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Soliton gas in bidirectional dispersive hydrodynamics
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The theory of soliton gas had been previously developed for unidirectional integrable dispersive hydrodynam-
ics in which the soliton gas properties are determined by the overtaking elastic pairwise interactions between
solitons. In this paper, we extend this theory to soliton gases in bidirectional integrable Eulerian systems where
both head-on and overtaking collisions of solitons take place. We distinguish between two qualitatively different
types of bidirectional soliton gases: isotropic gases, in which the position shifts accompanying the head-on and
overtaking soliton collisions have the same sign, and anisotropic gases, in which the position shifts for head-on
and overtaking collisions have opposite signs. We construct kinetic equations for both types of bidirectional
soliton gases and solve the respective shock-tube problems for the collision of two “monochromatic” soliton
beams consisting of solitons of approximately the same amplitude and velocity. The corresponding weak
solutions of the kinetic equations consisting of differing uniform states separated by contact discontinuities
for the mean flow are constructed. Concrete examples of bidirectional Eulerian soliton gases for the defocusing
nonlinear Schrödinger (NLS) equation and the resonant NLS equation are considered. The kinetic equation
of the resonant NLS soliton gas is shown to be equivalent to that of the shallow-water bidirectional soliton
gas described by the Kaup-Boussinesq equations. The analytical results for shock-tube Riemann problems for
bidirectional soliton gases are shown to be in excellent agreement with direct numerical simulations.
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I. INTRODUCTION

Dispersive hydrodynamics modeled by hyperbolic conser-
vation laws regularized by conservative, dispersive correc-
tions describe various nonlinear wave structures that include
solitary waves (solitons), dispersive shock waves (DSWs), rar-
efaction waves, and their interactions [1]. A particular feature
of dispersive hydrodynamics is the intrinsic scale separa-
tion, often providing a qualitatively new perspective on some
classical mathematical and fluid dynamical settings (such as
Riemann problems or flows past topography), but also reveal-
ing novel phenomena such as hydrodynamic soliton tunneling
[2,3] and expansion shocks [4].

On a small-scale, microscopic level, dispersive hydrody-
namics typically involve coherent nonlinear wave structures
such as solitons and rapidly oscillating periodic waves, while
the large-scale, macroscopic coherent features are represented
by slow modulations of these periodic waves or soliton trains.
The prominent example of a dispersive hydrodynamic struc-
ture exhibiting such two-scale coherence and persisting in
integrable and nonintegrable systems is DSW, the dispersive
analog of a classical, viscous shock wave [5].

There is another class of problems in dispersive hy-
drodynamics, which involve the wave structures exhibiting
coherence at a microscopic scale, while being macroscopi-
cally incoherent, in the sense that the values of the wave field
at two points separated by a distance much larger than the
intrinsic dispersive length of the system (the soliton width),

*Corresponding author: thibault.congy@northumbria.ac.uk

are not dynamically related. These structures can be broadly
viewed as dispersive-hydrodynamic analogs of turbulence,
and the qualitative and quantitative properties of such a
conservative turbulence strongly depend on the integrability
properties of the underlying microscopic dynamics. In [6]
Zakharov introduced the notion of “integrable turbulence”
for random nonlinear wave fields governed by integrable
equations such as the Korteweg–de Vries (KdV) or nonlin-
ear Schrödinger (NLS) equations. The source of randomness
in integrable turbulence is typically related to some sort of
stochastic initial or boundary conditions, although one can en-
visage dynamical mechanisms of the effective randomization
of the wave field [7,8]. The theoretical perspective of inte-
grable turbulence has turned out to be very fruitful, providing
new insights into some long-standing problems of nonlinear
physics related, e.g., to modulational instability and the for-
mation of rogue waves [9–11]. Indeed, integrable turbulence
proved a promising theoretical framework for the interpreta-
tion of experimental and observational data in fiber optics and
fluid dynamics [12].

Solitons, viewed as stable “wave particles” of macro-
scopic dispersive-hydrodynamic structures, can form large
disordered, statistical ensembles, strikingly different from the
macroscopically coherent DSWs, and calling for the analogy
with gases of classical or quantum particles. Such statistical
soliton ensembles, or “soliton gases,” can be naturally gen-
erated from both nonvanishing deterministic (e.g., periodic
or quasiperiodic) and random initial conditions due to the
processes of soliton fissioning [13,14] or modulation insta-
bility [15]. The ubiquity of solitons in applications and the
integrable nature of the underlying wave dynamics makes
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soliton gases a particularly attractive object for modeling the
complex nonlinear wave phenomena occurring in the ocean
and in high-intensity incoherent light propagation through op-
tical materials (see [16], and references therein). The random
nonlinear wave field in a soliton gas represents a particular
case of integrable turbulence [6].

Within the inverse scattering transform (IST) formalism,
each soliton is characterized by a discrete eigenvalue λ j of the
spectrum of the linear operator associated with the integrable
nonlinear evolution equation. There are two basic aspects of
the microscopic, soliton dynamics that determine the macro-
scopic, statistical properties of integrable soliton gases and
turbulence: (i) isospectrality of integrable evolution resulting
in the preservation of soliton eigenvalues; and (ii) pairwise
elastic collisions accompanied by phase shifts (or position
shifts) expressed in terms of the respective spectral parameters
of the interacting solitons.

The macroscopic properties of a soliton gas are determined
by the spectral characteristics called the density of states
(DOS) f (λ) > 0, defined such that the number of solitons
found at the moment of time t in the element [λ, λ + dλ] ×
[x, x + dx] of the phase space is f (λ)dλ dx (assuming λ ∈ R,
the generalization to complex spectrum being straightforward
[17]). DOS represents the definitive statistical characteristics
of soliton gas distinguishing it from an arbitrary random col-
lection of solitons. The first controlled generation of soliton
gas characterized by a measurable DOS has been recently
reported in [18].

For uniform, statistically homogeneous soliton gases the
DOS depends on the spectral parameter only. For spatially
nonhomogeneous soliton gases one has f ≡ f (λ, x, t ), and
the isospectrality of integrable evolution implies the conser-
vation equation

ft + (s f )x = 0, (1)

where the transport velocity (the mean velocity of a “tracer”
soliton in a gas) s(λ, x, t ) is found from the integral equation
of state [17]

s(λ, x, t ) = c(λ) +
∫

�

�(λ,μ) f (μ, x, t )

× |s(λ, x, t ) − s(μ, x, t )|dμ. (2)

Here c(λ) is the velocity of an isolated single soliton with
the spectral parameter λ ∈ �, and the integral term describes
its modification due to collisions with other “μ solitons” in
a gas, each collision being accompanied by the position shift
�(λ,μ), often called the phase shift. The integration in (2)
is performed over the spectral support � ⊂ R of the DOS
f (λ, x, t ). If one assumes that (i) sgn[�(λ,μ)] = ±sgn(λ −
μ) and (ii) s′(λ) �= 0, the modulus sign in (2) can be removed
by introducing �(λ,μ) = sgn(λ − μ)G(λ,μ) so that one ar-
rives at the conventional form of the equation of state as in
[17,19], involving G(λ,μ) rather than �(λ,μ) as the integral
kernel. For example, for the KdV solitons one has c(λ) =
4λ2, sgn[�(λ,μ)] = +sgn(λ − μ), s′(λ) > 0, and G(λ,μ) =
λ−1 ln |(λ + μ)/(λ − μ)| (see, e.g., [20]).

The transport equation (1) for the DOS complemented by
the integral equation of state (2) comprise the kinetic equation
for soliton gas. A kinetic equation of the type (1), (2) was first

introduced in [21] for the case of rarefied, or dilute, gas of
KdV solitons, when the interaction term in the equation state
(2) represents a small correction and the soliton velocity in a
gas is found from the expression s ≈ 4λ2 + λ−1

∫ λmax

0 ln |(λ +
μ)/(λ − μ)| f (λ, x, t )[4λ2 − 4μ2]dμ, which is an approxi-
mate solution of the equation of state (2) for the KdV soliton
gas. The full kinetic equation (1), (2) for a dense soliton gas
was derived and analyzed in the context of the KdV equation
in [22,23] and the focusing NLS equation in [16,17] (in the
latter case λ ∈ C). A general mathematical analysis of the
kinetic equation (1), (2) has been undertaken in [19], which
showed that it possesses an infinite series of integrable linearly
degenerate hyperbolic reductions. Very recently the kinetic
equation (1), (2) has attracted much attention in the con-
text of generalized hydrodynamics, a hydrodynamic theory
of quantum many-body integrable systems (see [24–26], and
references therein).

In the context of dispersive hydrodynamics the kinetic
equation (1), (2) describes “unidirectional” soliton gases sup-
ported by scalar integrable equations of the form

ut + F (u)x = (D[u])x, (3)

where F (u) is the nonlinear hyperbolic flux and D[u] is a
differential (generally integrodifferential) operator, possibly
nonlinear, that gives rise to a real-valued linear dispersion
relation. The spectral single-soliton solutions to Eq. (3) are
characterized by the soliton velocity c(λ) and the phase-shift
kernel �(λ,μ) characterizing the “overtaking” two-soliton
interactions. However, the scalar integrable dispersive hydro-
dynamics of the form (3), such as the KdV, modified KdV,
Camassa-Holm, or Benjamin-Ono equations typically arise
as small-amplitude, “unidirectional” approximations of more
general Eulerian bidirectional systems (see [27])

ρt + (ρu)x = (D1[ρ, u])x,
(4)

(ρu)t + [ρu2 + P(ρ)]x = (D2[ρ, u])x,

where D1,2[ρ, u] are conservative, dispersive operators,
P(ρ) > 0 is the monotonically increasing pressure law, and
ρ and u are interpreted as a mass density and fluid ve-
locity, respectively. This class of equations generalizes the
shallow-water and isentropic gas dynamics equations while
encompassing many of the integrable dispersive hydrody-
namic models such as the Kaup-Boussinesq (KB) system [28],
the hydrodynamic form of the defocusing NLS equation [29],
or the Calogero-Sutherland system describing the dispersive
hydrodynamics of quantum many-body systems [30]. Due to
the bidirectional nature, the Eulerian dispersive hydrodynam-
ics (4) supports solitons that experience both overtaking and
head-on elastic collisions which are generally characterized
by two different phase-shift kernels �1(λ,μ) �= �2(λ,μ).
Indeed, the rarefied bidirectional shallow-water soliton gas
realized in the water tank experiments [31,32] was modeled
by the KB system [28], which exhibits qualitatively differ-
ent properties for head-on and overtaking position shifts in
the pairwise soliton collisions [33] so that the overtaking
interactions can be characterized as “strong” and the head-on
interactions as “weak.” We shall term such collisions and
the associated soliton gases “anisotropic.” On the other hand,
some bidirectional dispersive hydrodynamic systems support
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soliton solutions that exhibit “isotropic” collisions character-
ized by the same phase-shift kernel �(η,μ) for the head-on
and overtaking interactions (e.g., the defocusing NLS equa-
tion [34]).

Despite the significant recent advances of the kinetic theory
of unidirectional soliton gases, a consistent general extension
of this theory to the physically important bidirectional case
has not been available so far, and this paper is devoted to the
development of such an extension. The paper is organized as
follows. In Sec. II we present the general construction of the
kinetic equation for bidirectional soliton gas and realize it for
the cases of the defocusing nonlinear Schrödinger (DNLS)
equation and its “stable” negative dispersion counterpart, the
so-called resonant NLS (RNLS) equation, having applications
in magnetohydrodynamics of cold collisionless plasma [35],
and reducible to the KB system for shallow-water waves by
a simple change of variables. It turns out that, due to the
pairwise collisions of dark DNLS solitons being isotropic, the
bidirectional kinetic equation for the dark (gray) solitons of
the DNLS equation reduces to the unidirectional kinetic equa-
tion of the form (1), (2). Contrastingly, the soliton collisions
of antidark RNLS solitons are anisotropic, and the kinetic
equation for this case represents a pair of the kinetic equations
of the type (1), (2) with some nonlinear coupling through the
equation of state. In Sec. III we derive expressions for the
mean field in both soliton gases in terms of the spectral DOS.
To demonstrate the efficacy of the developed theory we con-
sider in Sec. IV the “shock-tube” Riemann problem describing
the collision of “monochromatic” soliton beams for both types
of bidirectional gases. The collisions are described by weak
solutions to the bidirectional kinetic equations, consisting of
a number differing constant states for the DOS, separated by
contact discontinuities for the component densities, satisfy-
ing appropriate Rankine-Hugoniot conditions. The analytical
results are shown to be in excellent agreement with direct
numerical simulations of the soliton gas shock-tube problem
for DNLS and RNLS equations.

II. KINETIC EQUATION FOR BIDIRECTIONAL
SOLITON GAS

In this section we derive the kinetic equation for in-
tegrable Eulerian dispersive hydrodynamics (4) using the
general physical construction proposed in [17] for a unidirec-
tional case. The construction uses an extension of the original
Zakharov’s phase-shift reasoning [21], which, strictly speak-
ing, is applicable only in a rarefied gas case. However, the
resulting kinetic equation (1), (2) turns out to provide the
correct description for a dense gas, which has been mathemat-
ically justified by the thermodynamic limit of the finite-gap
Whitham modulation systems for the cases of the KdV [22]
and the focusing NLS [16] equations. Our results for bidirec-
tional gas will be later supported by comparisons with direct
numerical simulations of the relevant soliton gases, justifying
the validity of the phenomenological derivation.

A. Isotropic and anisotropic bidirectional soliton gases

Suppose that the system (4) supports a family of bidirec-
tional soliton solutions that bifurcate from the two branches of

the linear wave spectrum ω = ω±(k) of (4) so that ω−(k)/k <

ω+(k)/k in the long-wavelength limit k → 0. We denote the
corresponding soliton families (ρ−

s , u−
s ) and (ρ+

s , u+
s ). Let

these soliton solutions be parametrized by a real-valued spec-
tral (IST) parameter λ so that λ ∈ �+ for the “fast” branch
and λ ∈ �− for the “slow” branch, where �± are simply con-
nected subsets of R with one intersection point at most. Let
the respective soliton velocities be c±(λ). For convenience we
assume that c′

±(λ) > 0, and c−(λ1) < c+(λ2) if λ1 ∈ �− and
λ2 ∈ �+, λ1 �= λ2. If �− ∩ �+ = {λ∗} we assume c−(λ∗) =
c+(λ∗). The above assumptions are consistent with all con-
crete examples of integrable dispersive hydrodynamics we
consider in this paper.

One can distinguish between two types of the pairwise
collisions in a bidirectional soliton gas: the overtaking colli-
sions between solitons belonging to the same spectral branch
and characterized by the position shifts �++ and �−−, re-
spectively, and the “head-on” collisions between solitons of
different branches, characterized by the position shifts �+−
and �−+. Let λ �= μ, and �±±(λ,μ) and �±∓(λ,μ) denote
the position shifts of a λ soliton due to its collision with a
μ soliton, with the first and second signs ± in the subscript
indicating the branch correspondence of the λ soliton and the
μ soliton, respectively, e.g., �−+(λ,μ) is the position shift of
a λ soliton with λ ∈ �− in a collision with a μ soliton with
μ ∈ �+.

We call the bidirectional soliton gas “isotropic” if the posi-
tion shifts for the overtaking and head-on collisions between
λ and μ solitons satisfy the following sign conditions:

sgn[�++] = sgn[�+−], sgn[�−−] = sgn[�−+], (5)

i.e., the λ soliton experiences a shift of a certain sign, say
shift forward (and the μ soliton—the shift of an opposite
sign), irrespectively of the type of the collision—overtaking or
head-on. If conditions (5) are not satisfied, i.e., the sign of the
phase shift depends on the type of the collision, we shall call
the corresponding soliton gas “anisotropic.” The difference
between isotropic and anisotropic collisions is illustrated in
Fig. 1 using concrete examples.

B. Kinetic equation for bidirectional soliton gas:
General construction

Following the construction of kinetic equation for unidi-
rectional soliton gas outlined in the Introduction, we now
consider bidirectional soliton gases for integrable Eulerian
equations (4). We introduce two separate DOSs f−(λ, x, t )
and f+(λ, x, t ) for the populations of solitons whose spectral
parameters belong to the slow (�−) and fast (�+) branches
of the spectral set �, respectively. The isospectrality of inte-
grable evolution implies now two separate conservation laws:

( f−)t + (s− f−)x = 0, ( f+)t + (s+ f+)x = 0, (6)

where s−(λ, x, t ) and s+(λ, x, t ) are the transport velocities
associated with the motion of slow solitons and fast solitons
associated with �− and �+ branches, respectively. We derive
the equations of state for s± using the direct phenomenolog-
ical approach proposed [17]: we identify s±(λ, x, t ) as the
velocity of a tracer λ soliton in the gas. Consider, for instance,
a tracer λ soliton from the slow branch, λ ∈ �−, and compute
its displacement in a gas over the “mesoscopic” time interval
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FIG. 1. Variation of the phase shifts in the isotropic (a) and
anisotropic (b) interactions of solitons with spectral parameters λ and
μ. The λ soliton belongs to the “+” branch with λ = 1/2 (a) and
λ = 3/2 (b). Solid lines represent the variation of �++ and dashed
lines the variation of �+−.

dt , sufficiently large to incorporate a large number of colli-
sions, but sufficiently small to ensure that the spatiotemporal
field f±(λ, x, t ) is stationary over dt and homogeneous on a
typical spatial scale c±(λ)dt . Having this in mind, we drop
the (x, t ) dependence for convenience. Each overtaking col-
lision with a soliton of the same branch μ ∈ �− shifts the
λ soliton by the distance �−−(λ,μ). Thus the displacement
of the λ soliton over the time dt due to the overtaking colli-
sions is given by

∫
�−

�−−(λ,μ) f−(μ)|s−(λ) − s−(μ)|dt dμ

where f−(μ)|s−(λ) − s−(μ)|dt is the average number of col-
lisions with encountered μ solitons (cf. [17]). Additionally,
each head-on collision with a fast soliton μ ∈ �+ shifts the
slow λ soliton with λ ∈ �− by �−+(λ,μ), and the resulting
displacement after a time dt is

∫
�+

�−+(λ,μ) f+(μ)|s+(λ) −
s−(μ)|dt dμ. A similar consideration is applied to the fast
soliton branch, λ ∈ �+, in the gas. Equating the total displace-
ments of the slow and fast λ solitons to s−(λ)dt and s+(λ)dt ,
respectively, we obtain the equation of state of a bidirectional
gas in the form of two coupled linear integral equations:

s−(λ) = c−(λ) +
∫

�−
�−−(λ,μ) f−(μ)|s−(λ) − s−(μ)|dμ

+
∫

�+
�−+(λ,μ) f+(μ)|s−(λ) − s+(μ)|dμ,

s+(λ) = c+(λ) +
∫

�+
�++(λ,μ) f+(μ)|s+(λ) − s+(μ)|dμ

+
∫

�−
�+−(λ,μ) f−(μ)|s+(λ) − s−(μ)|dμ, (7)

where λ ∈ �− for the first equation and λ ∈ �+ for the sec-
ond equation. If the spectral support � = �− ∪ �+ ⊂ R is a
simply connected set and the gas is isotropic, the distinction
between the fast and slow branches becomes unnecessary and
the kinetic equation (6), (7) for bidirectional soliton gas is
naturally reduced to the unidirectional gas equation (1), (2)
for a single DOS f (λ) defined on the entire set �. We will
show in Sec. IV, using concrete examples, that the dynamics
governed by the kinetic equations (1), (2) and (6), (7) is
in very good agreement with the results of direct numerical
simulations of isotropic and anisotropic bidirectional soliton
gases, respectively.

C. Kinetic equation for bidirectional soliton gas: Examples

As a representative (and physically relevant) example, we
consider the integrable Eulerian dispersive hydrodynamics

ρt + (ρu)x = 0,

(ρu)t +
(

ρu2 + ρ2

2

)
x

= σ

4
[ρ(ln ρ)xx]x,

σ = ±1. (8)

For σ = 1, system (8) is equivalent to the DNLS equation:

iψt + 1

2
ψxx − |ψ |2ψ = 0, ψ = √

ρ exp

(
i
∫

u dx

)
. (9)

The DNLS equation has a number of physical applications. In
particular, it describes the propagation of light beams through
optical fibers in the regime of normal dispersion, as well
as nonlinear matter waves in quasi-one-dimensional (quasi-
1D) repulsive Bose-Einstein condensates (BECs) (see, for
instance, [36]). Pertinent to the present context, rarefied gas
of dark solitons in quasi-1D BEC has been investigated in
[37,38].

The DNLS equation has a family of dark (or gray) spectral
soliton solutions [34]

ρ±
s = 1 − (1 − λ2)sech2[

√
1 − λ2(x − c±t )],

(10)
u±

s = λ

(
1 − 1

ρ±
s (x, t )

)
, c± = λ ∈ �±,

where �− = (−1, 0] for the slow solitons branch and �+ =
[0,+1) for the fast solitons branch; note that solutions
(ρ+

s , u+
s ) and (ρ−

s , u−
s ) have the same analytical expression.

Without loss of generality we assumed in (10) the unit den-
sity background. Typical dark soliton solutions are displayed
in Fig. 2. The position shifts in the DNLS overtaking and
head-on soliton collisions are given by the same analytical
expression �±±(λ,μ) = �±∓(λ,μ) ≡ �(λ,μ), where

�(λ,μ) = sgn(λ − μ) G1(λ,μ),

G1(λ,μ) ≡ 1

2
√

1−λ2
ln

(λ−μ)2+(
√

1−λ2+
√

1−μ2)2

(λ−μ)2+(
√

1−λ2−
√

1−μ2)2
,

(11)

for all λ,μ ∈ (−1, 1). One can verify that the soliton position
shifts given by (11) satisfy the isotropy conditions (5). The
variation of �(λ,μ) with respect to μ for a fixed λ is dis-
played in Fig. 1. One can see that the position shifts for the
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FIG. 2. Soliton solutions: solid lines represent fast branch so-
lutions (ρ+

s , u+
s ) and dashed lines slow branch solutions (ρ−

s , u−
s ).

(a) Dark soliton solutions of the DNLS equation (10) with λ =
+0.5, −0.2. (b) Antidark soliton solutions of the RNLS equation
(16) with λ = +1.3, −1.2. (c) Antidark soliton solutions of the KB
system (A3) with λ = +1.3, −1.2.

head-on and overtaking collisions lie on the same curve with
�(λ,μ) being continuous at λ = 0, the point of intersection
of �− and �+. Due to the isotropic nature of the DNLS soli-
ton interactions the coupled kinetic equation (6), (7) for the
bidirectional DNLS gas reduces to the single kinetic equation
(1) with the equation of state

s(λ, x, t ) = λ +
∫ +1

−1
G1(λ,μ) f (μ, x, t )

× [s(λ, x, t ) − s(μ, x, t )]dμ, (12)

where λ ∈ (−1, 1) and with the assumption that s′(λ) > 0;
the latter assumption is verified by comparison to numerics in
Sec. IV B. This reduction to the unidirectional case is similar

to the kinetic equation derived in [16] for the bidirectional
soliton and breather gases of the focusing NLS equation which
also exhibits isotropic soliton and breather collisions, with the
essential difference that the integration in the focusing NLS
case occurs over a compact domain in a complex plane of the
spectral parameter.

For σ = −1 the system (8) is equivalent to the so-called
RNLS equation (see, e.g., [39])

iψt + 1

2
ψxx − |ψ |2ψ = |ψ |xx

|ψ | ψ,

ψ = √
ρ exp

(
i
∫

u dx

)
. (13)

This equation, in particular, describes long magnetoacoustic
waves in a cold plasma propagating across the magnetic field
[40]. The change of variables

ρ̃ = ρ + 1

2

(
u + ρx

2ρ

)
x

, ũ = u + ρx

2ρ
,

(14)
x̃ = 2√

3
x, t̃ = 2√

3
t,

transforms the RNLS equation into the KB system [28]:

ρ̃t̃ + (ρ̃ũ)x̃ = − 1
3 ũx̃x̃x̃, ũt̃ + ũũx̃ + ρ̃x̃ = 0, (15)

describing bidirectional shallow-water waves. The KB system
has a family of antidark spectral soliton solutions, cf. [63],
which transforms into a family of antidark spectral soliton
solutions for the RNLS equation:

ρ±
s = 1 + (λ2 − 1)sech2[

√
λ2 − 1(x − c±t )],

u±
s = λ

(
1 − 1

ρ±
s (x, t )

)
, c± = λ ∈ �±. (16)

using the change of variables (14) (cf. Appendix A). Solutions
(ρ+

s , u+
s ) and (ρ−

s , u−
s ) have the same analytical expression.

These solutions have also been obtained in [39]. Typical anti-
dark soliton solutions are displayed in Fig. 2. One can notice
in Fig. 2 that the bimodal soliton of the KB system transforms
into a unimodal soliton of the RNLS equation with the change
of variables (14).

In contrast with the DNLS system, the spectral set of the
RNLS soliton is spanned by two disconnected subsets: �− =
(−∞,−1) for slow solitons and �+ = (+1,+∞). Similar to
the DNLS equation, the position shifts in head-on and over-
taking collisions are given by the same analytical expression
�±±(λ,μ) = �±∓(λ,μ) ≡ �(λ,μ), where

�(λ,μ) = sgn(λ − μ) G2(λ,μ),

G2(λ,μ) ≡ 1

2
√

λ2− 1
ln

(λ− μ)2− (
√

λ2− 1+
√

μ2− 1)2

(λ− μ)2− (
√

λ2− 1−
√

μ2− 1)2
.

(17)

which is derived from the phase shift formula for KB solitons
using the change of variables (14). However, one can verify
that, unlike in the DNLS case, the isotropy condition (5) is not
satisfied. Indeed, it follows from (17) that sgn[�±±(λ,μ)] =
sgn(λ − μ), whereas sgn[�±∓(λ,μ)] = −sgn(λ − μ), that is
in a head-on collision between a λ soliton and a μ soliton with
λ > μ, the λ soliton’s position is now shifted backward. The
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variation of �±±(λ,μ) for the RNLS equation is shown in
Fig. 1. One can see that it is qualitatively different from the
variation of �±∓(λ,μ) for the DNLS equation.

The kinetic equation for the anisotropic RNLS soliton gas
has then the form of two continuity equations (6) comple-
mented by the coupled equations of state

s−(λ) = λ +
∫ −1

−∞
G2(λ,μ) f−(μ)[s−(λ) − s−(μ)]dμ

+
∫ ∞

+1
G2(λ,μ) f+(μ)[s−(λ) − s+(μ)]dμ,

s+(λ) = λ +
∫ +∞

+1
G2(λ,μ) f+(μ)[s+(λ) − s+(μ)]dμ

+
∫ −1

−∞
G2(λ,μ) f−(μ)[s+(λ) − s−(μ)]dμ, (18)

with the assumptions that s′
±(λ) > 0 and s+ > s−; the latter

assumption is verified by direct comparison with numerics in
Sec. IV B.

Note that for the KB system, the phase of a λ soliton after
colliding with a μ soliton is: 2/

√
3 × sgn(λ − μ)G2(λ,μ).

Thus the RNLS and the KB soliton gas share the same
anisotropic kinetic description. In the numerical examples
presented in the next section we will mostly focus on the
anisotropic RNLS soliton gas for a direct comparison with the
isotropic DNLS soliton gas.

III. ENSEMBLE AVERAGES OF THE WAVE FIELD
IN BIDIRECTIONAL SOLITON GASES

The DOS f (λ) [ f±(λ) in the anisotropic case] represents a
comprehensive spectral characteristic, that, in principle, deter-
mines all statistical parameters of the nonlinear random wave
field [ρ(x, t ), u(x, t )] in a soliton gas. The most obvious set
of such statistical parameters are the ensemble averages of
the conserved quantities. We note that for the KdV soliton
gas the averages 〈u〉, 〈u2〉 were determined in terms of the
DOS in [23,41] using the machinery of the finite-gap inte-
gration method. In this section we propose a simple heuristic
approach that enables one to link the spectral DOS f (λ)
[or f±(λ)] of a soliton gas with the ensemble averages of
conserved quantities of the integrable system (4). As an illus-
tration we consider the three first conserved densities of the
Euler system (4): ρ, u, and ρu.

We first consider a homogeneous soliton gas, i.e., a gas
whose statistical properties, particularly the DOS, do not de-
pend on x, t . The proposed approach is based on the natural
assumption that the nonlinear wave field in a homogeneous
soliton gas represents an ergodic random process, both in
x and t (we note in passing that ergodicity is inherent in
the model of soliton gas based on the finite-gap theory; see,
e.g., [42–44]). The ergodicity property implies that ensemble
averages 〈ρ(x, t )〉, 〈u(x, t )〉, and 〈ρ(x, t )u(x, t )〉 in the soliton
gas can be replaced by the corresponding spatial averages.
Generally, for any functional H[ρ(x, t ), u(x, t )] we have

〈H[ρ, u]〉 = lim
L→∞

1

2L

∫ x+L

x−L
H[ρ(y, t ), u(y, t )]dy, (19)

for a single representative realization of soliton gas. We detail
below the derivation of 〈ρ〉, the generalization to 〈u〉, and 〈ρu〉
being straightforward.

Let the soliton gas propagate on a constant background
(ρ, u) = (ρ0, u0) [without loss generality one can assume
(ρ0, u0) = (1, 0)]. Let 〈ρ〉 = ρ0 + 〈η〉 where η = ρ − ρ0. We
consider the general, anisotropic case for which the soliton
gas is characterized by two DOSs f−(λ) and f+(λ). Define

I =
∫ x+L

x−L
η(y, t )dy, (20)

where L � 1. Then 〈ρ〉 = ρ0 + I/(2L) + O(L−1).
Let [ρ(y, t ), u(y, t )] be a realization of a soliton gas

solution to the dispersive hydrodynamics (4) and let
[ρ̃(y, t ), ũ(y, t )] be defined in such a way that for some
t = t∗ one has [ρ̃(y, t∗), ũ(y, t∗)] = [ρ(y, t∗), u(y, t∗)] for y ∈
(x − L, x + L) and [ρ̃(y, t∗), ũ(y, t∗)] = [ρ0, 0] outside of this
interval. To avoid complications we assume that the transition
between the two behaviors is smooth but sufficiently rapid so
that such a “windowed” portion of a soliton gas (see Fig. 3)
can be approximated by the N-soliton solution of (4) for some
N � 1, with the discrete IST spectrum being distributed on
�− and �+ with densities 2L f−(λ) and 2L f+(λ), respectively
(recall the definition of DOS in Sec. I). Equation (20) rewrites

I =
∫ +∞

−∞
η̃(y, t )dy, η̃(y, t ) = ρ̃(y, t ) − ρ0. (21)

We note the integral (21) does not depend on time because I is
a conserved quantity, in particular, for t = τ � t∗ where the
solution [ρ̃(y, τ ), ũ(y, τ )] asymptotically represents the train
of spatially well-separated solitons ρ±

s , u±
s propagating on the

background (ρ0, 0) (see Fig. 3). In this case, I can be evaluated
as

I =
∑

i

∫ +∞

−∞
[ρ−

s (y − λiτ − yi; λi ) − ρ0]dy

+
∑

j

∫ +∞

−∞
[ρ+

s (y − λ jτ − y j ; λ j ) − ρ0]dy, (22)

where λi, j are the spectral parameters and yi, j the initial phases
of the ± solitons. Since the spectrum is preserved by the
integrable dynamics (4), λi, j remain to be distributed on �±
with the respective densities 2L f±(λ) for all t . Let η± be the
“mass” of the spectral soliton solution ρ±

s (x − λt ; λ) − ρ0,

η±(λ) =
∫ +∞

−∞
[ρ±

s (y; λ) − ρ0]dy, (23)

which only depends on λ. Note that the integral in (23) con-
verges for the example considered in Sec. II C since ρ±

s decays
exponentially to ρ0. We have with this new notation, I =∑

i η−(λi ) + ∑
j η+(λ j ). Taking the continuous limit,

∑
i →∫

�−
dλ 2L f−(λ) and

∑
j → ∫

�+
dλ 2L f+(λ), we obtain

I

2L
=

∫
�−

η−(λ) f−(λ)dλ +
∫

�+
η+(λ) f+(λ)dλ, (24)
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FIG. 3. Schematic for the evaluation of the integral (20) in
soliton gas using the truncation procedure. (a) Typical distribu-
tion ρ(y, t∗) for a DNLS dark soliton gas. (b) Truncation of the
distribution ρ(y, t∗) for y ∈ (−L, L). (c) Variation of the truncated
distribution ρ̃(y, τ ) at time τ � t∗.

yielding the expression for the moment 〈ρ〉:

〈ρ(x, t )〉 = ρ0 +
∫

�−
η−(λ) f−(λ)dλ +

∫
�+

η+(λ) f+(λ)dλ.

(25)

Similarly, we obtain for the two other moments (recall that we
assume u → 0 as x ± ∞)

〈u(x, t )〉 =
∫

�−
u−(λ) f−(λ)dλ

+
∫

�+
u+(λ) f+(λ)dλ, (26)

〈ρ(x, t )u(x, t )〉 =
∫

�−
ρu−(λ) f−(λ)dλ

+
∫

�+
ρu+(λ) f+(λ)dλ, (27)

where u±(λ) = ∫
u±

s (y; λ)dy and ρu±(λ) = ∫
ρ±

s (y; λ)
u±

s (y; λ)dy. The expressions (25), (26), and (27) rewrite in the
isotropic case

〈ρ(x, t )〉 = ρ0 +
∫

�

η(λ) f (λ)dλ,

〈u(x, t )〉 =
∫

�

u(λ) f (λ)dλ,

〈ρ(x, t )u(x, t )〉 =
∫

�

ρu(λ) f (λ)dλ. (28)

We present in Table I the expressions of η±(λ), u±(λ), and
η±(λ) for the examples introduced in Sec. II C.

The method presented here only requires one to integrate
the single-soliton solution and thus can be readily applied
to any integrable dispersive hydrodynamic system supporting
the soliton resolution scenario. Formulas (25)–(28) will be
used in the next section to track the evolution of the DOS
numerically. In conclusion we note that the above simple
method, applied to the KdV equation, gives exactly the same
results for the mean and mean square of the random field as
the finite-gap theory consideration of [22,23]. It also explains
why the corresponding analytical expressions for the moments
in a dense gas of KdV solitons derived in [23] coincide with
the corresponding expressions obtained in [45] for a rarefied
gas (see also [44] for the similar modified KdV equation
result).

In the above consideration of homogeneous soliton gases
the ensemble averages (19) are constant. For a nonhomo-
geneous gas the DOS is a slowly varying function of x, t
and so are the ensemble averages that now need to be inter-
preted as “local averages” in the spirit of modulation theory
[27]. Essentially, one introduces a mesoscopic scale �, much
larger than the typical soliton width and much smaller than
the spatial scale of the DOS variations so that the DOS is
approximately constant on any interval (x − �, x + �). Then
the constant ensemble averages (19) are replaced by slowly
varying quantities:

〈H[ρ, u]〉�(x, t ) = 1

2�

∫ x+�

x−�

H[ρ(y, t ), u(y, t )]dy. (29)

The local averages 〈H[ρ, u]〉� do not depend on � at leading
order, and their spatiotemporal variations occur on x and t
scales that correspond to the scales associated with variations
of f (λ) and are much larger than those of ρ, u. The modu-
lations of 〈ρ〉, 〈u〉, and 〈u〉 in a nonhomogeneous soliton gas
are then defined by Eqs. (25), (26), and (27), respectively, in
which the DOS f±(λ) is replaced by the solution f±(λ, x, t )
of the kinetic equation (6), (7). This strategy will be used in
the next section where we study the dynamics of nonhomo-
geneous soliton gases generated in the solutions of Riemann
problems for kinetic equations.
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TABLE I. Expressions of the integral η±(λ), u±(λ), and η±(λ) for NLS solitons (ρ0 = 1). For both examples we have ρ−
s = ρ+

s and
u−

s = u+
s such that η− = η+, u− = u+, and ρu− = ρu+.

Equations η(λ) u(λ) ρu(λ)

DNLS (σ = +1) −2
√

1 − λ2 2 sin−1(λ) − π sgn(λ) −2λ
√

1 − λ2

RNLS (σ = −1) +2
√

λ2 − 1 2 sgn(λ) cosh−1 |λ| +2λ
√

λ2 − 1

IV. MULTICOMPONENT BIDIRECTIONAL SOLITON
GASES: RIEMANN PROBLEM

A. Hydrodynamics reductions

Generally, our ability to solve the integral equation of state
(2) is very limited, and strongly depends on the particular form
of the interaction kernel. Some particular analytical solutions
have been found [16] for special cases of soliton gases for
the focusing NLS equation. At the same time, it was shown in
[17,19,46] that this problem greatly simplifies if discretization
of the DOS f (λ, x, t ) or f±(λ, x, t ) with respect to the soliton
spectral parameter λ is admissible. We adopt this simplifica-
tion in the following, and we consider the soliton gases that are
composed of a finite number of distinct spectral components,
termed monochromatic, or cold, components. We consider in
the following the general anisotropic description; the deriva-
tion also readily applies to the isotropic case. Suppose that
the bidirectional soliton gas is spectrally composed of n−
distinct components of the “−” soliton branch, and n+ distinct
components of the “+” soliton branch:

f−(λ, x, t ) =
n−∑
i=1

Fi(x, t )δ(λ − �i ),

(30)

f+(λ, x, t ) =
n−+n+∑
i=n−+1

Fi(x, t )δ(λ − �i ),

with c±(�i ) < c±(�i+1) and where �i are the soliton pa-
rameters of the different components and δ the Dirac delta
distribution. We do not indicate in the following the branch-
belonging of the component Fi for readability reasons.
Additionally, we do not indicate explicitly the (x, t ) depen-
dence of the fields Fi when it is clear. As pointed out in
[16,47], the multicomponent ansatz (30) is a mathematical
idealization; physically one would replace the δ functions by
narrow distributions around the spectral points �i.

The ansatz (30) transforms the pair of distributions
[ f−(λ), f+(λ)] into a n = (n− + n+)-dimensional vector F =
(F1, . . . , Fn). Thus (6) reduces to n hydrodynamic (quasilin-
ear) conservation laws:

(Fi )t + (SiFi )x = 0, i = 1 . . . n, (31)

where Si(x, t ) = s±i (�i, x, t ) with ±i indicating the branch-
belonging of the soliton �i. The coupled equations of states
(7) simplify into an nth-order linear algebraic system for the
Si’s:

Si = Ci +
∑
j �=i

�(�i,� j )Fj |Si − S j |, Ci = c±i (�i). (32)

The system (32) simplifies for the examples considered in
Sec. II C, where we assumed that Si < Si+1 and where the
phase-shift formula has the form �±±(λ,μ) = �±∓(λ,μ) =

sgn(λ − μ)G(λ,μ); the expression of G is given by (11) for
the DNLS and (17) for the RNLS equation. For the NLS
examples we obtain the linear system:

Si = Ci +
∑
j �=i

Gi jFj (Si − S j ), Gi j = G(�i,� j ). (33)

In order to simplify the discussion, we will focus on the
latter system. Both anisotropic and isotropic soliton gases are
described by the same system (31), (33): for the isotropic
DNLS-soliton gas we have Gi j = G1(�i,� j ) > 0, and for the
anisotropic RNLS-soliton gas Gi j = G2(�i,� j ) ∈ R.

The resolution of the linear system (33) yields a solution
Si(F ) such that the system (31) becomes quasilinear:

(Fi )t + [Si(F )Fi]x = 0. (34)

It was shown in [19,46] that the system (34) is a linearly
degenerate integrable system [48] and its general solutions can
be obtained using the generalized hodograph method [49]. In
particular, the characteristic velocities of this hydrodynamic
system coincide with the mean velocities Si.

Finally, the expressions of the moments 〈ρ〉, 〈u〉, and 〈ρu〉
are given by

〈ρ(x, t )〉 = ρ0 +
n∑

i=1

η(�i )Fi(x, t ),

〈u(x, t )〉 =
n∑

i=1

u(�i )Fi(x, t ), (35)

〈ρ(x, t )u(x, t )〉 =
n∑

i=1

ρu(�i)Fi(x, t ),

with the coefficients η, u, and ρu given in Table I for the NLS
equation (8). The relations in (35) can be used to obtain the
DOS components Fi from the moments 〈ρ〉, 〈u〉, and 〈ρu〉 if
n � 3.

B. Shock-tube problem

We now focus on the physically relevant Riemann problem
for the hydrodynamic system (33), (34) describing the interac-
tion dynamics of two soliton gases prepared in the respective
uniform states FL ∈ Rn and FR ∈ Rn, that are initially
separated:

F(x, 0) =
{

FL, if x < 0
FR, if x � 0.

(36)

The spectral distribution (36) corresponds to the soliton gas
shock-tube problem, an analog of the standard shock-tube
problem of classical gas dynamics. The shock-tube problem
represents a good benchmark for our kinetic theory where
we can investigate both overtaking and head-on collisions by
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choosing the appropriate number of components. We empha-
size here that the initial condition (36) constitutes a Riemann
problem for the kinetic equation (34) but not for the original
dispersive hydrodynamics system (4), similar to the so-called
generalized Riemann problems recently introduced in [50,51].
We shall sometimes refer to the problem (34), (36) as a
“spectral Riemann problem” as it essentially describes the
spatiotemporal evolution of the spectral components of the
soliton gas.

The soliton gas shock-tube problem has been investigated
for the KdV and focusing NLS two-component soliton gases
(n = 2) in [16,17,47], and for n components in the context
of generalized hydrodynamics [52–56]. Here we present the
problem for the n-component bidirectional anisotropic soliton
gases. An important difference of our consideration from the
generalized hydrodynamics setting is that we are interested
not only in the spectral characterization of soliton gases via
solutions of the kinetic equations but also (and ultimately)
in the description of the classical nonlinear wave fields as-
sociated with these solutions. The latter is achieved by the
evaluation of the ensemble averages as described in Sec. III.

Due to the scaling invariance of the problem [the kinetic
equation (34) and the initial condition (36) are both invariant
with respect to the transformation x → Cx, t → Ct], the solu-
tion is a self-similar distribution F(x/t ). Because of the linear
degeneracy of the quasilinear system (34) the only admissible
solutions are constant separated by contact discontinuities
(cf., for instance, [57]). Discontinuous, weak solutions are
physically acceptable here since the kinetic equation describes
the conservation of the number of solitons within any given
spectral interval, and Rankine-Hugoniot type conditions can
be imposed to ensure the conservation of the number of
solitons across discontinuities. The solution of the Riemann
problem is composed of n + 1 constant states, or plateaus,
separated by n discontinuities (see, e.g., [58]):

Fi(x, t ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F 1
i = F L

i , x/t < Z1

. . .

F j
i , Zj−1 � x/t < Zj

. . .

F n+1
i = F R

i , Zn � x/t,

(37)

where the index i indicates the ith component of the vector
F, and the exponent j the index of the plateau. For clar-
ity we labeled the superscripts j = 1 as “L” (left boundary
condition) and j = n + 1 as “R” (right boundary condition).
Additionally the index j of the plateau’s value F j

i will be
written as a Roman numeral in the examples considered later
on. The contact discontinuities propagate at the characteristic
velocities [58]:

Zj = S j
(
F j

1 , . . . , F j
n

) = S j
(
F j+1

1 , . . . , F j+1
n

)
, (38)

where the plateaus’ values F j
i are given by Rankine-Hugoniot

jump conditions:

−Zj
[
F j+1

i − F j
i

] + [
Si

(
F j+1

1 , . . . , F j+1
n

)
F j+1

i

− Si
(
F j

1 , . . . , F j
n

)
F j

i

] = 0, (39)

where i, j = 1 . . . n. The Rankine-Hugoniot conditions with
i = j are trivially satisfied by the definition of contact discon-

tinuity (38). Recalling the effective derivation of the equation
of state in Sec. II B, the velocity of the contact discontinuity Zj

can be identified as the velocity of a trial soliton with parame-
ter � j propagating in a soliton gas of density F = (F j

1 , . . . F j
n )

or equivalently F = (F j+1
1 , . . . , F j+1

n ).
Note that, if the solitons were not interacting, the initial

step distribution Fi(x, 0) for the component λ = �i would
have propagated at the free soliton velocity Ci:

F free
i (x, t ) =

{
F L

i , x/t < Ci

F R
i , Ci � x/t,

i = 1 . . . n, (40)

which dramatically differs from the solution (37). In order to
demonstrate the validity of the solution (37), (38), (39) the
Riemann problem is investigated numerically for the DNLS
and RNLS equations for two- and three-component soliton
gases in the next sections.

1. Two-component soliton gas

We consider in this section the interaction between two
components of soliton gas with respective parameters �1 and
�2 (recall that S1 < S2). The solution of the equation of state
(33) reads for n = 2:

S1(F1, F2) = (1 − G21F1)C1 − G12F2 C2

1 − G21F1 − G12F2
,

S2(F1, F2) = (1 − G12F2)C2 − G21F1 C1

1 − G21F1 − G12F2
. (41)

As noted in [17], the densities F1 and F2 must satisfy the
inequality:

G21F1 + G12F2 < 1, (42)

for the expressions (41) to remain valid; we suppose that this
condition is always verified, constraining the DOS in the fol-
lowing. We suppose that F L

1 = F R
2 = 0 and F R

1 = F L
2 = ζ0:

the region x < 0 is initially only populated with �2 solitons
and the region x > 0 of slower �1 solitons. Since S1 < S2 the
two “species” of soliton are interacting. Note that (42) implies
G12ζ0, G21ζ0 < 1. The solution (37) has three plateaus:

Fi(x, t ) =
⎧⎨
⎩

F I
i = δi,2ζ0, x/t < Z1

F II
i , Z1 � x/t < Z2

F III
i = δi,1ζ0, Z2 � x/t,

(43)

where i ∈ {1, 2}, with the value at the intermediate plateau:

F II
1 = [1 − G12ζ0]ζ0

1 − G12G21ζ
2
0

, F II
2 = [1 − G21ζ0]ζ0

1 − G12G21ζ
2
0

, (44)

and the velocities of the discontinuities:

Z1 = S1(0, ζ0) = C1 − G12ζ0 C2

1 − G12ζ0
,

Z2 = S2(ζ0, 0) = C2 − G21ζ0 C1

1 − G21ζ0
. (45)

Both kinds of solitons propagate in the region delimited by
x = Z1t and x = Z2t (since F II

1 �= 0, F II
2 �= 0), and we refer

to this region as the interaction region in the following. The
discontinuity’s velocity Zi corresponds to the effective veloc-
ity of solitons �i in this region. The total density of solitons
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TABLE II. Initial conditions for the spectral Riemann problem (34), (36) considered in Sec. IV B. The constraint on the spectral parameters
|�i| � 1.1 in (i), (ii), and (iv) is due to the limits of the numerical scheme used to solve the RNLS equation (cf. Appendix B).

Soliton parameter Left boundary condition Right boundary condition

(i) (�1 = 1.05, �2 ∈ [1.06, 1.10]) FL = (0, 6.6) × 10−2 FR = (6.6, 0) × 10−2

(ii) (�1 = −1.05, �2 ∈ [1.06, 1.1]) FL = (0, 6.6) × 10−2 FR = (6.6, 0) × 10−2

(iii) (�1, �2, �3) = (−0.2, 0.1, 0.4) FL = (2.5, 0, 7.5) × 10−2 FR = (5, 5, 0) × 10−2

(iv) (�1, �2, �3) = (−1.1, 1.05, 1.1) FL = (1.6, 0, 5) × 10−2 FR = (3.3, 3.3, 0) × 10−2

∑
i Fi in the interaction region is given by

F II
1 + F II

2 = 2 − (G12 + G21)ζ0

1 − G12G21ζ
2
0

ζ0. (46)

If sgn(G12) = sgn(G21) > 0 (<0), then the total density F II
1 +

F II
2 is smaller (larger) than the sum of the initial soliton den-

sities 2ζ0, and Z1 < C1 < C2 < Z2 (C1 < Z1 < Z2 < C2) (cf.,
for instance, [17]).

The two-component shock-tube problem (n = 2) has been
investigated numerically in [47] for KdV soliton gases. We
have shown in Sec. II C that the kinetic dynamics of the
KdV soliton and the isotropic DNLS soliton gas are both
governed by Eqs. (1), (12) with G1(λ,μ) > 0. Thus solu-
tions of the DNLS spectral Riemann problem and the KdV
spectral Riemann problem are expected to describe very sim-
ilar dynamics, and we rather focus on the anisotropic RNLS
soliton gas exhibiting two distinct kinds of interaction. The
solution of the RNLS spectral Riemann problem is given
by (43), (44), (45) where Gi j = G2(�i,� j ) with G2 defined
in (17).

To verify the validity of our spectral solutions in the
context of the original nonlinear wave problem of the in-
teraction of soliton gases, we solve numerically the RNLS
equation (13) with initial conditions corresponding to the
spectral Riemann data (36) for two different RNLS soli-
ton gases with (i) overtaking collisions Gi j > 0 (�1 =
1.05,�2 ∈ [1.06, 1.1]), and (ii) head-on collisions Gi j < 0
(�1 = −1.05,�2 ∈ [1.06, 1.1]). The boundary values FL and
FR for cases (i) and (ii) are indicated in Table II. Fifty initial
conditions ρ(x, 0), u(x, 0) are realized according to the initial
step distribution (36) and evolved through a direct numerical
simulation of the NLS equation (8) with σ = −1. The details
of the numerical implementation of the initial condition (36)
and the direct numerical resolution of (8) are given in Ap-
pendix B.

A typical RNLS soliton gas distribution ρ(x, 0) and its cor-
responding numerical evolution ρ(x, t ) are displayed in Fig. 4
for the spectral Riemann problem (i); soliton gas realizations
for the spectral Riemann problem (ii) have a similar variation
with different velocities Z1 and Z2. We emphasize that, al-
though the soliton gas is initially prepared in a rarefied regime
where solitons are spatially well separated (cf. Appendix B),
the total density of solitons increases in the interaction region,
and a dense soliton gas can be observed in Fig. 4 for which
solitons exhibit significant overlap.

Spatiotemporal evolution of one soliton gas realization is
displayed in Fig. 5, with overtaking collisions (i) and head-
on collisions (ii). To enhance the discrepancy between free
soliton velocities Ci and contact discontinuities velocity Zi the

trajectories of the solitons are followed in the frames (x − t, t )
for overtaking collisions where Zi ∼ Ci ∼ 1, and (x ± t, t )
for head-on collisions where Z1 ∼ C1 ∼ −1 and Z2 ∼ C2 ∼ 1.
One can notice that the interaction time between two soli-
tons is very short for a head-on collision, which explains
the weakness of head-on interactions compared to overtaking
interactions.

The averaging of the 50 numerical solutions yields the
statistical moments of the nonlinear wave fields of the RNLS
dispersive hydrodynamics. Figure 6 displays the comparison
between 〈ρ(x, t )〉 obtained numerically and the analytical so-
lution (35), (43) for (i) and (ii). Note that the discontinuities in
〈ρ(x, t )〉 have a finite slope in Fig. 6, which is an artifact of the
averaging procedure detailed in Appendix B. The comparison
between the numerical values of 〈ρ〉, Z1, Z2 fitted from the nu-
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FIG. 4. Example of one realization of the soliton gas shock-
tube problem (i) at t = 0 (a) and t = 5000 (b) with (�1, �2) =
(1.05, 1.10). The two regions I and III correspond, respectively, to
the left and right boundary conditions prescribed in the initial condi-
tion [cf. (36)]. The variation of ρ(x, t ) clearly displays the formation
of an intermediate interaction region, denoted region II, between the
two positions x = Z1t and x = Z2t , cf. (45), highlighted by vertical
dash-dotted lines.
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FIG. 5. Spatiotemporal plots of the field ρ(x, t ) for one realiza-
tion of the soliton gas. Trajectories of the solitons appear in solid
lines. Dash-dotted lines correspond to the trajectories of the con-
tact discontinuities: x = Z1t , x = Z2t [cf. (45)], and dashed lines to
the free soliton trajectories: x = C1t , x = C2t . (a) Overtaking colli-
sions (�1, �2) = (1.05, 1.10) [cf. initial condition (i) in Table II].
(b) Head-on collisions (�1,�2) = (−1.05, 1.10) [cf. initial condi-
tion (ii) in Table II].

merical solution 〈ρ(x, t = 5000)〉, and the analytical solutions
(44), (45) for different values of �2 is displayed in Fig. 7.
The comparison shows good agreement between analytical
and numerical solutions and highlights the contrasting effects
of (i) overtaking and (ii) head-on collisions. As predicted
Z1 < C1 < C2 < Z2 in case (i), whereas C1 < Z1 < Z2 < C2

in case (ii). In case (ii) 〈ρ〉 in the region of interaction is almost
equal to the average value of ρ for a noninteracting soliton gas
[cf. solution (40)]. This is due to the weakness of the head-on
interaction, clearly displayed in the comparison between �+−
and �++ in Fig. 1.

The discrepancy between the analytical and numerical so-
lutions can be associated to the numerical implementation and
the time evolution of the soliton gas. The construction of the
soliton gas at t = 0, detailed in Appendix B 1, is only valid if
the overlap between solitons is negligible, which is not exactly
the case for the parameters considered in Table II. Since√

�2
2 − 1 is the typical width of the �2 soliton, the overlap

between solitons becomes more important as �2 decreases
for a fixed initial density ζ0. Besides, the numerical scheme
utilized to solve the RNLS equation is only valid for small
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FIG. 6. Comparison between the ensemble average 〈ρ(x, t =
5000)〉 of 50 direct numerical solutions of the RNLS soliton gas
shock-tube problem (solid line) and the analytical solution (35),
(43) obtained via the spectral kinetic theory (dash-dotted line). The
dashed lines correspond to the respective spectral solutions (35), (40)
for a noninteracting soliton gas. (a) Overtaking collisions (�1,�2) =
(1.05, 1.10). (b) Head-on collisions (�1, �2) = (−1.05, 1.10).

amplitude solitons (cf. Appendix B 2), and the discrepancy
also increases as �2 increases.

Additionally, we can compute the variation of the compo-
nents F1(x, t ) and F2(x, t ) of the DOS using the expression
(35):(

F1(x, t )
F2(x, t )

)
=

(
η(�1) η(�2)
u(�1) u(�2)

)−1(〈ρ(x, t ) − 1〉
〈u(x, t )〉

)
, (47)

providing that the determinant η(�1)u(�2) − η(�2)u(�1)
does not vanish. In particular, we can evaluate numerically
the total density F1(x, t ) + F2(x, t ) from the numerical solu-
tions. Figure 8 displays the comparison of the total density
corresponding to the examples presented in Fig. 6. Notice
that, since 〈ρ〉 = η(�1)F1 + η(�2)F2 with η > 0, the varia-
tion of the moment 〈ρ〉 and the variation of the total density
F1 + F2 are qualitatively similar. As expected the RNLS
soliton gas rarefies when solitons interact with overtaking
collisions (F II

1 + F II
2 < 2ζ0), and condenses with head-on col-

lisions (F II
1 + F II

2 > 2ζ0). As pointed out previously, the total
density in the example (ii) is very close to the total density
of the noninteracting gas 2ζ0 because of the weakness of the
phase shift induced by head-on collisions.

2. Three-component gas

We consider now the case of three-component gases with
one component belonging to the slow spectral branch and two
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FIG. 7. Comparison between the parameters of the analytical solutions (35), (43) (dash-dotted line) and the corresponding fitted parameters
of the numerical solution (crosses) with different spectral parameters �2; numerical averages are obtained over 50 realizations. For comparison,
the dashed lines correspond to the parameters of the noninteracting solitons solution (35), (40). 〈ρ〉 is evaluated in region II [cf. (35), (44)]. Z1

is the velocity of the discontinuity separating regions I and II, and Z2 the velocity of the discontinuity separating regions II and III [cf. (45)].
(a) Overtaking collisions (�1, �2) = (1.05, 1.10). (b) Head-on collisions (�1, �2) = (−1.05, 1.10).

components belonging to the fast branch for (iii) the DNLS
equation and (iv) the RNLS equation. Note that in the latter
case the anisotropic soliton gas features both overtaking colli-
sions and head-on collisions. Although one can formally solve
the equation of state (33) to obtain the expression of Si(F )
and solve the Rankine-Hugoniot condition (39), the analytical
expressions do not read as easily as the expressions obtained
in the two-component case. We choose here to solve (33),
(39) numerically. The values FL and FR of the initial soliton
densities considered numerically are indicated in Table II.

One-hundred initial conditions ρ(x, 0), u(x, 0) are realized
according to the initial spectral step distribution (36) and
evolved through a direct numerical simulation of the NLS
equation (8). The statistics of the soliton gas is then obtained
by computing the average 〈ρ(x, t )〉 from the evolution of the
100 realizations. Figure 9 displays the variation of the statis-
tical moment 〈ρ(x, t )〉. As expected, the solution is composed
of four plateaus, where regions II and III contain at least two
distinct soliton components and are regions of interaction.
The comparison in Fig. 9 shows good agreement between the
analytical solution (35), (37) and the statistical averages of the
numerical solutions.

V. CONCLUSIONS AND OUTLOOK

In this work we have developed the spectral kinetic theory
of soliton gases in bidirectional integrable dispersive hydrody-
namic systems. Previously, such theory had been developed
for (effectively) unidirectional soliton gases, in which all
pairwise soliton collisions are characterized by a single ex-
pression for the phase shift. Generally, however, the phase

shifts in the overtaking and head-on collisions of solitons are
essentially different, which necessitates the extension of the
existing theory to the bidirectional case. This extension is also
motivated by the recent experimental results on the generation
of bidirectional shallow-water soliton gases [31,32].

The definitive quantitative characteristics of an integrable
soliton gas is the DOS, which is the density function f (λ, x, t )
in the spectral (IST) (x, λ)-phase space. The DOS evolution
in a unidirectional nonuniform soliton gas is governed by
the kinetic equation consisting of the continuity equation (1)
complemented by the integral equation of state (2) relating
the soliton gas velocity and the DOS. The presence of two
distinct species of solitons corresponding to the slow and fast
branches of the dispersion relation in bidirectional systems
naturally calls for the introduction of two respective DOSs.
As a result, one arrives at a system of two coupled kinetic
equations, which is the subject of the present work.

We introduced the notion of isotropic and anisotropic bidi-
rectional soliton gases based on the sign properties of the
phase shifts in overtaking and head-on soliton collisions in a
bidirectional gas. In the anisotropic case, where the distinction
between overtaking and head-on soliton collisions is genuine,
the kinetic of the gas is governed by two coupled equations
(6), (7) which we obtained using an extension of the direct
physical approach proposed in [17]. The approach of [17]
combines the qualitative ideas of the original Zakharov paper
[21] with the mathematical developments of [22] based on the
spectral finite-gap theory. In the isotropic case, the coupled
system (6), (7) reduces to a single kinetic equation (1), (2)
making a bidirectional isotropic gas effectively equivalent to
a unidirectional gas.
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FIG. 8. Comparison between the total density of the soliton
gas obtained by direct numerical solution of the RNLS soliton
gas shock-tube problem (black solid line) and the corresponding
spectral analytical solution F1(x, t ) + F2(x, t ) where Fi is given by
(43) (dash-dotted line); the total density in the region of interaction
F II

1 + F II
2 is given by (46). The dashed line corresponds to the total

density F free
1 + F free

2 [cf. (40)]. (a) Overtaking collisions (�1, �2) =
(1.05, 1.10). (b) Head-on collisions (�1, �2) = (−1.05, 1.10).

To highlight the principal differences between isotropic
and anisotropic soliton gases, we have considered two pro-
totypical physically relevant examples: the (isotropic) soliton
gas of the classical defocusing NLS (DNLS) equation (9)
and the (anisotropic) soliton gas of the so-called resonant
NLS (RNLS) equation (13) having applications in dispersive
magnetohydrodynamics [35,40]. The results for the RNLS
equation are also extended to the KB system (15) describing
bidirectional shallow-water waves.

To provide a connection between the spectral kinetics of
soliton gases and the dynamics of the physical parameters
of the associated nonlinear wave fields, we have developed a
general simple procedure enabling the evaluation of the basic
ensemble averages of the soliton gas wave field in terms of the
appropriate moments of the spectral DOS.

As an application of the developed kinetic theory we have
considered the generalized Riemann (shock-tube) problem
describing the collision of several monochromatic soliton
beams, each consisting of solitons with nearly identical spec-
tral parameters. The interaction dynamics of such beams is
described by certain exact hydrodynamic reductions of the
spectral kinetic equations. We constructed the weak solutions
of these hydrodynamic reductions in the form of a system of
constant states separated by propagating contact discontinu-
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FIG. 9. Comparison between the ensemble average 〈ρ(x, t )〉 ob-
tained by direct numerical solution of the soliton gas shock-tube
problem (solid line) and the analytical solution (35), (37) (dash-
dotted line). The dashed line corresponds to the average in the soliton
gas composed of noninteracting solitons with the spectral distribution
given by (35), (40). (a) DNLS soliton gas at t = 2000, case (iii).
(b) RNLS soliton gas at t = 5000, case (iv).

ities satisfying appropriate Rankine-Hugoniot conditions. The
obtained general solutions were then applied to the description
of collisions of DNLS and RNLS soliton gases, and the com-
parison with direct numerical simulations of the DNLS and
RNLS equation was made.

We stress that, although our derivation of the kinetic equa-
tion (6), (7) for a dense bidirectional soliton gas is based on the
phenomenological method of [17], it can be formally justified
using the thermodynamic limit of the modulation equations,
that has been developed for the KdV and focusing NLS
equations in [16,22] and can be readily generalized to other
integrable systems supporting finite-gap solutions associated
with hyperelliptic spectral Riemann surfaces. Such a mathe-
matical justification will be the subject of a separate work.
Meanwhile, the excellent agreement of the exact solutions of
the Riemann problems for bidirectional kinetic equations with
appropriate direct numerical simulations for the DNLS and
RNLS equations provides a convincing confirmation of the
validity of our results.

Despite the consideration of this work being formally re-
liant on the integrability of the nonlinear wave dynamics
(4), the developed kinetic theory can be extended to non-
integrable systems supporting solitary wave solutions that
exhibit nearly elastic collisions. An experimentally accessible
example of such physical system (albeit for a unidirectional
case) is the so-called viscous fluid conduit equation describ-
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ing the dynamics of the interface between two immiscible
viscous fluids with high density and viscosity contrast ra-
tios, the lighter fluid being buoyantly ascending through
the heavier fluid forming a liquid “pipe,” a conduit [59].
This system supports solitary wave solutions that exhibit
nearly elastic collisions as demonstrated numerically and con-
firmed experimentally [60]. Constructing kinetic theory of
soliton gases for nonintegrable Eulerian dispersive hydrody-
namic systems of this type represents a challenging open
problem.

Another important direction of further research is the ex-
tension of the developed kinetic theory to perturbed integrable
systems. In particular, kinetic theory of soliton gas for the
perturbed DNLS equation could be used to describe soliton
gas in a quasi-1D repulsive BEC in a trapping potential,
which has been observed experimentally in [61]. The dynam-
ics of the trapped condensate is governed by the celebrated
Gross-Pitaevskii equation, which is the DNLS equation sup-
plemented by an external potential term, which could be
treated as a perturbation in certain configurations. Although
some properties of a rarefied soliton gas in a trapped BEC
have been studied in the previous works [37,38], the descrip-
tion of a dense gas is not available at present. The investigation
of dense soliton gas dynamics in BECs can shed new light on
turbulence in superfluids, or “quantum turbulence,” which has
been the subject of intense research in recent decades (see,
e.g., [62], and references therein).

The direct experimental verification of the developed the-
ory could be made possible by the recent advances in the
spectral synthesis of soliton gases with a prescribed DOS
[18]. While the method of [18] was developed for deep wa-
ter waves, its extension to other types of wave propagation
well described by integrable or nearly integrable systems
looks to be a very promising direction since the kinetic de-
scription of soliton gases is achieved essentially in spectral
terms.

Concluding, we hope that our work will provide further
motivation for the theoretical and experimental study of soli-
ton gases.
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APPENDIX A: SOLITON SOLUTION OF THE KB SYSTEM

The soliton solution (16) of the RNLS equation reads after
substitution in (14) as

ρ̃±
s = 1 + λũs − ũ2

s

2
,

ũ±
s = 2(λ2 − 1)[λ − √

λ2 − 1 tanh(α/2)]

2λ2 − 1 + cosh(α)
, (A1)

α =
√

3(λ2 − 1)(x̃ − λt̃ ),

where λ2 > 1. Note that the solution (A3) is not centered at
x = 0 but x = φ(λ) with

φ(λ) = sgn(λ)√
3(λ2 − 1)

ln(|λ| −
√

λ2 − 1). (A2)

The centered soliton solution reads

ρ̃±
s [x̃ + φ(λ), t̃] = 1 + 2(λ2 − 1)[1 + |λ| cosh(α)]

[|λ| + cosh(α)]2
,

ũ±
s [x̃ + φ(λ), t̃] = 2 sgn(λ)(λ2 − 1)

|λ| + cosh(α)
, (A3)

α =
√

3(λ2 − 1)(x̃ − λt̃ ),

which coincides with the solution derived in [63].

APPENDIX B: NUMERICAL IMPLEMENTATION
OF SOLITON GASES FOR THE NLS EQUATION

1. Implementation of the step distribution

We implement the soliton gas using the method developed
in [47]. The initial step distribution of the spectral Riemann
problem (36) with values given in Table II describes a rarefied
gas where solitons do not overlap. Such a distribution is im-
plemented by the superposition of solitons

ρ(x, t = 0) =
∑

i

ρs(x − ξi; �i ),

(B1)
u(x, t = 0) =

∑
i

us(x − ξi; �i ),

where the �i’s are the spectral parameters of the solitons and
the ξi’s their initial position. Although the particles’ position
ξi of an “ideal” soliton gas should be distributed according to a
Poisson process [41], this cannot be implemented numerically
since the solitons are not allowed to overlap. In our numerics,
the distance between two solitons ξi+1 − ξi is uniformly dis-
tributed in the interval [d1, d2] with 0 < d1 < d2 such that the
solitons do not overlap; the total density of solitons is given
by 2/(d1 + d2). We choose (d1, d2) = (10, 20) for the RNLS-
Riemann problems (i), (ii), and (iv) and (d1, d2) = (8, 12) for
the DNLS-Riemann problem (cf. Sec. IV B).

2. Numerical scheme

The DNLS equation iψt + 1
2ψxx − |ψ |2ψ = 0, ψ =√

ρ exp(i
∫

u dx) is solved with periodic boundary conditions
ψ (x = L, t ) = ψ (x = 0, t ) using a Fourier spectral method.
The linear part of the DNLS equation is resolved with an
integrating factor and the problem is integrated in time using
the fourth-order Runge-Kutta method.

Since the dispersive term in the RNLS equation (13) is a
nonlinear term in ψ , the RNLS equation is first transformed
into the KB equation (15) using the change of variables (14).
The KB system is then solved with periodic boundary con-
ditions ψ (x = L, t ) = ψ (x = 0, t ) using a Fourier spectral
method (with a fourth-order Runge-Kutta method for the time
integration). Equation (15) displays a short-wavelength insta-
bility: the amplitude of modes ρ̃ − 1 ∝ ũ ∝ cos(kix̃) grows
exponentially with time for ki >

√
3. We thus filter out Fourier

modes ki >
√

3 after each time step. This imposes a constraint
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on the type of solitons that can be implemented numerically.
Indeed, large amplitude solitons |λ| � 1 populate the short-
wavelength Fourier modes ki >

√
3, which are not taken into

account in the numerical scheme. We thus consider in the
numerical simulations the solitons for which |λ| ∈ (1, 1.1).

3. Spatial and ensemble averages

The statistical moment 〈ρ〉 determined numerically in
Sec. IV B is obtained with (1) the average over ensembles of
50 or 100 realizations and (2) a local spatial average over the

mesoscopic space interval � [cf. (29)]:

� = 10

max
[ ∑

i Fi(x, t = 0)
] . (B2)

As pointed out in Sec. III, both averaging procedures are
equivalent providing that the soliton gas is locally ergodic.
The choice of the value for � ensures that the space interval
contains at least ten solitons. Note that the transitions of
the numerically evaluated mean field 〈ρ(x, t )〉 correspond-
ing to contact discontinuities in the analytical solution have
a finite slope proportional to 1/� because of the spatial
averaging.
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