (in green)
presents a lower permutation than the other cases. The mixed
ECM-chaos dynamics, therefore, reduces the complexity. In
the following analysis of the permutation entropy, we will
only consider the PE for θ close to the external-cavity delay
τ . Since for that θ , the PE shows the strongest signature of the
external-cavity delay, PE at θ ≈ τ will be referred simply as
PE(τ ) here onward.

E. Influence of the feedback strength and of the delay length

We show in Fig. 5(a) the experimental trend of the
chaos bandwidth versus the feedback strength. Furthermore,
Figs. 5(b) and 5(c) show the evolution of the spectral flatness
and of the PE(τ ) with the feedback strength and for both the
external-cavity delays. The pump current is fixed at 80 mA.
The natural slow variations of the reflectivity of the mirror
due to nonlinear optics taking place inside the crystal allow
us to address various values of feedback strength [7,19]. The
range of the feedback strength variations can be tuned with
the geometry of the crystal [29], and we have observed that
in our experiment. The chaos properties are shown for the
feedback strength values being separated by 0.15%. Each
point is accompanied with a bar indicating the standard devi-
ation when computing the property for the different operating
conditions. The PE(τ ) being longer to calculate, we selected a
smaller number of time series and calculated their PE(τ ). The
multistability between the different dynamics is indicated by
error bars, as it shows the variations in the chaos properties
in the PCF system [23,30]. However, the standard deviation
of the chaos bandwidth on each range of feedback is rather
limited. The variations for the spectral flatness are stronger,

FIG. 5. Evolution of (a) the average chaos bandwidth, (b) the
average spectral flatness, and (c) PE(τ ) vs the feedback strength.
The pump current is set at 80 mA. Experiments have been performed
with two values of delay: 3.55 ns (blue triangles) and 0.98 ns (yellow
circles).

especially for the 3.55-ns delay at low feedback strength.
However, the overall trend indicates that the variations in the
spectral flatness decrease as the feedback strength increases.

Both the chaos bandwidth and the spectral flatness increase
with the feedback strength until the feedback strength equals
3%. Following that, for values of feedback strength higher
than 3%, the spectral flatness decreases with the feedback
strength while the chaos bandwidth saturates at high values,
up to 26 GHz. PE(τ ) rises with the feedback strength and
reaches a plateau at a feedback strength of 1.5%, then de-
creases slightly. The maximum value of PE(τ ) is 0.994. These
drops in the PE(τ ) and in the spectral flatness are related to
the onset of the self-pulsing ECMs starting when the feedback
strength is greater than 2.5%.

F. Influence of the pump current

Figure 6 shows the evolution of chaos bandwidth, spectral
flatness, and the PE(τ ) when varying the pump current from

042207-5



GUILLAUME BOUCHEZ et al. PHYSICAL REVIEW E 103, 042207 (2021)

FIG. 6. Measured evolution of (a) the chaos bandwidth, (b) the
spectral flatness, and (c) PE(τ ) vs the pump current for feedback
strengths in five various intervals: [0.45, 0.55%] (blue diamonds),
[0.95%, 1.05%] (magenta diamonds), [1.45%, 1.55%] (black dia-
monds), [2.45%, 2.55%] (green diamonds), and [3%, 3.5%] (red
diamonds). The delay is equal to 3.55 ns.

40 to 80 mA. We trace in Fig. 6(a) the averaged value of
the chaos bandwidth for all the time series whose feedback
strengths are in the following ranges: 0.45%–0.55% (blue di-
amonds), 0.95%–1.05% (magenta diamonds), 1.45%–1.55%
(black diamonds), 2.45%–2.55% (green diamonds), and 3%–
3.5% (red diamonds) versus the pump current. Figure 6(b)
similarly displays the averaged value of the spectral flatness
on several intervals of feedback strengths. Finally, we give
in Fig. 6(c) the evolution of the PE(τ ) versus the pump

current for feedback strengths in the ranges 0.45%–0.55%
and 2.45%–2.55%. The delay length is here fixed at 52.2 cm
(round-trip time of 3.55 ns).

We observe that the chaos bandwidth generally increases
with the pump, with some exceptions, such as a remarkable
value of 22 GHz of average chaos bandwidth measured at a
pump of 40 mA and a feedback strength ≈2.5%. The unusual
variations of the chaos bandwidth versus the pump current for
a feedback strength of 2.5% can be explained by the apparition
or not of the mixed chaos and ECM dynamics described in
Sec. II B which impacts the chaos properties.

However, the evolution of the spectral flatness is more
complex. For a pump current of 40 mA, the spectral flatness
decreases with an increasing feedback strength. The high
spectral flatness for a feedback strength of 0.45% at 40 mA
is probably due to the smaller variations of the laser output
power, since the pump current is closer to the threshold. In
this case the measurement of the laser output power is close
to the electronic noise of the oscilloscope.

The PE(τ ) always remains high for all pump currents.
Slightly higher PE(τ ) values are observed for smaller feed-
back strengths and do not decrease when varying the pump
current. The main finding here is that the complexity will not
significantly change if the chaos bandwidth increases due to
an increase in the pump current, suggesting that the chaos
generated by PCF chaos is both complex and broadband.
In COF, the chaos bandwidth is lower than the PCF chaos
bandwidth for most of the low values of feedback [9,17]. As
the feedback increases, both simulations [17] and experiments
[31] observe a decrease of the PE(τ ).

III. NUMERICAL ANALYSIS

A. Numerical model

To simulate laser dynamics with phase-conjugate feed-
back, we use a Lang-Kobayashi model, modified for phase-
conjugate feedback [32]:

Ė (t ) = (1 + iα)E (t )N (t ) + γ F (t ), (3)

T Ṅ (t ) = P − N (t ) − (1 + 2N (t ))|E (t )|2, (4)

τRḞ (t ) = E∗(t − τ ) − F (t ). (5)

E (t ) is the complex normalized electric field of the laser, F (t )
is the complex normalized feedback field, and N (t ) is the real
normalized carrier density. t is the time, τ is the round-trip
time in the external cavity, and T is the electron lifetime, all
times being expressed as multiples of the photon lifetime τp.
γ is the dimensionless feedback strength, α is the linewidth
enhancement factor, and P is a pump parameter. There is no
phase shift in the PCF equations because the phase shift of
the forward propagation is canceled by the phase-conjugate
backward propagation [33].

Phase-conjugate mirrors do not instantaneously generate
the phase-conjugated beam. To account for this in simulations,
the finite depth penetration time τR has been added [32,34].
It filters the phase-conjugate feedback field and is directly
proportional to the interaction length in the mirror. We in-
vestigated the influence of τR in Ref. [19] and demonstrated
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FIG. 7. Theoretical evolution of (a) the chaos bandwidth, (b) the
spectral flatness, and (c) PE(τ ) vs the feedback strength. The pump
current I = 80 mA. Simulations were performed with two values of
delay: 3.55 ns (yellow circles) and 0.98 ns (blue inverted triangles).

that increasing τR forces the chaos bandwidth to saturate.
We now extend this analysis to additional parameters. In the
experiment that we presented in Sec. II A we are using a 5 ×
5 × 5 mm cube, and the associated finite depth penetration τR

is 50 [32]. We set T = 1200 and τp = 1.4 ps, as in Ref. [32].
To match our experimental observations of the relaxation os-
cillation frequencies, we choose

P = 0.2
I − Ith

Ith
, (6)

with I being the pump current and Ith the threshold current
(13.9 mA here). τR is set to 50 [7]. We choose α = 3 as typical
for a laser diode.

We simulate a 20 000-point-long time series, with an inte-
gration step equal to the photon lifetime τp. We simulate the
laser system for increasing values of feedback strength, each
simulation being initialized with the result of the previous
simulation. To avoid the system dwelling on seldom stable

FIG. 8. Simulated evolution of (a) the chaos bandwidth, (b) the
spectral flatness, and (c) PE(τ ) vs the pump current (I) for five values
of feedback strength (γ ). The delay is equal to 3.55 ns.

dynamics, we add a Gaussian noise with a standard deviation
of 10−12 to the intensity of the output field. In the following
we focus on the properties of the chaotic outputs.

042207-7



GUILLAUME BOUCHEZ et al. PHYSICAL REVIEW E 103, 042207 (2021)

B. Influence of the feedback strength and of the delay

We first compare our experimental results of Fig. 5 with
Fig. 7, where the simulated chaos bandwidth (a), spectral
flatness (b), and PE(τ ) (c) are displayed versus the feedback
strength γ . To compare with the dynamical regimes found
experimentally in Fig. 5, we note that the appearance of the
ECMs is at γ ≈ 0.06 in simulations and at ≈ 2.5% in ex-
periment. The restabilization to the steady state numerically
occurs at γ ≈ 0.1 and experimentally at a feedback strength
of approximately 5%.

Simulations predict a qualitatively similar evolution of the
chaos bandwidth regardless of the delay, with some values
of feedback creating small variations in the bandwidth, es-
pecially for γ > 0.06. The evolution described in Ref. [19]
is also confirmed by the argument that the chaos bandwidth
of a filtered PCF system increases and then saturates when
approaching the restabilization of the laser (here γ = 0.085).

PE(τ ) and spectral flatness are found to be rather insensi-
tive to the changes of the time delays, as consistent with our
experimental observations. Furthermore, the PE(τ ) and flat-
ness increase with γ and reach high values. They decrease to
much smaller values for large γ compared to our observations
in experiment. From γ = 0.04 onwards, both PE(τ ) and spec-
tral flatness fall into low values. Similar to the experiment,
this drop can be related to the onset of ECMs, with a stronger
drop and a spectral flatness of less than 0.01 with the PE(τ ) of
0.2. We explain this discrepancy by the mixed ECM+chaos
dynamics found experimentally in that range of γ and not
observed in simulations. The origin of such dynamics remains
unclear and may relate to the multistability of ECMs driven
by noise [23,30]. Intermittent switching between dynamical
solutions like observed experimentally help distribute the en-
ergy among different frequencies and maintain a large number
of different patterns. Hence this helps maintaining a good
flatness and PE(τ ). Simulations in that range of γ show in-
stead fully chaotic states whose spectrum are centered around
the frequency of the ECMs, therefore reducing flatness and
PE(τ ).

C. Simulated influence of the pump

We show in Fig. 8 the simulated evolution of the chaos
bandwidth versus the current I for the following values of
feedback strength: γ = 0.1, γ = 0.06, γ = 0.04, γ = 0.06,
γ = 0.08. To capture the main features, we averaged chaos
bandwidth and spectral flatness from ten simulations with ran-
dom initialization. Similarly, PE is calculated for two different
simulations. The observations from the experiment of Fig. 6
are confirmed by the simulation. Thus the chaos bandwidth
increases with the pump current. In particular, the increase
in the chaos bandwidth with the pump current is stronger
when γ is higher. This was also observed in Fig. 6 (i.e., in

experiment) for feedback strengths between 3% and 3.5%.
The spectral flatness is independent of the change of pump
current. Similarly for lower feedback strengths, increasing the
pump current even slightly decreases the spectral flatness.
This confirms our experimental findings. On the other hand,
the pump current has little influence on the PE(τ ) at low
values of γ . However, if γ � 0.06, an increase of the current
strongly enhances the PE(τ ). The value of γ associated with
the onset of ECMs decreases with the pump current [28].
Hence the drop of spectral flatness and PE(τ ) described in
Sec. III B will occur at a lower value of γ as the pump cur-
rent decreases. This explains why the PE(τ ) and the spectral
flatness strongly increase with the pump current for γ > 0.06.

IV. CONCLUSIONS

Using an experiment with a self-pumped photorefractive
phase-conjugate mirror and an accurate filtered model of PCF,
we have been able to observe the influence of the external-
cavity length and of the pump current on the bandwidth
and complexity of a laser with PCF. Large chaos band-
width, spectral flatness, and PE(τ ) are found experimentally,
independently of the delay. On the other hand, the chaos
bandwidth can be enhanced by an increase of the pump cur-
rent while PE(τ ), and the spectral flatness remains at high
values. Our extensive parametric study of the chaos from
PCF therefore shows how PCF can be used to optimize the
chaos properties of a laser system. Most of the experimental
observations are well supported by numerical simulations.

There have been only a few such in-depth analyses of
chaos properties in a laser with feedback. The achieved per-
formances are well beyond those found for a laser with COF,
hence confirming the superior performance of chaos gen-
erated by PCF. It is also worth noting that the bandwidth
recorded here reaches about 3–4 times the relaxation oscilla-
tion frequency. Furthermore, for the majority of the parameter
range, the values reach the limit of what can be captured
by our state-of-the-art measurement setup. The chaos flatness
measured is also close to the nature of white noise but is ob-
tained through a deterministic chaos mechanism. Additional
improvement of bandwidth is expected with an additional
optical injection, i.e., a well-known technique used for COF
and therefore, an interesting path to consider next for PCF.
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