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We consider the laser rate equations describing the evolution of a semiconductor laser subject to an opto-
electronic feedback. We concentrate on the first Hopf bifurcation induced by a short delay and develop an
asymptotic theory where the delayed variable is Taylor expanded. We determine a nearly vertical branch of
strongly nonlinear oscillations and derive ordinary differential equations that capture the bifurcation properties
of the original delay differential equations. An unexpected result is the need for Taylor expanding the delayed
variable up to third order rather than first order. We discuss recent laser experiments where sustained oscillations
have been clearly observed with a short-delayed feedback.
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I. INTRODUCTION

Many lasers and especially semiconductor lasers are
extremely sensitive to delayed optical feedbacks. First con-
sidered as nuisances, such feedbacks have led to practical
applications ranging from encrypted communications to new
sensing devices. During the 1980s, and even more in the
1990s, combined experimental and theoretical studies of laser
instabilities caused by the delay have boosted research activ-
ities of nonlinear delay dynamical systems in general [1–5].
In nonlinear optics, Ikeda was the first to show that the delay
not only controls the instability threshold but also the detailed
shape of the resulting oscillations [6,7]. While this effect can
be rather striking in the often-studied case of long delays in the
feedback loop [8,9], Ikeda et al. have also shown that optical
chaos does persist, even when the delay time is comparable
to or even smaller than the system’s response time. While it
is relatively easy to understand the mechanism by which the
instability disappears as the delay becomes sufficiently small,
it is much harder to anticipate possible dynamical instabilities
when competing physical phenomena evolve over comparable
timescales [10,11].

Two specific feedback problems have revived the interest
of the short delay limit of delayed-feedback lasers. For a
semiconductor laser (SL) subject to an optical feedback (OF)
from a distant mirror, it has been shown that, if the feedback
round-trip time is sufficiently short, regular pulses are ob-
served instead of chaotic signals [12–15]. Recently, reservoir
computing has been experimentally demonstrated using an in-
tegrated circuit with a semiconductor laser and a short optical
feedback [16]. Short external round-trip times are naturally
present in integrated photonic circuits [17,18]. More recently,
SLs subject to an optoelectronic feedback (OEF) have been
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studied as promising sources of spectrally pure microwave
signals [19,20]. The laser is driven by an injection current,
which can be modulated by a delayed OEF. By contrast to
optical feedback, the effects of both positive and negative
feedback can be investigated since the current proportional to
the detected optical power can be added or subtracted from the
laser pump current. A negative OEF is particularly interesting
because it generates regular pulses for moderate feedback
gains and delays [4,21].

Compared to the OF case, the laser equations for the OEF
problem are much simpler and have stimulated analytical
studies [22–24]. These equations have been explored in the
limit of small feedbacks but arbitrary delays and revealed
the emergence of both bifurcating and isolated branches of
periodic solutions [22–24]. The objective of this paper is to
analyze the limit of small delays but arbitrary feedback ampli-
tudes. This limit can be realized experimentally by controlling
the relaxation oscillation (RO) frequency relative to the delay
frequency as has been realized in Ref. [18]. The ROs are
slowly decaying intensity oscillations of the laser in the ab-
sence of any external fixed perturbations. This slow damping
can be explained mathematically but requires a major refor-
mulation of the laser equations as the equations of a weakly
damped conservative oscillator. As we shall demonstrate, a
Hopf bifurcation to strongly nonlinear oscillations is possible
if the delay is comparable in magnitude to the damping rate of
the ROs. The asymptotic analysis is not a routine application
of singular perturbation methods because its success depends
on a Taylor expansion of the delayed variable up to third order.

In dimensionless form, a SL with a negative OEF is de-
scribed by the following two equations for the intensity of the
laser field I and the carrier density N [24,25]:

I ′ = 2NI, (1)

T N ′ = P + ηI (t − τ ) − N − (1 + 2N )I. (2)

2470-0045/2021/103(4)/042206(7) 042206-1 ©2021 American Physical Society

https://orcid.org/0000-0001-7848-8526
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.103.042206&domain=pdf&date_stamp=2021-04-12
https://doi.org/10.1103/PhysRevE.103.042206


KOVALEV, VIKTOROV, AND ERNEUX PHYSICAL REVIEW E 103, 042206 (2021)

Time t and delay τ are measured in units of the photon lifetime
(t ≡ t ′/τph and τ ≡ τd/τph). P ∼ J − Jth is the dimensionless
pump parameter above threshold in the absence of feedback
(η = 0). J and Jth denote the injection current and its threshold
value for lasing. T ≡ τc/τph is the ratio of the carrier and
photon lifetimes. η < 0 and τ represent the dimensionless
gain and delay of the OEF, respectively. Typical values for
τph and τc are 10−11 s and 10−9 s, respectively, which im-
plies T = 102. This means that N evolves on a much slower
timescale than I . Experimentally recorded delays τd are in the
10−9 s range, which gives τ = 102.

The plan of the paper is as follows: In Sec. II, we for-
mulate the laser rate equations and proceed to a bifurcation
analysis where the delayed variable is Taylor expanded to first
order. We find that the Hopf bifurcation is vertical in first
approximation. It motivates a higher-order analysis detailed
in Sec. III where we need to expand the delayed variable
up to third order. We obtain the bifurcation equation, which
relates amplitude and period of periodic solutions to control
parameters. Our analysis suggests a minimal set of ordinary
differential equations (ODEs), which we formulate in Sec. IV.
We compare the numerical bifurcation diagrams of the de-
lay differential equation (DDE) and ODE systems and find
quantitative agreement. Finally, we summarize previous math-
ematical attempts on the short delay limit and discuss recent
laser experiments using a short delay feedback.

II. DELAYED-FEEDBACK LASER EQUATIONS

In this section, we plan to reformulate Eqs. (1) and (2) as
a weakly perturbed conservative system of equations. To this
end, precious information is obtained by analyzing the limit of
small delays of the Hopf bifurcation conditions. The nonzero
intensity steady state of Eqs. (1) and (2) is given by

(I, N ) =
(

P

1 − η
, 0

)
, (3)

and its linear stability is found by solving the following char-
acteristic equation for the growth rate λ:

λ2T + λ(1 + 2I ) − 2I[η exp (−λτ ) − 1] = 0. (4)

The stability boundaries delimiting the domains of stability in
parameter space are Hopf bifurcation points. Inserting λ = iσ
into Eq. (4) and separating the real and imaginary parts lead
to the following equations:

σ 2T + 2P

1 − η
[η cos (στ ) − 1] = 0, (5)

σ (1 − η + 2P) + 2Pη sin (στ ) = 0. (6)

We wish to solve these equations in terms of P and τ. To this
end, we introduce z ≡ στ and reformulate Eqs. (5) and (6) in
terms of z. We obtain

z2

τ 2
T + 2P

1 − η
[η cos (z) − 1] = 0, (7)

z

τ
(1 − η + 2P) + 2Pη sin (z) = 0. (8)

FIG. 1. (a) Hopf bifurcation lines delimiting the domains of sta-
bility. They are obtained from the parametric solution (9) and (10)
by gradually increasing z from 0 to 3π . The red line is the ap-
proximation (12). The fixed parameters are T = 100 and η = −0.5.

The dot marks the Hopf bifurcation point at (P, τ ) = (0.1, 18.98).
s and u mean stable and unstable steady state, respectively. (b) Hopf
frequencies. There are only two branches of frequencies. The red line
is the RO frequency (14).

We are now ready to derive a parametric solution for τ = τ (P)
(parameter z). From Eq. (8), we determine P > 0 as

P = −1

2

z(1 − η)

z + ητ sin (z)
. (9)

Substituting Eq. (9) into Eq. (7), we obtain a quadratic equa-
tion for τ given by

τ 2[1 − η cos (z)] + τη sin (z)T z + z2T = 0. (10)

We next proceed as follows: We continuously increase
z > 0 from zero, determine τ > 0 from Eq. (10), and then
P from (9). See Fig. 1(a). An approximation of the Hopf
bifurcation line for low values of τ can be obtained in the
large-T limit by assuming z = O(T −1/2) but keeping τ and P
as O(1) quantities. From Eq. (9), we find

P = − 1 − η

2(1 + ητ )
(η < −τ−1), (11)

or equivalently,

τ = −1

η

(
1 − η

2P
+ 1

)
. (12)
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Moreover, from Eq. (10) with z = O(T −1/2), we obtain the
leading approximation of z2

z2 = −τ 2(1 − η)

T (1 + ητ )
. (13)

Using Eq. (11) and then z2 = σ 2τ 2, we determine σ as

σ =
√

2P

T
. (14)

The frequency (14) is the relaxation oscillations (RO) fre-
quency of the free-running laser [25]. Figure 1(b) represents
the Hopf bifurcation frequencies. There are only two branches
for all bifurcations lines and we explain why in the Appendix.

We now concentrate on the first Hopf bifurcation as we
increase τ from zero. It admits the approximation (12), and its
frequency is close to the RO frequency (14).

A. Reformulation

We learned from the previous section that the RO fre-
quency (14) is the frequency of the first Hopf bifurcation. It is
therefore important to reformulate the laser equations (1) and
(2) in terms of the RO timescale. To this end, we introduce
x and y as the deviations of I and N from their steady state
values (3), and a new time s. They are defined by

I = P

1 − η
(1 + y), N = ω

2
x and s = ωt, (15)

where

ω ≡
√

2P

T (1 − η)
(16)

is a rescaled RO frequency. The new time s and the coeffi-
cients of x and y are determined by requiring that the large
T parameter multiplying N ′ in Eq. (2) is eliminated and by
having no parameters left in the equation for y. The factor
1 − η in Eq. (16) allows us to further simplify the equation
for x. Inserting Eq. (15) into Eqs. (1) and (2), we obtain

y′ = x(1 + y), (17)

x′ = −y + ηy(s − θ ) − εx

(
1 + 2P

1 − η
(1 + y)

)
, (18)

where

ε ≡
√

1 − η

2PT
� 1 and θ ≡ ωτ. (19)

Equations (17) and (18) offer several advantages compared
with the original laser rate equations (1) and (2). First, the
large parameter T is no longer multiplying a time derivative of
a dependent variable but now appears as a small perturbation
term through ε. Second, setting ε = 0 provides a reduced
problem where only the feedback parameters appear. As we
shall detail, these equations exhibit conservative oscillations
in the limit of small delays.

Mathematically, the delay θ is the most convenient bifur-
cation parameter since it only appears in the delayed variable.
Experimentally, it is the pump parameter P, which is the
control parameter. According to Eq. (16) and the definition of

FIG. 2. From harmonic to pulsating oscillations. Long-time nu-
merical solutions of Eqs. (17) and (18). (a), (c) T = 100, η = −0.5,
P = 0.1, implying ω = 0.04 and ε = 0.27. (a) θ = 0.7 (τ = 19.17)
and (b) θ = 0.9 (τ = 26.65). The Hopf bifurcation point is at θ =
0.693 (τ = 18.98) and corresponds to the dot in Fig. 1. (b), (d) T =
100, η = −0.5, and τ = 18.90. (b) P = 0.11 and (d) P = 0.15. The
Hopf bifurcation point is located at P = 0.1004.

θ in Eq. (19), decreasing P decreases θ . Changing P, however,
modifies both θ and ε, as well as the last term in Eq. (18).
We are going to use θ in our bifurcation analysis of Eqs. (17)
and (18) and consider either θ or P as control parameters in
all our numerical simulations. Figure 2 shows the long-time
evolutions of y when the bifurcation parameter is increased
above its Hopf bifurcation value. The transition from nearly
harmonic to pulsating oscillations occur quite rapidly as we
slightly change the control parameter. More precisely, strong
pulses appear as soon as the minimum of y approaches y = −1
(corresponding to I = 0). Both the maxima of y and the in-
terpulse period increase as we increase the control parameter
from its bifurcation point. The bifurcation diagrams of the
extrema of y are shown in Fig. 3.

Equations (17) and (18) are equivalent to those derived in
Refs. [22,23] except that the feedback rate η is now consid-
ered as an O(1) quantity rather than being O(ε) small. The
nonzero intensity steady state of Eqs. (17) and (18) is (x, y) =
(0, 0) and, from the conditions for a Hopf bifurcation, we
find that the first Hopf bifurcation exhibits a frequency

FIG. 3. Bifurcation diagram of the extrema of y. (a) T = 100,
η = −0.5, and P = 0.1. The Hopf bifurcation point is at (θ, y) =
(0.693, 0). (b) T = 100, η = −0.5, and τ = 18.90. The Hopf bifur-
cation point is at (P, y) = (0.1004, 0). The arrows indicate the values
of either θ or P corresponding to the time traces shown in Fig. 2.
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σ = 1 − η + O(ε2) and is located at

θ = εθ1 + O(ε3), (20)

where

θ1 = −1 − η + 2P

η(1 − η)
(η < 0). (21)

In terms of τ = θ/ω, Eq. (20) is identical to Eq. (12).

B. Small-delay limit

The approximation of the Hopf bifurcation point (20) is an
O(ε) small quantity. It suggests to expand the delayed variable
y(s − θ ) in Eq. (18) for small θ . We find

x′ = −y + η[y − θy′ + O(θ2)] − εx

[
1 + 2P

1 − η
(1 + y)

]
.

(22)

Assuming θ = O(ε) and seeking a solution in power series of
ε leads to the following reduced problem for x and y:

y′
0 = x0(1 + y0), (23)

x′
0 = −y0(1 − η). (24)

These equations form a conservative system of equations with
first integral

E0 = x2
0

2(1 − η)
+ y0 − ln (1 + y0), (25)

where E0 is the constant of integration. For each E0 > 0, there
is a p-periodic orbit in the phase plane (x, y) surrounding the
center (x0, y0) = (0, 0). This first integral suggests to intro-
duce the energy function defined by

E (x, y) ≡ x2

2(1 − η)
+ y − ln (1 + y). (26)

Differentiating Eq. (26) with respect to time s and using
Eqs. (17) and (18) give

E ′ = − η

1 − η
θxy′ − εx2

1 − η

[
1 + 2P

1 − η
(1 + y)

]
+ O

(
θ2

)
.

(27)
E ′ is O(ε) small because θ is O(ε). It motivates us to seek
a perturbation solution for E (s, ε) of the form E = E0(s) +
εE1(s) + · · · . The leading equation is E ′

0 = 0 and implies that
E0 is constant. The O(ε) problem for E1 is

E ′
1 = − η

1 − η
θx0y′

0 − εx2
0

1 − η

[
1 + 2P

1 − η
(1 + y0)

]
, (28)

where (x0, y0) is the p-periodic solution of Eqs. (23) and (24).
In order that E1 is a bounded function of s, the right hand side
of Eq. (28) needs to satisfy the solvability condition

−ηθ

∫ p

0
x0y′

0ds − ε

∫ p

0
x2

0

[
1 + 2P

1 − η
(1 + y0)

]
ds = 0.

(29)
We use Eq. (23) to eliminate y′

0 in Eq. (29). From Eq. (24), we
determine y0 as

y0 = − x′
0

1 − η
(30)

and realize that∫ p

0
x2

0y0ds = − 1

1 − η

∫ p

0
x2

0x′
0ds = 0. (31)

Equation (29) then simplifies to

−ηθ

∫ p

0
x2

0ds − ε

(
1 + 2P

1 − η

) ∫ p

0
x2

0ds = 0. (32)

Factorizing the common integral, we find that

θ = εθ1, (33)

where θ1 is defined by Eq. (21), and all p-periodic solutions
exhibiting different amplitudes are located at the same value
of θ . In other words, the bifurcation is vertical to a first
approximation and, to find how the amplitudes change with
θ , a higher-order analysis is needed.

III. HIGHER-ORDER ANALYSIS

Toward this end, we first rewrite Eq. (18) as

x′ = −y + η(y − θy′) − εx

(
1 + 2P

1 − η
(1 + y)

)
+ η[y(s − θ ) − y + θy′]. (34)

We then use Eq. (17) to simplify y′ in the third term of
Eq. (34). We obtain

x′ = − y + η(y − θx(1 + y)) − εx

(
1 + 2P

1 − η
(1 + y)

)

+ η[y(s − θ ) − y + θy′], (35)

where the change has been underlined. We now wish to take
advantage that the leading approximation of the Hopf bifurca-
tion is θ = εθ1 where θ1 is defined by Eq. (21). We introduce
ε3θ3 as the deviation of θ from εθ1:

θ = εθ1 + ε3θ3. (36)

θ3 multiplies ε3 because the expression of the Hopf bifurcation
point up to the third-order correction term is

θ = εθ1 + ε3 (1 − η)θ3
1

6
+ O(ε5), (37)

where θ1 is given by Eq. (21). We now note that the term
2P/(1 − η) in Eq. (35) can be rewritten in terms of θ1 as

2P

1 − η
= −ηθ1 − 1. (38)

Taking into account Eq. (38) and inserting Eq. (36) into
Eq. (35) allow a substantial simplification. We find

x′ = −y + η(y−ε3θ3x(1 + y)) + εxy

+ η[y(s − θ ) − y + θy′], (39)

where the changes have been underlined. Reorganizing
Eq. (39) in power series of ε and, together with Eq. (17), our
dynamical problem takes the form

y′ = x(1 + y), (40)

x′ = −y(1 − η − εx) + R(x, y), (41)
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FIG. 4. Periodic orbits in the phase plane (x0, y0 ). They are the
solutions of Eqs. (44) and (45) starting from the initial conditions
x0(0) = 0 and y0(0) = n (n = 1, 2, . . .). The arrow indicates the di-
rection of the trajectories.

where

R(x, y) ≡ η[y(s − θ ) − y + θy′] − ηε3θ3x(1 + y) (42)

is an O(ε2)-small quantity because the expression in brackets

[y(s − θ ) − y + θy′] = θ2

2
y′′ + O(θ3) (43)

is O(ε2) since θ = O(ε). We proceed as in the previous sec-
tion. Neglecting R, the reduced problem defined as

y′
0 = x0(1 + y0), (44)

x′
0 = −y0(1 − η − εx0) (45)

admits a first integral. It suggests the new energy function

E (x, y) ≡ y − ln (1 + y) − x

ε
− 1 − η

ε2
ln

(
1 − η − εx

1 − η

)
.

(46)
Differentiating E with respect to time s and simplifying using
(40) and (41), we obtain

E
′ = x

1 − η − εx
R(x, y). (47)

E
′

is O(ε2)-small because R(x, y) is O(ε2). Solvability re-
quires that ∫ p

0

x0

1 − η − εx0
R(x0, y0)ds = 0, (48)

where (x0, y0) now denotes the p-periodic solution of
Eqs. (44) and (45) (see Fig. 4).

Equation (48) is the bifurcation equation which provides
a relation between the amplitude and period of (x0, y0) and
the bifurcation parameter θ3. Our analysis indicates that the
bifurcation analysis requires that the delayed variable is Tay-
lor expanded up to third order. It suggests the derivation of a
minimal set of ODEs with the same bifurcation properties as
the original DDE problem.

IV. MINIMAL ORDINARY DIFFERENTIAL EQUATIONS

Equations (40)–(42) are the original DDEs reformulated
as a weakly perturbed conservative system of equations. In
the limit θ = O(ε) → 0. The Taylor expansion of the delayed
variable y(s − θ ) in Eq. (42) up to third order leads to the
following expression for R(x, y):

R = η

[
ε2θ2

1

2
y′′ − ε3θ3

1

6
y′′′

]
− ηε3θ3x(1 + y) + O(ε4). (49)

It is mathematically convenient to evaluate y′′ and y′′′ in terms
of x and y We first compute y′′ starting from Eq. (40) and
evaluating the derivatives of x and y using Eqs. (40) and (41)
[up to O(ε2) correction terms]. We sequentially find

y′′ = x′(1 + y) + xy′

= x′(1 + y) + x2(1 + y)

= −y(1 − η − εx)(1 + y) + x2(1 + y) + O(ε2). (50)

To compute y′′′, we start with y′′ given by Eq. (50) up to O(ε)
corrections. It is given by

y′′ = −(1 + y)y(1 − η) + x2(1 + y) + O(ε). (51)

We then again use Eqs. (40) and (41) to simplify the time
derivatives of x and y [up to O(ε) corrections terms]. We
obtain

y′′′ = −(1 − η)(1 + 2y)y′ + 2xx′(1 + y) + x2y′ + O(ε)

= −(1 − η)(1 + 2y)x(1 + y) − 2x(1 + y)y(1 − η)

+ x3(1 + y) + O(ε)

= −(1 − η)(1 + 4y)x(1 + y) + x3(1 + y) + O(ε). (52)

The minimal ODE problem is given by Eqs. (40) and (41),
where R is now given by

R = η

⎡
⎢⎢⎣

ε2θ2
1

2

(−y(1 − η − εx)(1 + y)
+x2(1 + y)

)

− ε3θ3
1

6

(−(1 − η)(1 + 4y)x(1 + y)
+x3(1 + y)

)
⎤
⎥⎥⎦

− ηε3θ3x(1 + y) + O(ε4), (53)

where the neglected terms are all O(ε4).
It is worthwhile to discuss the significance of each term in

Eq. (53). From Eqs. (40) and (41), we formulate the linearized
equations with R(x, y) given by Eq. (53). They are

y′ =x, (54)

x′ = − y(1 − η) + η

[
−ε2θ2

1

2
y(1 − η) + ε3θ3

1

6
(1 − η)x

]

− ηε3θ3x. (55)

The first and second terms in Eq. (55) provide the leading
term of the Hopf bifurcation point and the O(ε2) correction
of its frequency, respectively. The third term gives the O(ε3)
correction of Hopf bifurcation point [see Eq. (37)].

The numerical bifurcation diagram of Eqs. (40) and (41)
with Eq. (53) is shown in Fig. 5 in red. It is compared
with the diagram obtained from the original DDE problem
(40)–(42) (in blue). The agreement is quantitative because
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FIG. 5. Numerical bifurcation diagram for P = 0.1, η = −0.5,
T = 2000. Blue: extrema of periodic orbits of Eqs. (40)–(42) using
a continuation technique [26]. Red: extrema of periodic orbits of
Eqs. (40) and (41) with the reduced R(x, y) given by Eq. (53). Bold
(thin) black line is stable (unstable) steady state. The red and blue
circles indicate the Hopf bifurcation points.

T = 2000 implies, using Eq. (19), a small ε � 0.06. We may
also compare the exact numerical value of the bifurcation
point and its approximation (37). We find θnum = 13.954 and
θapp = 13.947 indicating a minor difference of 0.007.

V. DISCUSSION

Many lasers (semiconductor lasers and solid-state lasers)
operate in the so-called class B regime, with the upper-state
lifetime being much longer than the cavity damping time.
In that regime, pump power changes lead to slowly damped
but pronounced relaxation oscillations (ROs). They are found
numerically by simulating similar nonlinear rate equations,
and they are analyzed mathematically as weakly damped con-
servative oscillations [25]. It was recently reported that ROs
may be sustained by a time-delayed feedback exhibiting a
short delay and a strong feedback gain. The Hopf bifurcation
transition has been observed both experimentally and numer-
ically by using a dual-polarization fiber laser submitted to
a time-delayed frequency-shifted optical feedback [27]. The
two-mode laser exhibits time constants typical of a Class B
laser, and the simulated four rate equations are actually in the
form of two coupled weakly damped conservative system of
equations similar to Eqs. (17) and (18).

Recently developed on-chip technologies may potentially
allow integrated optoelectronic feedback with nearly arbitrary
delays. It motivated us to consider a semiconductor laser
subject to a time-delayed optoelectronic feedback, which is
described by only two equations. The limit of short delays is
realized for negative delayed feedback and by decreasing the
relaxation oscillation frequency. This is possible by operating
the laser close to threshold [18].

In this paper, we showed that the Hopf bifurcation insta-
bility is possible when the short delay is comparable to the
small damping rate of the ROs. In other words, the delayed
feedback with a short delay but moderate amplitudes has a
destabilizing effect that compensates the stabilizing effect of
the weak damping of the ROs. This is clearly transparent

FIG. 6. Hopf bifurcation curves in terms of z = στ and P. They
are obtained from the Hopf bifurcation conditions (9) and (10).

in the bifurcation equation (29) where the terms multiplying
ε and θ represent the effects of the RO damping and the
delayed feedback, respectively. The Hopf bifurcation nature
is nonconventional because the bifurcating branch is nearly
vertical, meaning that the oscillations quickly change from
harmonic to pulsating as the control parameter deviates from
its bifurcation point. To resolve this difficulty, we had to
expand the delayed variable for small delays up to third order
and derive two successive bifurcation equations. Our analysis
opens the way to new applications using moderate to strong
optoelectronic feedbacks but short delays.
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APPENDIX: HOPF BIFURCATION CONDITIONS

In this Appendix, we further analyze the Hopf bifurcation
conditions (9) and (10). Figure 6 shows z as a function of P.
We denote by z1 and z2 the two first branches of solutions. The
other branches verify the relation

zn = z1 + 2nπ and zm = z2 + 2mπ (n, m = 1, 2, . . .). (A1)

To demonstrate (A1), we rewrite Eq. (10) as

P = −1

2

1 − η

1 + η τ
z sin (z)

. (A2)

From Eq. (7), we determine τ/z given by

τ

z
= − (1 − η)T

2P[η cos (z) − 1]
. (A3)

Inserting (A3) into Eq. (A2) leads to

P = −1

2

1 − η

1 + η sin (z)
√

− (1−η)T
2P(η cos (z)−1)

. (A4)
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Simplifying, we obtain

P1/2 = −
√

(1 − η cos (z))(1 − η)

1 + η sin (z)
√

2(1 − η)T
. (A5)

P now depends on z only through the trigonometric functions.
Therefore, every z satisfying (A1) admits the same value of P.

We next demonstrate that Eq. (A1) also implies that there
are only two frequencies σ1 = σ1(z1) and σ2 = σ2(z2). We

rewrite Eq. (10) by inserting z = στ and factorizing τ 2

[1 − η cos (z)] + η sin (z)T σ + σ 2T = 0. (A6)

This equation does not depend on P and τ only appears
through z in the trigonometric functions. This then implies that
all z satisfying Eq. (A1) lead to the same value of σ.
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