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Universal intensity statistics of multifractal resonance states
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We conjecture that in chaotic quantum systems with escape, the intensity statistics for resonance states
universally follows an exponential distribution. This requires a scaling by the multifractal mean intensity, which
depends on the system and the decay rate of the resonance state. We numerically support the conjecture by
studying the phase-space Husimi function and the position representation of resonance states of the chaotic
standard map, the baker map, and a random matrix model, each with partial escape.
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I. INTRODUCTION

A detailed understanding of the structure and fluctuations
of eigenstates is essential for the description of complex sys-
tems. For closed systems with classically ergodic dynamics
almost all quantum eigenstates converge weakly towards the
uniform measure on phase space as proven by the quantum
ergodicity theorem [1–5]. This uniform limit is also estab-
lished for quantum maps [6,7]. More detailed information
is provided by the statistical fluctuations of eigenstates. For
quantum billiards the random wave model [8] implies a Gaus-
sian distribution of the eigenstate amplitudes, leading to a
universal exponential distribution of the intensities, as con-
firmed, e.g., in Refs. [9–12]. For quantum maps with fully
chaotic classical dynamics the eigenvector statistics is ex-
pected to be described by those of random matrices, originally
introduced to describe the statistics of transition strengths
of complex nuclei [13,14]. For systems without symmetry
this leads to an exponential distribution of the intensities, as
demonstrated, e.g., in Refs. [15–19]. Restricted random wave
models have been proposed to describe for example systems
with a mixed phase space [20,21] and other nonisotropic
cases [22–24]. The statistical properties of eigenstates play
an important role in the context of many-body systems, see
Refs. [25–27] and references therein.

In general, physical systems are not completely closed.
They often show (partial) loss of particles or intensity in
some interaction region [28], e.g., as in the three-disk scat-
tering system [29–31] or in optical microcavities [32]. Such
scattering systems are described by resonance poles and the
corresponding resonance states ψ , which have a decay rate γ .
The distribution of decay rates is given by a fractal Weyl law
in systems with full escape [33–41], and has been studied in
systems with partial escape [42–45].

Resonance states of chaotic systems with escape are gen-
erally not uniformly distributed, e.g., see Fig. 1(b). Instead,
they show a strong dependence on the phase-space region
and decay rate γ . The average structure of resonance states
with decay rate γ is described by a multifractal measure

on phase space [46–56]. Such measures are conditionally
invariant [28,57], i.e., invariant under the corresponding clas-
sical dynamics with escape up to a global decay with rate
γ . The most recent classical construction of such measures
describes the average structure of resonance states quite
well, but still shows deviations in the semiclassical limit for
most γ [55].

Individual resonance states of systems with escape have
been discussed in terms of scarring on periodic orbits [58],
for microcavities [47,59–61] and quantum maps [62–65].
However, a systematic study of the statistical properties of in-
dividual resonance states is still missing, even in fully chaotic
systems with escape. In particular, the question arises if there
are universal properties of the intensity statistics.

These intensity fluctuations occur in the position represen-
tation of resonance states in chaotic scattering systems such
as the three-disk billiard. They also play an important role in
the lasing properties of optical microcavities, which depend
on individual resonance states. Knowledge of the intensity
statistics might also allow for distinguishing enhancement due
to fluctuations from enhancement due to scarring on periodic
orbits.

In this paper we conjecture that in chaotic quantum systems
with escape a suitably scaled intensity statistics for reso-
nance states universally follows an exponential distribution
with mean one. To this end we scale by the mean intensity,
which depends on the system, the decay rate of the resonance
state, and the phase-space region. We numerically support the
conjecture by studying the phase-space Husimi function and
the position representation of resonance states of the standard
map with chaotic dynamics, the baker map, and a random
matrix model, each with partial escape.

The paper is organized as follows. In Sec. II we introduce
the class of quantum maps with escape and illustrate the
scaled intensities for resonance states. In Sec. III we propose
a conjecture about the statistics of these scaled intensities. In
Sec. IV we present numerical support for the conjecture in
two exemplary quantum maps with escape and for a random
matrix model. The results are summarized in Sec. V.
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FIG. 1. (a) Distribution of quantum decay rates γ for the chaotic
standard map with partial escape, defined in Appendix A, with h =
1/16000. Classical decay rates γnat ≈ 0.22, γtyp ≈ 0.48, γinv ≈ 0.88
are indicated. (b) Husimi functions Hψ for three exemplary resonance
states ψ with decay rates γnat, γtyp, and γinv − 0.1. (c) Averaged
Husimi function 〈H〉γ of navg = 200 resonance states close to each
γ . The same color map with maximum Ic is used for each pair
of individual and average Husimi function, where Ic = max�〈H〉γ .
(d) Scaled Husimi functions H̃ψ , see Eq. (4), visualized with Ic = 8.

II. SCALED INTENSITIES OF RESONANCE STATES

We consider dynamical systems, which are described by a
time-discrete map M on a bounded phase space �, originating,
e.g., from time-periodically driven systems or a Poincaré sec-
tion of an autonomous system. Escape (or gain) is introduced
for such a system by a reflectivity function r : � → R�0, such
that r(x) describes the factor by which the intensity at the
phase-space point x changes per time step [28]. Regions with
escape (gain) are described by r < 1 (r > 1).

The corresponding quantum map with escape (or gain) is
composed of the closed systems time evolution operator Û
of dimension N = 1/h (quantizing the map M using an ef-
fective Planck’s constant h) and some reflection operator R̂ =

OpN

√
r (quantizing the reflectivity function r) [66]. Without

loss of generality we assume that escape takes place before the
closed time evolution such that the quantum map with escape
is defined as

Ûr = Û R̂. (1)

The eigenvalue equation

Ûr ψ = e−iθ−γ /2 ψ (2)

defines resonance states ψ with decay rate γ , i.e., their norm
decays in each application of Ûr by a factor of e−γ . In au-
tonomous scattering the phase θ is related to the energy and
γ to the width of resonance poles [67,68]. Note that due
to the nonunitarity of Ûr the set of all right eigenfunctions
{ψk}N

k=1 is generally nonorthogonal, 〈ψk|ψl〉 �= 0 for k �= l .
Together with the eigenfunctions {φ j}N

j=1 of the adjoint Û †
r ,

called left eigenfunctions, a dual basis of the Hilbert space is
formed. Without loss of generality we investigate the intensity
statistics of right eigenfunctions in the following. Note that the
fixed reflectivity function r(x) implies that in the semiclas-
sical limit, N → ∞, escape takes place from a large region
compared to the Planck cell h.

As an illustrative example we choose a paradigmatic
two-dimensional chaotic map, the standard map with partial
escape, as defined in Appendix A. For this system we show
numerical results in Fig. 1. The distribution of decay rates γ ,
see Fig. 1(a), extends approximately from the natural to the
inverse decay rate of the classical map, γnat � γ � γinv, [55]
and is peaked around the so-called typical decay rate γtyp of
classically ergodic orbits [43].

For the intensity statistics of resonance states ψ we use as
an example the Husimi function Hψ [69], which is a smooth
probability distribution on phase space. It is defined using the
overlap of the state ψ with a coherent state α(x) centered at
some phase-space point x = (q, p),

Hψ (x) = h−1 |〈α(x)|ψ〉|2. (3)

In the following numerical illustrations the width of α(x)
is chosen to be symmetric in phase space. Figure 1(b) shows
the Husimi function for three resonances states with different
decay rates γ .

They fluctuate by many orders of magnitude on the scale
of Planck’s constant h. Their intensities clearly depend on
the phase-space region and decay rate. The intensity statistics
over all resonance states gives a nonuniversal, system specific
distribution. Even at a single phase-space point one finds a
nonuniversal distribution (not shown).

It turns out to be essential to consider the strong γ de-
pendence of resonance states. Their phase-space structure
changes significantly with γ from an orientation along the
classical unstable direction (close to γnat) to the stable di-
rection (close to γinv) [55]. This is prominently seen in the
average Husimi function 〈H〉γ (x) in Fig. 1(c), which is defined
as an average over navg Husimi functions with decay rates
close to the given decay rate γ . Note that this average structure
is understood approximately by the classical dynamics [55],
with deviations in the semiclassical limit for most γ . We will
use numerically determined averages 〈H〉γ (x) when analyzing
intensity fluctuations in the following.
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Comparing Figs. 1(b) and 1(c) one observes that in regions
with larger average values the individual Husimi functions
show larger fluctuations. In order to obtain universality, this
suggests to define the scaled Husimi function

H̃ψ (x) = Hψ (x)

〈H〉γ (x)
, (4)

which uses the average Husimi function 〈H〉γ for scaling
where γ is the decay rate of ψ . The scaled Husimi func-
tions H̃ψ (x) appear universal for all γ , showing uniform
fluctuations on phase-space, see Fig. 1(d). This resembles the
uniformity of eigenfunctions of closed chaotic quantum maps
[18,19].

For the distribution of scaled intensities we present a con-
jecture in the next section. Subsequently, we numerically
investigate the statistics and present numerical support for the
conjecture in Sec. IV.

III. CONJECTURE ON UNIVERSAL INTENSITY
STATISTICS

We consider the intensity statistics of resonance states ψ

with respect to some arbitrary quantum state ϕ, i.e., the inten-
sities

Iϕ (ψ ) := |〈ϕ|ψ〉|2. (5)

Specific examples are ϕ = α(x) being a coherent state giv-
ing the Husimi function, Iα(x)(ψ ) ∝ Hψ (x), and ϕ = q being
a position eigenstate giving the intensity in position space,
Iq(ψ ) = |〈q|ψ〉|2.

We conjecture for resonance states ψ in chaotic sys-
tems with escape that the intensities Iϕ (ψ ) are exponentially
distributed with mean value μ(ϕ, γ ), depending on the con-
sidered ϕ and the decay rate γ of ψ . Equivalently, the scaled
intensities

Ĩϕ (ψ ) = Iϕ (ψ )

μ(ϕ, γ )
(6)

are exponentially distributed with mean one,

P[Ĩϕ (ψ ) = w] dw = e−w dw. (7)

In particular this means that the statistics of the scaled in-
tensities Ĩϕ (ψ ) are universal, i.e., independent of the choice of
system, ϕ, and γ . Thus Ĩϕ (ψ ) shows the same statistics as in-
tensities of eigenfunctions of closed chaotic quantum systems,
where an intuitive understanding is well established in terms
of a random wave model [8]. Note that similarly one could
conjecture a Gaussian distribution of the complex amplitudes
〈ϕ|ψ〉. We discuss a corresponding random vector model for
systems with escape in Appendix E, which describes the
statistics of ψ based on an assumption in one distinguished
basis. We emphasize that the mean values μ(ϕ, γ ) are es-
sential for scaling, but they are nontrivial compared to closed
systems, where ergodicity implies a uniform mean.

It should be possible to relate μ(ϕ, γ ) to a semiclassical
limit measure for each decay rate γ , in particular if ϕ = α(x)
is a coherent state on phase space. However, typically these
semiclassical limit measures are just approximately known
[55] and are multifractal without smooth phase-space densi-
ties.

IV. NUMERICAL RESULTS

In the following we present numerical support for the
above conjecture on intensity statistics for systems with es-
cape. This is done in Sec. IV A for the standard map and in
Sec. IV B for the triadic baker map with partial escape, where
in both cases the mean μ(ϕ, γ ) is numerically approximated.
In Sec. IV C a random matrix model is considered, where the
mean μ(ϕ, γ ) is analytically determined.

A. Standard map with partial escape

For the numerical approximation of the mean intensity
μ(ϕ, γ ) it is necessary to define which resonance states are
used for averaging. On one hand they should have approx-
imately the same decay rate due to the strong dependence
of their structure on γ , see Fig. 1(b). On the other hand the
number navg of considered states should be large enough, such
that the average is not too much distorted by fluctuations
of individual states. This finite sample effect would lead to
deviations from the exponential distribution, see Appendix C.
In order to scale a state ψ with decay rate γ , we choose navg =
200 for 1/h = 16000, selecting the closest navg/2 states with
decay rates greater and smaller than γ , respectively.

For the standard map with escape we focus on the in-
tensity statistics of the Husimi function. We first consider
the distribution for fixed phase-space points x using a large
range of decay rates γ . Second, we investigate the statistics
fixing γ and considering many phase-space points. Note that
fixing both γ and x would lead to much less intensity values
and thus be insufficient to critically test for the exponential
distribution.

First, we investigate the scaled Husimi functions H̃ψ for
three phase-space points x. For this purpose we consider all
resonance states ψ from the natural decay rate up to close to
the inverse decay rate. Note that we exclude navg/2 resonance
states at each end of the decay rate distribution, for which the
number of surrounding resonance states is not sufficient for
the computation of the average. The intensity distribution is
shown in Fig. 2. It nicely follows the exponential distribution,
Eq. (7), with no statistically significant deviations for all three
chosen phase-space points, supporting the conjecture.

Second, we consider for each of the three decay rates
γnat, γtyp, and γinv − 0.1 a sample of ns = 300 scaled Husimi
functions with close-by decay rates γ . They are calculated on
a phase-space grid of size 50 × 50, which for 1/h = 16000
has negligible intensity correlations of neighboring points.
Their intensity distribution is shown in Fig. 3. It follows the
exponential distribution, Eq. (7), with no statistically signifi-
cant deviations for all three decay rates, again supporting the
conjecture.

In order to validate the conjecture in a different basis we
illustrate the distribution of scaled position intensities Ĩq(ψ )
in Fig. 4, where the same parameters as in Fig. 3 are used.
The intensity distribution nicely follows the exponential dis-
tribution, Eq. (7). The inset reveals for large Ĩq(ψ ) > 6 a
small systematic deviation, which we attribute to scaling by
an average using finite navg, see Appendix C. This systematic
deviation is visible, as the fluctuations are smaller than in
Fig. 3.
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FIG. 2. Distribution of scaled Husimi functions H̃ψ at three
phase-space points x = (q, p) ∈ {(0.1, 0.2), (0.5, 0.5), (0.8, 0.7)}
using navg = 200 and 1/h = 16000. Resonance states with decay
rates γ ∈ [γnat, γinv − 0.1] are used. The exponential distribution
with mean one, Eq. (7), is shown as a black line. The inset shows
the comparison on a semilogarithmic scale. The system is the chaotic
standard map with partial escape, see Appendix A.

Let us finally investigate if the intensity statistics follows
the conjecture in the quantum regime for larger h. For this
we consider scaled Husimi functions H̃ψ of resonance states
for h = 1/250. Since the number of resonance states is much
smaller in sufficiently small γ intervals, we use navg = 24
and ns = 24. The intensity distribution is shown in Fig. 5. It
nicely follows the exponential distribution, Eq. (7), with larger
fluctuations than for h = 1/16000, as expected. For Ĩq(ψ ) > 6
the distribution deviates from the exponential behavior, which
we attribute to scaling by an average using finite navg, see
Appendix C. Thus even towards the quantum regime we find
support of the conjecture.

FIG. 3. Distribution of scaled Husimi functions H̃ψ close to
three decay rates γnat ≈ 0.22, γtyp ≈ 0.48, and γinv − 0.1 ≈ 0.78 for
ns = 300 resonance states each, evaluated on a 50 × 50 phase-space
grid using navg = 200 and 1/h = 16000. The exponential distribution
with mean one, Eq. (7), is shown as a black line. The inset shows the
comparison on a semilogarithmic scale. The system is the chaotic
standard map with partial escape, see Appendix A.

FIG. 4. Distribution of scaled position intensities Ĩq(ψ ) for all
16000 positions q, using the same parameters as in Fig. 3. The dashed
line in the inset shows additionally the expected distribution when
scaling with an average for finite navg = 200, Eq. (C4).

Let us mention that we find numerical support for the con-
jecture for several reflectivity functions, by varying the region
and strength of escape, see Appendix A. We also confirmed
the conjecture for the case of a region with full escape, where
the semiclassical support of resonance states converges to
the so-called backward trapped set [48], such that one has
to restrict the analysis to phase-space points in this set (not
shown).

B. Baker map with partial escape

In this section we present results for the baker map with
escape, which is a well-studied model for chaotic resonances
[40,48–50,64,65], defined in Appendix B. The classical baker
map is ergodic, uniformly hyperbolic, and explicit expressions
for all periodic orbits are available. For the mean intensity of
resonance states a sufficiently accurate classical description is

FIG. 5. Distribution of scaled Husimi functions H̃ψ for h =
1/250, navg = ns = 24, and considering a 15 × 15 phase-space grid,
otherwise as in Fig. 3. The dashed line in the inset shows additionally
the expected distribution when scaling with an average for finite
navg = 24, Eq. (C4).

042204-4



UNIVERSAL INTENSITY STATISTICS OF … PHYSICAL REVIEW E 103, 042204 (2021)

FIG. 6. Same as Fig. 1 for the triadic baker map with partial
escape, defined in Appendix B, using h = 1/16002. The classical
decay rates are γnat ≈ 0.31, γtyp ≈ 0.54, and γinv ≈ 0.85.

not known and we use numerical approximations, as for the
standard map.

In Fig. 6 we show single, average, and scaled Husimi func-
tions for three different decay rates γ for the triadic baker map
with partial escape at h = 1/16002. The single and average
Husimi functions reveal a structural change with increasing
γ from extending along the classical unstable q direction
to the stable p direction [55]. The scaled Husimi functions
fluctuate uniformly on phase space. Their intensity statistics
are shown in Fig. 7 and follows the exponential distribution,
Eq. (7), with no statistically significant deviations for all three
decay rates, again supporting the conjecture. Similar results
for an asymmetric baker map with partial escape are shown in
Appendix B.

C. Random matrix model with partial escape

In this section we introduce a random matrix model with
escape and numerically support the conjecture. The motiva-
tion for this model is (i) that the mean intensity μ(ϕ, γ ) can

FIG. 7. Distribution of scaled Husimi functions H̃ψ , for the tri-
adic baker map with partial escape, defined in Appendix B, using
h = 1/16002 and considering a 60 × 60 phase-space grid. Otherwise
parameters as in Fig. 3. The considered decay rates are γnat ≈ 0.31,
γtyp ≈ 0.54, and γinv − 0.1 ≈ 0.75.

be described analytically and (ii) that it should allow for a
rigorous proof of the conjecture. Note, that the phase-space
distribution of resonance states in this model is not multifrac-
tal.

We replace the propagator Û in Eq. (1) with a random
matrix Û cue of dimension N taken from the circular unitary
ensemble [70,71]. The eigenstates of Û cue

r = Û cueR̂ have a
much simpler phase-space structure than in systems with de-
terministic dynamics, depending on the decay rate γ and the
reflectivity function r(x). For such a system the mean inten-
sities μ(α(x), γ ) on phase space or μ(q, γ ) in position space
are given by classical densities ργ (x) and ργ (q), respectively.
A derivation of these densities is given in Appendix D.

Numerical results are presented for an exemplary smooth
reflectivity function, r(q, p) = 1 − (1 − α) sin2(πq) with
α = 0.05, see inset of Fig. 8(a). The distribution of decay rates
γ , see Fig. 8(a), extends approximately from the natural to
the inverse decay rate. The intensity in position representation
of resonance states for three different decay rates is shown
in Fig. 8(b). These intensities fluctuate around the smooth
classical densities ργ , shown for comparison. Averaging over
several resonance states with close-by decay rates (or local av-
eraging in position space) we find for large matrix dimension
N perfect agreement with the classical density for the natural
and inverse natural decay as well as for decay rates in between
(not shown). We scale the intensities Iq(ψ ) with the classical
densities, i.e., using μ(q, γ ) = ργ (q)/N .

The scaled intensity Ĩq(ψ ) seems to be independent of the
position q and decay rate γ , see Fig. 8(c), illustrating the
universality. The conjectured exponential distribution, Eq. (7),
is validated in Fig. 9.

V. CONCLUSION AND OUTLOOK

In summary, we conjecture that the fluctuations of scaled
intensities for resonance states in chaotic quantum systems
with escape are universally described by the exponential dis-
tribution with mean one. This generalizes well-known results
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FIG. 8. (a) Distribution of quantum decay rates γ for a random
matrix with partial escape using N = 1000. The inset shows the
considered reflectivity function r(q). The classical decay rates γnat ≈
0.64, γtyp ≈ 0.98, γinv ≈ 1.5 are indicated. (b) Intensities in position
space Iq(ψ )N for three exemplary resonance states ψ with decay
rates γnat, γtyp, and γinv and classical density ργ (q), Eq. (D10) (thick
line). (c) Scaled intensities Ĩq(ψ ) for the same decay rates, compared
to the uniform density (thick line).

FIG. 9. Distribution of scaled intensities Ĩq(ψ ) close to the three
decay rates γnat ≈ 0.64, γtyp ≈ 0.98, and γinv ≈ 1.5 for ns = 300 res-
onance states each, evaluated for all position states q for N = 16000
using ργ (q), Eq. (D10), for scaling. The exponential distribution with
mean one, Eq. (7), is shown as a black line. The inset shows the
comparison on a semilogarithmic scale. The system is the random
matrix model with partial escape.

for closed chaotic systems. Numerically we investigate the
statistics of single resonance states for the chaotic standard
map and the triadic baker map, which are suitably scaled by
their respective γ -dependent multifractal average. The Husimi
statistics for all considered cases of different phase-space
points and decay rates agrees excellently with the conjectured
exponential distribution. We demonstrate the conjecture in
position basis, deep in the quantum regime for large h, and
for different reflectivity functions r. This is further confirmed
in a random matrix model with partial escape, for which the
semiclassical limit densities of resonance states are derived
analytically.

Generic dynamical systems are not fully chaotic, but in-
stead regions of regular and chaotic dynamics coexist. The
important question arises whether the conjecture applies to
such mixed systems with escape. Indeed we find in a prelim-
inary study that the intensity statistics follows the conjecture,
if just the subset of chaotic resonance states is considered
and if it is investigated just on the chaotic region, while we
find no universal statistics for regular resonance states. The
presented analysis does not show signatures of scarring of
individual resonances on periodic orbits [62]. In fact, all lo-
cally enhanced intensities are consistent with enhancements
of the average (which is a multifractal of classical origin)
and exponentially distributed fluctuations on top of that. Since
the presented statistics involve many resonances, signatures
of scarring of individual resonances are possibly concealed.
It would be interesting to study the relation between scarring
and the observed universal statistics in the future.

There are various further directions in which these results
can be generalized: (i) It is interesting to understand if and
how different symmetry classes of the closed map and sym-
metries of the reflectivity function lead to different intensity
statistics. (ii) We speculate that the autocorrelation function of
scaled Husimi functions behaves as in closed systems [18,72].
(iii) Another interesting aspect is the implication of these
results on the fluctuations in the near- and far-field emission
of optical microcavities, which are experimentally accessible
[56].
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APPENDIX A: STANDARD MAP WITH ESCAPE

As an example system we consider the paradig-
matic standard map on the torus [73], which is given
by the time-periodically driven Hamiltonian H (q, p, t ) =
p2/2 + ∑∞

n=−∞ V (q)δ(t − n) with kicking potential V (q) =
κ/(4π2) cos(2πq) and dimensionless coordinates (q, p) ∈
[0, 1) × [0, 1). We consider the half-kick map M(q, p) =
(q + p∗, p − V ′(q + p∗)/2) with p∗ = p − V ′(q)/2 (similar
results are expected for other variants of the map). For κ = 10
the phase-space contains no visible regular regions, such that
we call this setting the chaotic standard map. One possible
quantization of this map is given by the unitary propagator
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FIG. 10. Single Hψ , averaged 〈H〉γ , and scaled H̃ψ Husimi func-
tions (left to right) for resonance states ψ with decay rate closest to
γtyp for the chaotic standard map with different r(q, p), using h =
1/16000 and navg = 200. The typical decay rates are (a) γtyp ≈ 0.90,
(b) γtyp ≈ 0.11, (c) γtyp ≈ 0.24, (d) γtyp ≈ 0.97, and (e) γtyp ≈ 0.98.
Color maps as in Fig. 1.

between two kicks, which is determined by Floquet quantiza-
tion [74,75]. For the half-kick mapping it reads

Û = e−i/(2h̄)V (q)e−i/(2h̄)p2
e−i/(2h̄)V (q), (A1)

where h = 2π h̄ takes the role of an effective Planck constant
due to dimensionless units q and p. Considering periodic
boundary conditions, i.e., dynamics on a torus, only discrete
values h = 1/N with N ∈ N are allowed. The semiclassical
limit is described by h → 0.

FIG. 11. Distribution of scaled Husimi functions H̃ψ with decay
rates close to γtyp for the chaotic standard map with different r(q, p),
as specified in Fig. 10. Other parameters as in Fig. 3.

We consider partial escape through some region , such
that the reflectivity function is given by r(q, p) = r < 1 for
(q, p) ∈  and r(q, p) = 1 for (q, p) /∈ . This leads to a pro-
jective coupling operator [43] of the form R̂ = Pc + √

rP.
In the main text we use  = (0.3, 0.6) × [0, 1) and r = 0.2.

Here we present additional results for different reflectivity
functions r(q, p). For this purpose we first consider the same
opening  and choose two different reflectivities r leading
to much stronger and weaker escape from the system, respec-
tively. Second, we choose smaller and larger openings  for
the same reflectivity r. Finally, also a smooth reflectivity
function is considered. In Fig. 10 for these five different
choices of r(q, p) the single, averaged, and scaled Husimi
functions for the respective decay rate γtyp are shown. In all
cases the scaled Husimi function is uniform on phase space
(rightmost panels). The corresponding intensity statistics is
shown in Fig. 11. For all considered reflectivity functions it
nicely follows the conjectured exponential distribution with
no statistically significant deviations.

APPENDIX B: BAKER MAP WITH ESCAPE

The generalized n-baker map on the two-torus [0, 1) ×
[0, 1) is defined as follows [76]. Let b ∈ Rn

>0 with
∑n

i=1 bi =
1 denote the relative size of n vertical rectangles Ak =
[ak, ak + bk ) × [0, 1), where ak := ∑k−1

i=1 bi corresponds to
the left boundary of Ak (with a1 = 0 and ak+1 = 1). With this,
the baker map is defined as Bb(q, p) := ((q − ak )/bk, bk p +
ak ) for q ∈ [ak, ak+1), i.e., in one step the ith rectangle is
compressed along the p direction by the factor bi and stretched
along the q direction by the factor 1/bi, after which being
stacked on top of each other. The quantized baker map is given
by [77,78]

B̂b = F−1
N diag

(
FN1,FN2 , . . . ,FNn

)
, (B1)

where [FM]kl := M−1/2e−2π i(k+1/2)(l+1/2)/M denotes the dis-
crete Fourier transform of dimension M, and Ni/N = bi.

For the baker map with escape we consider reflectivity
functions, which are constant in each rectangle, r(q, p) =
rk for q ∈ [ak, ak+1) for some r ∈ Rn

�0. This allows for
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FIG. 12. Same as Fig. 1 for the asymmetric baker map with
partial escape using h = 1/16002. The classical decay rates are
γnat ≈ 0.31, γtyp ≈ 0.54, and γinv ≈ 0.85.

determining the classical decay rates analytically, which
gives γnat = − ln

∑n
i=1 biri, γinv = ln

∑n
i=1 bi/ri, and γtyp =

−∑n
i=1 bi ln ri. In Sec. IV B results are presented for the tri-

adic baker map with equal sizes b = (1/3, 1/3, 1/3), where
escape from the middle strip is considered as r = (1, 0.2, 1).

Here we show additional results for an asymmetric baker
map with escape, defined by b = (1/2, 1/3, 1/6) and r =
(1, 0.2, 1), see Figs. 12 and 13.

APPENDIX C: DEVIATIONS FROM EXPONENTIAL
DISTRIBUTION DUE TO SCALING WITH AVERAGE

OVER FINITE SAMPLE

In this section we derive how the distribution of scaled
intensities deviates from the exponential distribution, if a finite
sample navg is used to determine the average. This becomes
relevant in situations where the calculation is numerically
costly, e.g., in billiards with escape such as optical microcav-
ities.

Therefore, we consider intensities that are described by
exponentially distributed random variables Xi with the same

FIG. 13. Distribution of scaled Husimi functions H̃ψ for the
asymmetric baker map with partial escape using h = 1/16002 and
considering a 60 × 60 phase-space grid. Other parameters as in
Fig. 3. The considered decay rates are γnat ≈ 0.31, γtyp ≈ 0.54, and
γinv − 0.1 ≈ 0.75.

mean 1/λ. Their probability density function is then given
by

P(Xi = x) = �(x)λe−λx (C1)

Let X0 denote the random variable that we wish to scale and let
n = navg be the number of states contributing to the average.
Then the random variable

Y = X0
1
n

∑n
i=1 Xi

(C2)

models the scaled intensity, see Eq. (6). Its probability density
function can be calculated as

Pn(Y = y) =
∫ ∞

0
dx0

∫ ∞

0
dx1· · ·

∫ ∞

0
dxn (C3)

δ

(
y − x0

1
n

∑n
i=1 xi

) n∏
i=0

P(Xi = xi )

=
(

1 + y

n

)−(n+1)
. (C4)

As expected, in the limit of large n this distribution con-
verges to the exponential distribution, Pn(Y = y)

n→∞−−−→
e−y. We observe for values of n < 100 that the distribution of
scaled intensities of resonance states closely follows Eq. (C4)
(not shown). For the considered value of navg = 200 the de-
viation between Eq. (C4) and the exponential distribution is
almost not visible in Figs. 2 and 3, the relative error being
about 4% (12%) for y = 5 (y = 8). Note that it is also pos-
sible to include X0 in the average in Eq. (C2), leading to a
slightly different distribution Pn, which converges as well to
the exponential distribution for n → ∞.

APPENDIX D: CLASSICAL DENSITIES FOR RANDOM
MATRIX MODEL WITH PARTIAL ESCAPE

For the random matrix model with partial escape used in
Sec. IV C classical densities ργ (x), which we assume to de-
scribe the mean intensities of resonance states, are derived as
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follows. Classically, the natural decay rate γnat and the natural
decay rate from the inverse dynamics, γinv, as well as their
corresponding densities are given by

ρnat(x) = 1, e−γnat =
∫

r(x) dx, (D1)

ρinv(x) = 1

eγinv r(x)
, eγinv =

∫
1

r(x)
dx. (D2)

These densities are stable under forward (backward) iteration
of a corresponding classical time evolution. Here the (inverse)
random matrix is replaced by a stochastic map, which leads
to the uniform density in a single step, while keeping the
norm. Specifically, under forward iteration of ρnat(x) first the
reflectivity function reduces the norm by the factor e−γnat and
the random step makes the density uniform again. Under
backward iteration of ρinv(x) first the random step leads to
the uniform density and then the inverted reflectivity function
1/r(x) increases the norm by the factor eγinv (corresponding
in forward direction to a decay by e−γinv ) and induces the
phase-space density ρinv(x) ∝ 1/r(x).

For arbitrary decay rates γ the classical density ργ (x) has
to fulfill the condition of normalization,∫

ργ (x) dx = 1, (D3)

and the condition of decay with γ under forward iteration,∫
r(x) ργ (x) dx = e−γ

∫
ργ (x) dx. (D4)

This can be equivalently written as∫
gγ (x) ργ (x) dx = 0, (D5)

where

gγ (x) = eγ r(x) − 1 (D6)

is fixed by the considered reflectivity function r(x) and the
decay rate γ . There are in general infinitely many classical
densities ργ (x) satisfying Eq. (D5) and it is not obvious which
one is relevant quantum mechanically. We will use that due to
linearity the solutions ργ (x) of Eq. (D5) are the same when
replacing gγ (x) by some function g(x) = ξ gγ (x) with a factor
ξ . According to Eq. (D6) we write this function as

ξ gγ (x) = eγξ rξ (x) − 1, (D7)

which defines a pair [rξ (x), γξ ] for any ξ (up to a global factor,
which keeps the product eγξ rξ (x) constant and will be irrele-
vant in the following). For all ξ these pairs describe different
reflectivity functions rξ (x) and decay rates γξ , but relate to the
same function gγ (x) and thus have the same possible classical
densities, as seen from Eq. (D5).

We now assume that the specific density relevant for quan-
tum mechanics, i.e., that describes the mean intensity of
resonance states with decay rate γ , is the same for all related
pairs [rξ (x), γξ ]. This implies that it is sufficient to solve the
problem for one particular ξ and the related pair [rξ (x), γξ ].

Furthermore we assume that for γ = γinv the quantum me-
chanically relevant density is given by the classically stable
density ρinv(x), Eq. (D2). Applying this assumption to the
related pairs [rξ (x), γξ ], it is thus sufficient to search for a case

where γξ is the inverse decay rate corresponding to the reflec-
tivity function rξ (x), i.e., eγξ = ∫

1/rξ (x) dx, see Eq. (D2).
This occurs for some specific factor ξ = ξ ∗ and leads to the
density, Eq. (D2),

ργ (x) = 1

eγξ∗ rξ∗ (x)
= 1

1 + ξ ∗ gγ (x)
, (D8)

where the second equality follows from Eq. (D7). The factor
ξ ∗ is uniquely determined from the condition on the decay of
the density, Eq. (D5),∫

gγ (x)

1 + ξ ∗ gγ (x)
dx = 0. (D9)

Uniqueness follows from the negative derivative with respect
to ξ ∗ and existence can be shown for classically allowed
decay rates, min r(x) � e−γ � max r(x). We emphasize that
ξ ∗ depends on r(x) and γ .

Summarizing, based on our assumptions the classical
density

ργ (x) = 1

1 + ξ ∗ gγ (x)
(D10)

describes the mean intensity of resonance states with decay
rate γ in the random matrix model with escape, where gγ (x)
is defined in Eq. (D6) and ξ ∗ is determined from Eq. (D9).

The special cases, ξ ∗(γnat ) = 0 and ξ ∗(γinv) = 1, agree
with Eqs. (D1) and (D2), respectively. Note that if there is a
phase-space region with full escape, r(x) = 0, then γinv = ∞,
but for γ < ∞ Eq. (D10) still applies.

We numerically find that resonance states of the random
matrix model converge towards the densities ργ (x) as N
increases (not shown). This has been tested for several reflec-
tivity functions r(x), varying on phase space and including
cases where both full and partial escape occur in different
phase-space regions.

APPENDIX E: RANDOM VECTOR MODEL FOR
PARTIAL ESCAPE

In this section we present a random vector model for
systems with partial escape. The goal is a statistical descrip-
tion of the complex vector ψ . This is achieved by assuming
independently distributed Gaussian complex entries in only
one distinguished basis. In the following we will see that the
random vector model implies the conjecture of Sec. III for
intensities with respect to any quantum state ϕ.

First, let us consider the simplest setting of random matri-
ces with escape Û cue

r , introduced in Sec. IV C. Without loss
of generality we assume that r(x) is a function of position
q only, such that R̂ = OpN

√
r can be chosen diagonal in

position basis. This implies, according to Eq. (D10), that for
all γ the semiclassical densities ργ (x) also depend on q, only.
Thus, quantizing the classical densities leads to a diagonal
representation in position basis.

We propose the following random vector model for the
distribution of coefficients of resonance states ψ for some
arbitrary, but fixed decay rate γ . Let ψ j = 〈q j |ψ〉 be the co-
efficients in position basis, such that |ψ〉 = ∑N

j=1 ψ j |q j〉. For
this, the expected mean value of the intensities Iq j (ψ ) = |ψ j |2
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is given by ργ (q j )/N . This leads to the following adaption
of the CUE ensemble of random states [18]: For any fixed
decay rate γ we define the ensemble of random vectors ψ =
(ψ1, . . . , ψN ) as

Pγ (ψ )
N∏

j=1

d2ψ j =
N∏

j=1

(
N

πργ (q j )
exp

[
−N |ψ j |2

ργ (q j )

])
d2ψ j,

(E1)
where the complex coefficients ψ j are independent and iden-
tically distributed according to a Gaussian with variance
ργ (q j )/N . For each γ this definition ensures that the ex-
pectation value Eγ (|ψ j |2) is given by ργ (q j )/N and that
on average we have normalized states, i.e., Eγ (

∑
j |ψ j |2) =∑

j ργ (q j )/N = 1. Note that such a position-dependent vari-
ance also follows from the restricted random vector model
describing quantum maps with a mixed phase space [21].

In order to derive for some arbitrary quantum state ϕ the
distribution of intensities Iϕ (ψ ), Eq. (5), we consider the
overlap νϕ = 〈ϕ|ψ〉. Since Eq. (E1) describes a (circularly
symmetric) complex normal distribution with diagonal covari-
ance matrix Cγ = N−1 diag[ργ (q1), . . . , ργ (qN )] it follows
that νϕ is also normally distributed with variance given by
Cγ ,ϕ = 〈ϕ|Cγ |ϕ〉 = N−1 ∑N

j=1 ργ (q j ) |〈q j |ϕ〉|2 [79], i.e.,

Pγ (ν) d2ν = 1

πCγ ,ϕ

exp

(
− |ν|2

Cγ ,ϕ

)
d2ν. (E2)

This implies directly that Iϕ (ψ ) = |ν|2 is exponentially dis-
tributed with mean value μ(ϕ, γ ) = Cγ ,ϕ , i.e., the conjecture
stated in Sec. III.

In general r(x) might depend on q and p, such that R̂
is diagonal in some different basis {bi}N

i=1 with eigenvalues
wi. However, transforming Û cue

r to this basis, B̂†Û cueR̂B̂ =
V̂ cueR̂diag, implies a random matrix V̂ cue := B̂†Û cueB̂ with di-
agonal reflection operator R̂diag = diag(w1, . . . ,wN ), which
can be treated as before. The expected mean value of the inten-
sities Ib j (ψ ) = |〈b j |ψ〉|2 for resonance states of Û cue

r thus is
given by ργ (bi )/N where ργ (bi ) = [1 + ξγ (eγ r̃i − 1)]−1 and
r̃i = |wi|2.

Finally, let us discuss how this random vector model could
be extended to arbitrary chaotic systems with escape. There
are three major challenges: (i) The semiclassical structure
of resonance states in arbitrary systems is a multifractal
measure without density. (ii) A complete semiclassical de-
scription of these measures is still missing. (iii) For each
decay rate γ we expect a different basis for the distribution in
Eq. (E1).

For fluctuations on phase space, the first issue is overcome
by the fact that the quantum Husimi densities are smooth
functions. Thus, for fixed value of h their expected mean value
also behaves smoothly on phase space. Therefore, together
with the second challenge, this reduces to the problem of
obtaining the correct smooth density from the semiclassical
multifractal measure. The third issue is caused by the change
of the phase-space structure under variation of γ [55], see
Fig. 1. Thus the mean densities ργ do not have a quantum
mechanically diagonal representation in the same basis for
different decay rates. Therefore, in contrast to the random
model with escape, it would be necessary to first obtain the
specific basis for each γ .
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