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Controlling chimera states in chaotic oscillator ensembles through linear augmentation
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In this work, we show how “chimera states,” namely, the dynamical situation when synchronized and
desynchronized domains coexist in an oscillator ensemble, can be controlled through a linear augmentation (LA)
technique. Specifically, in the networks of coupled chaotic oscillators, we obtain chimera states through induced
multistability and demonstrate how LA can be used to control the size and spatial location of the incoherent and
coherent populations in the ensemble. We examine basins of attraction of the system to analyze the effects of
LA on its multistable behavior and thus on chimera states. Stability of the synchronized dynamics is analyzed
through a master stability function. We find that these results are independent of a system’s initial conditions and
the strategy is applicable to the networks of globally, locally as well as nonlocally coupled oscillators. Our results
suggest that LA control can be an effective method to control chimera states and to realize a desired collective
dynamics in such ensembles.
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I. INTRODUCTION

Chimera is an interesting collective state exhibited by os-
cillator ensembles where synchronized and desynchronized
dynamics coexists in the system. In classical settings, chimera
states emerge in the system as a result of nonlocal interac-
tions when the ensemble of coupled identical phase oscillators
spontaneously form two groups: one that exhibits synchro-
nized motion while the other group remains desynchronized
[1,2]. In general, however, these states can occur in a vari-
ety of oscillator ensembles with global and local coupling
topologies as well [3–6]. Emergence of chimera states in
various networks has been analyzed in order to understand,
for example, unihemispheric and rapid eye movement sleep,
ventricular fibrillation, coexistence of laminar and turbu-
lent flows in fluids, robustness of synchronized power grids,
and consensus formations in social networks [7]. Due to
the widespread occurrence of this phenomenon, study of
these interesting spatiotemporal patterns has found relevance
in various disciplines, including neuroscience [8,9], biology
[10,11], Josephson junction arrays [12], metronomes [13,14],
and electrochemical systems [15,16].

In addition to the dynamical flows, chimera states have
been known to exist in ensembles of time-discrete systems
as well. Studies of several nonlocally coupled maps have
analyzed the emergence of such hybrid states in discrete
dynamical systems [17–21]. It has also been observed that
ensembles of nonlocally coupled bistable systems, including
maps and flows, with regular as well as chaotic dynamics
have the ability to exhibit different types of chimera structures
[18]. Recent studies have suggested that chimeric states can
be created in a system of instantaneously coupled identical
chaotic oscillators through induced multistability [22–24].
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Here, the multistable behavior can be induced in the system
via mutual coupling or driving, which causes the basins of the
coexisting attractors to be completely intertwined [25], and
leads to the emergence of stable chimera states for arbitrary
initial conditions. The nature of the transitions leading to
multistable behavior and corresponding basins of attraction
have been analyzed previously to understand such chimeric
behaviors [26,27].

An important aspect in the study of this curious spatiotem-
poral phenomenon, so-called chimera state, is related to its
control. A number of studies have been dedicated to explore
methods for controlling various features of chimera states;
these include its stability, lifespan, basins of attraction, and
the size and positions of coherent and incoherent domains
[28–35]. Examples of such control strategies include remote
pacemaker control [36], pinning [37], applying gradient dy-
namics in order to dynamically modulate the position of the
coherent part of a chimera [38], influence of a block (or
barrier) of excitable units [39], and a minimal coupling mod-
ification method [40]. In this work, we obtain chimera states
in the network of coupled chaotic oscillators through induced
multistability, and propose to implement a linear augmenta-
tion (LA) technique to control such chimeric states. Using this
strategy, we show that the dynamics of a multistable ensemble
and thus the chimera states can be controlled by coupling it to
a linear system. It is known that LA is a powerful method
for targeting fixed-point solutions [41], suppressing bistabil-
ity [42], controlling the dynamics of drive-response systems
[43], and regulating the dynamics of hidden attractors [44].
Additionally, this control scheme has the advantage that it
allows one to achieve a desired response state in the ensemble
without manipulating system parameters. Therefore it can be
very useful to control chimera states emerging in the networks
coupled with different topologies including global, nonlocal,
and local coupling schemes.
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For our analysis, we consider a network of N mutually
coupled identical chaotic oscillators. Dynamics of these os-

cillators is described by d state variables
−→
X ∈ Rd , evolving

according to the rule
−̇→
X = F (

−→
X ), and connected to other

oscillators through one of these state variables. In such ensem-
bles, chimera states can be created by inducing multistability
in the system [23]. In the following, we discuss the emergence
of chimera states in such ensembles, and demonstrate how
these states can be efficiently managed using LA by simply
connecting or augmenting oscillators of the networks to a
linear system. This approach can be used to modify collective
properties of the system, for example, to generate chimeras
with coherent and incoherent domains of required size and
spatial locations. One can also destroy chimeras and obtain
a dynamical state where the oscillator population exhibits
complete synchronization, cluster synchronization, or remains
incoherent. We find, for appropriate choices of augmentation
parameters, multistability can be suppressed in the system
leading it to a desired collective state. The riddled basin of the
unaugmented system also changes its properties as a result
of linear augmentation. Further, one can verify the stability
of such resulting states by examining the behavior of master
stability function (MSF) [45–47].

The organization of the article is as follows. In the fol-
lowing Sec. II, we discuss the creation of chimera states
through induced multistability in the globally coupled Lorenz
oscillators and explain how LA can be used to control these
states in Sec. III. Further, the effect of implementing LA
control is analyzed by examining the change in basin of at-
tractions and stability of the synchronized states through MSF
in Sec. IV. We extend our study for both local and nonlocal
coupling schemes in Sec. V and discuss how spatial location
of synchronized and incoherent domains can be controlled in
the chimeric population. This is followed by a summary and
discussion in Sec. VI.

II. COLLECTIVE DYNAMICS OF THE NETWORK OF
GLOBALLY COUPLED OSCILLATORS

In this section, we discuss how chimera states can be cre-
ated in a network of coupled chaotic Lorenz systems through
induced multistability. We consider an ensemble of N mutu-
ally coupled Lorenz oscillators described mathematically by
the following equations:

ẋi = ρ(yi − xi ),

ẏi = γ xi − yi − xizi,

żi = xiyi − βzi + ε1

(N − 1)

∑
i

Ai j (z j − zi ), (1)

where the index i = 1, 2, . . . , N . Oscillators are connected
through z variables, and the connection topology is rep-
resented by the adjacency matrix A. Its elements Ai j are
either one or zero depending on whether or not the ith and
jth oscillators are connected [48]. We consider the case of
global coupling, for which Ai j = 1 for all i �= j and zero
otherwise. Here, ε1 represents the global coupling strength.
Since the Lorenz system is invariant under the transformation
(−xi,−yi, zi ) → (xi, yi, zi ), coupling through zi variables pre-
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FIG. 1. In (a),(b),(c), we show multistable attractors C−,C+,C0

observed in a system of coupled Lorenz oscillators at coupling
strength ε1 = 0.08.

serves the symmetry of the system in the xi, yi planes [27].
The parameter values are taken as ρ = 10, γ = 24.8, and
β = 8/3, such that the fixed points of the isolated oscillators
[±√

β(γ − 1),±√
β(γ − 1), γ − 1] [49,50] are unstable and

the dynamics of each of the uncoupled systems is chaotic. For
coupled oscillators, multiple attractors coexist in the system
with dynamically different behaviors [23]. Figure 1 shows
three different attractors C−, C+, and C0 that are observed in
the system, Eq. (1), for N = 2 oscillators at coupling strength
ε1 = 0.08. In this multistable region, the oscillators settle into
one of these three attractors, which is determined by their
initial conditions. It is observed that if oscillators in the en-
semble settle into the attractors C− and C+, their dynamics is
synchronized, while the dynamics of the oscillators settling on
attractor C0 is incoherent.

Similar multistable attractors can be induced in the system
of N globally coupled Lorenz oscillators [Eq. (1)] as well,
and depending on their initial conditions, this gives rise to
synchronized (dynamics in C− and C+) and desynchronized
(dynamics in C0) domains in the system. Therefore, the col-
lective dynamics of Eq. (1) is a chimera as shown in Fig. 2 for
N = 100 oscillators. Here, the chimera state consists of three
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FIG. 2. Chimeric behavior in an ensemble of N = 100 coupled
Lorenz oscillators at coupling strength ε1 = 0.08. In the upper panel,
the time evolutions of (a) xi variables and (b) phases are shown.
Oscillator groups asymptoting to the attractors C∓,C0 are represented
by G∓, G0, respectively. Snapshots of the x variable and phases at
time t = 500 are plotted in (c) and (d) while the time-averaged
frequencies 〈ωi〉 of the oscillators are shown in (e).
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FIG. 3. Fraction of initial conditions going to attractors C∓,0

as a function of augmentation strength ε2 are plotted with a solid
blue line, a dashed black line, and a dotted red line, respectively.
Control parameter is set to (a) B 	 B−, (b) B 	 B+, and (c) B = B0.
Results are obtained for a pair of coupled Lorenz systems with
one augmented oscillator over 103 different initial conditions. Decay
parameter K = 3 and coupling strength is fixed at ε1 = 0.08.

distinct subpopulations (G∓,0) corresponding to oscillators
settling into the three distinct attractors C∓,0 [23]. Figures 2(a)
and 2(b) show the time evolution of the xi variables and the
phases, respectively [51], where one can observe the splitting
of the entire population into three groups G∓ and G0. While
oscillators are synchronized in the first two groups G∓, the
oscillators in the third group G0 have incoherent dynamics.
The snapshots of variables xi at a fixed time is plotted in
Fig. 2(c), confirming the synchronized and desynchronized
behavior within the groups G∓ and G0, respectively. Note that
oscillators in the first two groups G− and G+ are in phase
synchrony, as can be seen in the snapshots of the phases
in Fig. 2(d). The synchronized dynamics of the groups G∓
can also be verified by average oscillator frequencies 〈ωi〉
as shown in Fig. 2(e). We calculate these average oscillator
frequencies using 〈ωi〉 = 2πQi

�T [52]. Here Qi is the number
of maxima of the time series [53] of the ith oscillator within
the time interval �T = 103 units. Results are generated after
removing initial transients for 106 iterations, i.e., 104 time
units [54]. The frequencies shown here [Fig. 3(e)] are time-
averaged values estimated from the number of maxima of
the oscillator trajectories. Due to their averaged behavior, the
frequencies of the incoherent oscillators, calculated on chaotic
attractor C0, have a range which is not so large; however,
they are distinct enough to characterize incoherent population
and differentiate it from the synchronized oscillators. Here,

we see that rather than having a typical arc-shaped phase
profile, which is observed in classical settings, the phases (and
frequencies) of the oscillators in the coherent population are
equal. This is similar to the behavior of the chimera popula-
tions originated from purely local or global coupling schemes,
amplitude mediation, intensity induced or the ones observed
in the multiplex or modular networks [3,22,55].

III. EFFECT OF LINEAR AUGMENTATION

Linear augmentation is a simple but powerful method to
control the dynamics of a nonlinear dynamical system. By
augmenting a linear system to a target, one can force the
target system towards a given fixed point or destroy mul-
tistable attractors by merging of the unstable fixed points
in the system [43]. In the following, we explain the LA
method and discuss how it can be applied to our system of
coupled chaotic oscillators in order to control its collective
dynamics. A typical form for a linearly augmented system is
given by

−̇→
X = F (

−→
X ) + ε

−→
W,

−̇→
W = −K

−→
W − ε(

−→
X − B). (2)

Here
−̇→
X = F (

−→
X ) represents the d-dimensional (

−→
X ∈ Rd )

nonlinear system which is to be augmented.
−̇→
W = −K

−→
W de-

scribes the dynamics of the d-dimensional linear system with−→
W = [w, 0, 0, 0 . . .]T and K is the decay parameter [56]. The

term ε(
−→
X − B) provides sustained oscillations to the linear

system. B = [b, 0, 0, 0 . . .]T is the control parameter of the
augmented system. Its value is set close to the target fixed
points of the system [41–43]. Here, superscript T indicates
transpose of the matrix.

One can control the dynamics of a given set of oscillators
by augmenting them to the corresponding linear systems.
This augmentation results in a dynamical state with a desired
property and does not affect the dynamics of the remaining
oscillators present in the network. We couple xi variables of
a selected number of Lorenz oscillators, upon which we wish
to implement control, to their corresponding linear systems as
follows:

ẋi = ρ(yi − xi ) + ε2Eiwi,

ẏi = γ xi − yi − xizi,

żi = xiyi − βzi + ε1

(N − 1)

∑
j

Ai j (z j − zi ),

ẇi = −Kwi − ε2Ei(xi − B). (3)

Here the parameters of Lorenz oscillators ρ = 10, γ =
24.8, β = 8/3 are the same as before. i, j = 1, 2, 3, . . . , N .
ε2 is the feedback coupling strength or augmentation strength
between the linear and the Lorenz system. The values Ei rep-
resent the connections between the oscillators in the ensemble
and their corresponding linear systems: Ei = 1 if the ith oscil-
lator is connected to the linear system and zero otherwise. For
global coupling, the elements of the connectivity matrix are
Ai j = 1 for i �= j, Aii = 0, as described earlier. We consider a
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fixed value of decay parameter K = 3 for the linear systems
throughout the article.

In Fig. 2, we see that the dynamics of the coupled oscil-
lator ensemble is chimeric for the case without augmentation
(Ei = 0, ∀ i). To control this state, we apply LA to the system
so that the behavior of the given set of oscillators (or the
whole population) can be changed as desired. The final state
of the augmented system depends upon the augmentation pa-
rameters, namely, decay parameter K , augmentation strength
ε2, and control parameter B. Morphologically, the attractors
C∓ are formed due to chaotic modulation of the fixed points−→
X ∗

i∓ in the coupled systems [50]. Therefore, to achieve a
preferential dynamics on one of these attractors, we set B
to a value approximately equal to one of these fixed points.
These fixed points can be evaluated by solving the equation of
motion at the equilibrium, given by

ρ(y∗
i − x∗

i ) = 0,

γ x∗
i − y∗

i − x∗
i z∗

i = 0,

x∗
i y∗

i − βz∗
i + ε1

(N − 1)

∑
Ai j (z

∗
j − z∗

i ) = 0. (4)

Solving these equations, we get three sets of equilibrium

points as follows: the first one is the origin, i.e.,
−→
X ∗

i0 ≡
(x∗

i0 , y∗
i0 , z∗

i0 ) ≡ (0, 0, 0), and another two sets are given by
−→
X ∗

i∓ ≡ (x∗
i∓ , y∗

i∓ , z∗
i∓ ) ≡ [∓√

β(γ − 1),∓√
β(γ − 1), γ − 1].

We fix the decay parameter value K and connect a selected
number of oscillators to the corresponding linear systems
with augmentation strength ε2. Further, the following choices
can be made for B: B 	 B∓ = x∗

i∓ = ∓√
β(γ − 1) and B =

B0, x∗
i+  B0  x∗

i− . For the choice B 	 B∓, the system dy-
namics moves to the attractor C∓ and for B = B0, the system
dynamics evolves towards the attractor C0. Note that control
parameter B is approximately equal to B∓, since for B = B∓,
the system shows a fixed point x∗

i∓ dynamics.
In the following, we first demonstrate the effects of LA in

a simplest system of two coupled oscillators by connecting
one of them to a corresponding linear system (E1 = 1, E2 =
0). Then we apply an augmentation method for controlling
the dynamics of large ensembles (N = 100) as well. To see
how LA modifies the resulting dynamics of the system, we
trace the fraction of initial conditions settling into different
attractors fC− , fC+ , and fC0 as a function of augmentation
strength ε2. These fractions are calculated by evolving the
system of N = 2 oscillators for large initial conditions for all
three choices of control parameter B 	 B∓ and B = B0, and
the results are plotted in Fig. 3. As discussed for the case
without LA (ε2 = 0), coupled oscillator systems have three
coexisting attractors C∓,C0 at coupling strength ε1 = 0.08.
Since LA does not change the intrinsic system characteristics,
these attractors persist for the augmented system (ε2 > 0) as
well. However, the fraction of initial conditions settling into
these attractors can be controlled as a function of augmented
strength ε2, which is shown in Fig. 3 by solid blue, dashed
black, and dotted red curves, respectively. Choosing a control
parameter as required, i.e., by setting B 	 B∓ and B = B0,
asymptotic dynamics of the oscillators can be modified and
one can control the fraction of initial condition settling into
a specific attractor. In Fig. 3, the fractions fC∓,0 for the case
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FIG. 4. Time evolution of the x variables for the ensemble of
N = 100 oscillators. These space-time plots show the examples of
control through linear augmentation for the cases when half (upper
panel) and all (lower panel) oscillators are augmented. For NA = 50,
the first 50 unaugmented oscillators exhibit chimeric behavior with
three coexisting G∓,0 groups. By appropriately choosing a control
parameter, the rest of the oscillators are entrained towards a single
group, G+ in (a), or multiple (all three) groups G∓,0 in (b). When
NA = 100, the whole population can be entrained towards (c) three
groups G∓,0 of the desired sizes, or (d) one synchronized G− and
one desynchronized group G0 of the desired sizes. The parameters
ε1 = 0.08, K = 3, and ε2 = 2.5.

without LA can be seen at ε2 = 0. We can see the changes
in these fractions as a result of LA when control parameter is
taken as B 	 B∓, B = B0 in Figs. 3(a)–3(c), respectively.

One can use this strategy to obtain a desired collective
state in an ensemble of oscillators as well. To illustrate the
results of such control in a system of N = 100 oscillators
[Eq. (3)], we fix the augmentation strength at ε2 = 2.5 and
explore its collective dynamics when ((i)) only a fraction of
the population is augmented and (ii) when we apply the LA
method to the whole population.

Case (i). In this case, linear augmentation is applied to
a part of the oscillator population. Only half of the Lorenz
oscillators are considered for augmentation and connected
to the corresponding linear systems, i.e., NA = 50. The re-
maining half NU = N − NA = 50 are kept unaugmented. This
strategy, where only a selected fraction of oscillators are aug-
mented, can be useful for controlling the size of different
groups in the chimeric population. For example, in Figs. 4(a)
and 4(b), the unaugmented set NU = 50 exhibits the chimera
state as before, where the population splits into three groups
G∓,0, with two synchronized clusters and one desynchronized
cluster. However, by choosing control parameter B 	 B+, the
asymptotic dynamics of the remaining augmented oscillators
can be made to settle on the attractor C+, resulting in the
formation of the group represented by G+ and thus increasing
the size of this population [see Fig. 4(a)]. Similarly, when
we consider B 	 B− or B = B0, the augmented population
follows the dynamics of the groups G− (synchronized) or G0

(desynchronized), respectively, corresponding to the attractors
C− or C0. Thus, by appropriately choosing the control param-
eter B value, one can entrain a selected number of augmented
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TABLE I. Possible choices of control parameter B.

Control parameter B Dynamical states

B 	 B− Coherent cluster G−
B 	 B+ Coherent cluster G+
B = B0 Incoherent cluster G0

B 	 B−, B 	 B+ Coherent clusters G− and G+
B 	 B−, B = B0 Chimera with G− and G0

B 	 B+, B = B0 Chimera with G+ and G0

B 	 B−, B 	 B+, B = B0 Chimera with three clusters G∓,0

oscillators towards one of the groups to increase its size. When
a single control parameter is selected for the entire augmented
population, one can increase the size of only one of the clus-
ters. However, the size of all the groups G∓,0 can be controlled
at once by considering multiple B values simultaneously. This
is shown in Fig. 4(b), where we consider B 	 B∓ and B = B0

simultaneously for augmented oscillators. As a result, the
augmented oscillators split into three groups represented by
G∓,0, containing, respectively, 15, 15, and 20 oscillators in
each set.

Case (ii). This strategy, where we augment all the oscilla-
tors in the ensemble to corresponding linear systems, provides
the maximum control over the collective dynamics. Consid-
ering single or multiple value(s) of the control parameter B
for the entire population, one can either entrain all oscilla-
tors towards a single group destroying the chimera state, or
obtain chimeras as a resulting dynamics with desired clus-
ter sizes. An example is shown in Fig. 4(c) where different
B values (B−, B+, and B0) are considered simultaneously
to individually control synchronized (both G− and G−) and
desynchronized (G0) populations of the chimera state. Simi-
larly, in Fig. 4(d), we take B 	 B− and B 	 B0 simultaneously
to force the oscillator dynamics towards the attractors C− and
C0, thus forming the two groups G− and G0. Consequently,
the resulting dynamics is a chimera state as desired with two
clusters (G− and G0), containing 60 and 40 oscillators in each
group.

One can use these strategies to obtain a desired collective
state in the system. For example, in Table I, we show differ-
ent possibilities for the choices of control parameter B, and
the dynamical states resulting from these choices. Note that
here we mainly use ε2 and B to achieve a desired dynamics.
The decay parameter K does not directly affect the selection
of the resulting attractor. The linear system has intrinsically
decaying dynamics (decay rate K), which combined with the
feedback signal from the augmented oscillators leads to oscil-
latory behavior. It is observed that for higher values of decay
parameter K , the system typically goes to attractors C∓ with
smaller amplitudes, and it tends to stay on bigger attractor
C0 when the decay rate is relatively small. The final state
depends on the selection of the target attractor determined by
B, and how much strength we use for augmentation, which is
tuned by ε2. We find that these are more efficient parameters
for controlling chimera states. However, K should be selected
in such a way that it allows optimum control through these
augmentation parameters.
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FIG. 5. Basin of attraction of the system of two coupled Lorenz
oscillators at different augmentation strengths ε2. Basins are calcu-
lated for initial conditions in z variables, i.e., z1i, z2i space in the
interval [20, 24]. Initial values of x, y, and w variables are fixed,
i.e., x1i = x2i = 1, y1i = y2i = 1, and w1i = w2i = 1. The initial con-
ditions evolving towards attractors C∓ and C0 are represented by
red (light gray), blue (dark gray), and blank regions, respectively.
Parameters ε1 = 0.08, B = B0, K = 3 are fixed.

IV. ROBUSTNESS OF DIFFERENT STATES BEFORE AND
AFTER LINEAR AUGMENTATION

We consider an ensemble of coupled chaotic oscillators
where the chimera state appears as a result of multistability. It
is observed that the attractors C∓ and C0 coexist in the system
and within these attractors, the dynamics is quite different: the
oscillators from the ensemble settling into attractors C∓ show
synchronized behavior while the oscillators asymptoting to C0

remain incoherent. The basin of attraction of these multistable
attractors is intermingled and shows riddling [26,27]. Due to
such complex basin structure, any two oscillators starting with
even nearby initial conditions also have nonzero probability
of settling into different attractors. As a result, for randomly
chosen initial conditions, the oscillator ensemble organizes
itself into three distinct subpopulations (two synchronized
clusters and one desynchronized cluster G∓,0) leading to the
chimeric dynamics. In Figs. 5(a)–5(d), we plot the basin of
attraction at different augmentation strengths in order to illus-
trate the change in its properties due to the LA. The basin for
the unaugmented system (ε2 = 0) is riddled and completely
interwoven in a complex manner as seen in Fig. 5(a). For this
case, it is expected that two randomly selected nearby initial
conditions may asymptote to different dynamical behaviors
(synchronized and desynchronized) suggesting the emergence
of chimera states for random [27,57] or quasirandom [58]
initial conditions. However, for the augmented system, the
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different initial-condition pairs. Parameters and initial conditions are
the same as in Fig. 5.

riddled nature of the basin gradually disappears with increas-
ing augmentation strength ε2 [Figs. 5(b) and 5(c)], and for its
large values, only the basin of the desired attractor (selected
through the control parameter B) remains in the domain [see
Fig. 5(d)].

In Fig. 6, we examine the fraction of nearby initial-
condition pairs fic settling on different attractors as a function
of transversal distance Std = |z1 − z2| from the synchroniza-
tion manifold [26,27]. Taking control parameter B = B0, we
calculate the fraction fic for different augmentation strengths
ε2 in order to observe the effect of LA on the basin prop-
erties. In the absence of LA (ε2 = 0.0), the probability that
nearby initial-condition pairs lead to distinct attractors is
extremely high ( fic 	 1). However, as one increases augmen-
tation strength ε2, fic decreases indicating that a lesser number
of nearby initial-condition pairs go to different attractors. For
large ε2 values, depending on the choice of control parameter
(here, B = B0), all initial conditions lead to a single attractor
(here, C0), and therefore the fraction fic = 0 as can be seen
in Fig. 6.

Next, we perform a MSF analysis for our system, which
is a powerful technique to determine the stability of the
synchronized dynamics in a network [45,46]. To examine
the robustness of the synchronized states in our augmented
system, we evaluate MSF for the ensemble of N coupled
oscillators. We obtain the block-diagonal variational equation
in which each block has the same form, and calculate the
largest Lyapunov exponent of this variational equation. One
can write a network of N coupled oscillators as

d
−→
X i

dt
= F(

−→
X i ) − ε

N∑
j=1

Gi jH(
−→
X j ), (5)

where ε is a global coupling parameter, H(
−→
X ) is a coupling

function, and G represents a coupling matrix determined by
the connection topology. G has a zero or a constant row-sum
to ensure the existence of a synchronization manifold. The

variational equations

dδ
−→
X i

dt
= DF(s) · δ

−→
X i − ε

N∑
j=1

Gi jDH(s) · δ
−→
X j (6)

govern the time evolution of the set of infinitesimal pertur-
bation vectors about the synchronous solution s. The generic
form of all decoupled blocks is then given by

dδy
dt

= [DF(s) − κDH(s)] · δy, (7)

where κ is a normalized coupling parameter. The largest Lya-
punov exponent for this equation λM (κ ) gives the MSF which
describes the linear stability of the synchronized dynamics as
a function of coupling parameter κ . Its positive, negative, and
zero values correspond to the unstable, stable, and marginally
stable synchronized states, respectively.

The oscillator ensemble considered here shows multistable
behavior with coexisting attractors C∓,0. To examine the sta-
bility of the synchronized state with such multistability, it is
necessary to calculate the MSF corresponding to the motions
on each coexisting attractor [47]. Therefore, we calculate λM

as a function of coupling strength ε1 for all three attractors
present in the unaugmented system, and the results are shown
in Fig. 7(a). We observe, for smaller values of ε1, the MSF
is always positive for all three attractors C∓,0 shown by red
squares, green circles, and blue triangles, respectively. This
indicates that the motion on all attractors C∓,0 is desynchro-
nized at these parameter values. As ε1 is increased, the MSF
for different attractors can take negative and positive values
indicating both stable and unstable nature of the synchro-
nized dynamics [e.g., see Fig. 7(a) when ε1 > 0.05]. In this
region, depending upon the attractor on which the motion
takes place, both synchronized and incoherent motions are
possible.

Similar to Fig. 7(a), the results for the augmented system
are shown in Figs. 7(b)–7(d), where we plot the variation
of MSF, λM , with augmentation strength ε2 for three dif-
ferent choices of control parameter B = B∓,0, with K = 3
and ε1 = 0.08. Here, the dynamics depends on the control
parameter B of the linear system and becomes completely
independent of the initial conditions with strong augmen-
tation strength (see Fig. 5). However, for small ε2 values
(e.g., ε2 � 1.25), all three attractors exist where both pos-
itive and negative values of λM can be observed. For this
case, the augmentation strength is not strong enough to steer
the system dynamics towards the desired attractor(s) and the
control is not very efficient. As one increases ε2, either a
negative or a positive value of λM is observed depending
upon the choice of control parameter: when B 	 B∓, MSF
becomes negative indicating the stabilization of synchronized
dynamics on attractors C∓, and the choice B = B0 leads to
a desynchronized dynamics on attractor C0 and positive λM

values. These results suggest that using LA one can stabilize
attractors C∓ with synchronized dynamics, or can destroy
these attractors leading the system towards C0 with incoherent
behavior.
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FIG. 7. For an ensemble of coupled Lorenz oscillators, the vari-
ation of MSF, λM , for the unaugmented system as a function of
coupling strength ε1 is plotted in (a). Here, red squares, green circles,
and blue triangles represent λM values corresponding to the attractors
C∓,0, respectively. (b)–(d) are the results for augmented system,
where λM is plotted as a function of augmentation strength ε2 for
different choices of control parameter B 	 B− (b), 	 B+ (c), and
= B0 (d). Parameters K = 3 and ε1 = 0.08. Results are obtained for
100 different initial conditions.

V. LINEAR AUGMENTATION IN LOCALLY AND
NONLOCALLY COUPLED FLOWS

In this section, we expand our analysis for locally and
nonlocally coupled Lorenz systems and apply LA to control
the collective behavior of such populations. The equation of
motion for coupled identical Lorenz oscillators for such cases
is written as

ẋi = ρ(yi − xi ),

ẏi = γ xi − yi − xizi,

żi = xiyi − βzi + ε1

2p

(i+p)∑
j=(i−p)

Ai j (z j − zi), (8)

with index i = 1, 2, 3, . . . , N , N being the number of os-
cillators. Here, each oscillator in the ensemble is coupled
symmetrically with 2p nearest neighbors (p to its left, and p
to its right) with coupling strength ε1. Bearing to the network,
one can define a parameter r = p/N as the coupling radius [2].
For example, when p = 1, oscillators are coupled to its nearest
neighbors only, referring to the locally coupled scenario with

coupling radius r = 1/N . For the case of global coupling, all
the oscillators are connected to each other; then p = (N −
1)/2 or ≈ N/2 depending on whether N is odd or even, and
the corresponding coupling radius r = (N − 1)/2N ≈ 0.5. A
value of r between these limits represent the case of non-
local coupling [59,60]. In our case of N = 100 oscillators,
p = 1 (i.e., r = 0.01) represents the local (nearest-neighbor)
coupling, while p = 35 (i.e., r = 0.35) represents that each
oscillator is connected to 70 (35 in each direction) oscilla-
tors, which implies a nonlocal coupling scheme. Here, we
discuss controlling chimera states both for locally (r = 0.01)
and nonlocally (r = 0.35) coupled flows. In order to identify
different dynamical states present in the network, we make
use of a qualitative measure called “strength of incoherence”
(SI), which is based on the standard deviation of the nearby
variables as described in the literature [61]. For this calcu-
lation, the state variables given in Eq. (8) are transformed
as ui = xi+1 − xi, where xi = [x1,i, x2,i, . . . , xd,i]T ∈ Rd . The
local standard deviation of the transformed state is then
given by

σ l (m) =
〈√√√√1

n

mn∑
j=n(m−1)+1

[ul, j − 〈ul〉]2

〉
t

, (9)

where the total number of oscillators is divided into M
bins with n = N/M equal length, m = 1, 2, . . . , M and l =
1, 2, . . . , d . The quantity 〈· · · 〉t denotes average over time.
This gives the measure SI defined as

SI = 1 − 1

M

M∑
m=1

[δ − σl (m)], (10)

where  is a heavyside step function and δ is a small prede-
fined threshold. SI takes the values SI = 1, SI = 0, and 0 <

SI < 1 for incoherent, coherent, and chimera or multichimera
states, respectively.

In Fig. 8, we show the behavior of SI as a function of
coupling ε1 and depict the observation of chimeric behavior
in unaugmented locally and nonlocally coupled oscillator en-
sembles. We consider a system of N = 100 oscillators with
coupling radius r = 0.01 and 0.35 for local and nonlocal cou-
plings, respectively [60]. For both types of coupling schemes,
we find that chimera states can be observed in the system
when the coupling strength is approximately ε1 > 0.05. This
is indicated by the measure SI being 0 < SI < 1 for this
parameter range, and verified in Figs. 8(a) and 8(d) where
corresponding space-time plots are shown (using xi variables)
at ε1 = 0.08.

In order to control the resulting dynamics of these en-
sembles, a desired number of oscillators from the ensemble
are augmented to the corresponding linear systems. This aug-
mented system is given by

ẋi = ρ(yi − xi ) + ε2Eiwi,

ẏi = γ xi − yi − xizi,

żi = xiyi − βzi + ε1

2p

(i+p)∑
j=(i−p)

Ai j (z j − zi ),

ẇi = −Kwi − ε2Ei(xi − B). (11)

042202-7



KHATUN, JAFRI, AND PUNETHA PHYSICAL REVIEW E 103, 042202 (2021)

 0

 0.5

 1

 0  0.05  0.1  0.15

(a) (b)

(c) (d)

SI

�1

 0

 0.5

 1

 0  0.05  0.1  0.15

SI

�1

 500

 650

 800

 950

1  20  40  60  80  100

t
i

-20

-10

 0

 10

 20

xi

 500

 650

 800

 950

1  20  40  60  80  100

t

i
-20

-10

 0

 10

 20

xi

FIG. 8. Chimeric dynamics in locally (upper panel) and nonlo-
cally (lower panel) coupled oscillator ensembles without LA. In the
left panel, the strength of incoherence SI is plotted as a function of
coupling strength ε1 for (a) local and (c) nonlocal coupling schemes.
Corresponding space-time plots are shown in the right panel for
(b) locally and (d) nonlocally coupled systems at fixed coupling ε1 =
0.08 (indicated by dashed arrows in the left panel). Calculation of SI
is done by evolving the system for 100 different initial conditions at
each ε1 value.

Now, for the locally coupled oscillator system, we consider
p = 1, i.e., r = 0.01, and show how the collective dynamics
of such ensembles can be controlled using the LA technique.
These results are illustrated in Fig. 9 where we present ex-
amples of controlling chimera states using (i) a fraction of
the population and (ii) the entire population for augmentation.
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FIG. 9. Controlling chimera states through LA in locally coupled
oscillators (r = 0.01). The strength of incoherence SI as a function
of augmentation strength ε2, and space-time plots are shown in the
left and right panels, respectively. Depending on the number of
augmented oscillators, two cases are shown: (i) NA = 50 [in upper
panels (a) and (b)], and (ii) NA = 100 [in lower panels (c) and
(d)]. Space-time plots are shown for a fixed augmentation strength
ε2 = 2.5, indicated by dashed arrows in the left panel. Calculation of
SI is done by evolving the system for 100 different initial conditions
at each ε2 value.
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FIG. 10. Controlling chimera states through LA in nonlocally
coupled oscillators (r = 0.35). The strength of incoherence SI as a
function of augmentation strength ε2, and space-time plots are shown
in the left and right panels, respectively. The two cases shown are (i)
NA = 50, in (a) and (b); and (ii) NA = 100, in (c) and (d). Space-
time plots are shown for a fixed augmentation strength ε2 = 2.5,
indicated by dashed arrows in the left panel. Calculation of SI is done
by evolving the system for 100 different initial conditions at each
ε2 value.

For both of these cases, the values of SI were calculated as
a function of augmentation strength ε2, and the results are
shown in Figs. 9(a) and 9(c) for an ensemble of 100 locally
coupled oscillators at parameters ε1 = 0.08 and K = 3. We
see in Fig. 9(b) that by appropriately choosing the control
parameter B, one can force the dynamics of locally cou-
pled oscillators towards a desired group; G+ in this example.
Further, by considering multiple B values simultaneously,
one can control the size and location of the synchro-
nized and desynchronized clusters, as depicted in Fig. 9(d)
where the chimera state with clusters of sizes 30 : 40 : 30 is
generated.

A similar control strategy can be applied for nonlocally
coupled oscillator ensembles as well. The results for this case
are shown in Fig. 10 for the system of N = 100 oscillators
with nonlocal coupling p = 35 (i.e., r = 0.35) at ε1 = 0.08,
K = 3. When the population is partially augmented (NA =
50), we use control parameter B 	 B− for a group of 30
oscillators and B 	 B+ for the remaining 20. Such LA con-
trol leads to the entrainment of these populations towards
the dynamics of G− and G+, respectively, as can be seen in
Fig. 10(b). For the case when NA = 100 [Fig. 10(d)], control
parameters B ≈ B−, B ≈ B+, and B = B0 are simultaneously
used for augmenting, say, 60, 20, and 20 oscillators in or-
der to obtain clusters G−, G+, and G0 of sizes 60, 20, and
20, respectively. The spatial locations of these groups can
be controlled by appropriately choosing control parameter B
and the position of the oscillators that are to be augmented.
These results show that with LA, one can easily control the
size and spatial location of the chimera states and force the
desired number of oscillators to follow a particular dynamics
in a system of globally, locally, as well as nonlocally coupled
oscillator ensembles.
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VI. CONCLUSION

In this work, we examine the emergence of dynamical
chimeras in coupled chaotic flows, and show how these states
can be controlled through linear augmentation. By selectively
switching on the couplings between the coupled flows and the
corresponding linear systems, one can effectively control the
resulting collective dynamics. Since the control in this case
takes place at the level of every oscillator unit, it is possible to
control individual oscillator dynamics and hence control the
spatial locations in the chimera states. Our results suggest that
by choosing appropriate values of augmentation parameters
B, K , and ε2, it is possible to shift the selected number of os-
cillators from one state to another desired state. With LA, one
can force a selected oscillator population to settle into a single
or multiple attractor(s), which can result in the appearance of
both synchronized or desynchronized clusters in the ensem-
ble. Further, we show that these observations are valid for
all types of coupling mechanisms including global, local, and
nonlocal interactions where chimera states are created through
induced multistability. In unaugmented oscillators, we ob-
serve that the basin of attraction of coexisting attractors is of
riddled nature. However, when oscillators are connected to the
linear systems, i.e., with LA, riddling is reduced and chimeric
behavior of the population can be regulated. The riddling
disappears when multistablity is destroyed using LA control
to achieve a target dynamics. For very large augmentation
strengths, the basin of one of the attractors is found to be dom-
inated, thus destroying the chimeric nature of the system. The
behavior of the master stability function confirms the stabi-
lization of synchronized state in the ensemble. MSF can have
both positive (unstable synchrony) and negative (stable syn-
chrony) values corresponding to different attractors present in
the system with different synchronization properties.

LA is used to control multistable dynamics of the systems
by targeting its fixed points and forcing the dynamics towards
a particular attractor. Thus, only one of the attractors remains
in the augmented system, destroying its multistable nature.
This transition has earlier been described by the “boundary
crisis” [42]. In our system, we target specific attractor(s) to
control the chimera population. Our results suggest that the
fraction of oscillators fC∓,0 , going towards the targeted attrac-
tor, as a function of augmentation strength gradually increases
to one (see Fig. 3). This maximum value indicates that all
initial conditions in the basin asymptote to a selected attractor.
One can expect similar basin behavior for other systems where
LA results in the disappearance of multistable behavior and
leads to a single attractor dynamics.

Our results suggest that LA is helpful for controlling the
size of the subpopulation and spatial locations of the synchro-

nized and desynchronized clusters in the chimera states. The
results presented here are quite general in the sense that they
can be applied to the ensemble of oscillators where chimera
states can be induced through multistability; examples include
the ensembles of Rössler and Chua oscillators. Apart from
globally coupled oscillators, we show that the LA technique
can be applied to control the collective dynamics of the en-
semble of locally and nonlocally coupled systems as well.
With this technique, we can control the system dynamics
through external parameters (parameters of the linear system),
which are easily accessible. The simple technique using a lin-
ear system, in general, can be helpful in engineering collective
dynamics of coupled networks where internal parameters are
not accessible. There are instances, namely, in power grid
[62,63] and neuronal systems [11,64,65] where it is difficult
to access internal parameters of the system. In such cases,
one may implement a simple linear augmentation technique
to ensure an effective control over the collective dynamics of
the system.

In general, chimera states are known to appear in oscil-
lator ensembles when some degree of nonuniformity (in the
coupling, topology, or parameters) is introduced in the sys-
tem [7]; for example, with nonlocal (or variable) coupling,
nonzero phase-lag parameter, modular networks, or due to the
presence of time delay in the system. In this case, however,
chimera states are obtained without such “heterogeneities”:
we induce multistability, and the synchronization properties
of these multiple attractors are used to obtain chimera states
in the chaotic oscillator ensembles. Thus the mechanism of
emergence of chimera in this case is different from the classi-
cal scenarios where it is observed with nonlocal coupling. The
strategies to control chimera states for these cases, therefore,
are also different. Here we show linear augmentation, which
is a powerful technique to control multistable dynamics, is
quite effective in achieving desired state(s) in our system.
Note that the effectiveness of LA is sensitive to the aug-
mentation parameters, the class of oscillatory systems, the
stationary solutions to be stabilized, as well as the way the
systems are augmented [66]. Here, however, we find this
control strategy is quite robust and the chimera population
thus obtained is stable in the presence of perturbations and
noise [67].
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