
PHYSICAL REVIEW E 103, 042144 (2021)

Reactive flux theory for finite potential barriers
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Motivated by developing a simple, accurate, and widely applicable approach to incorporate the finite barrier
correction in analytical calculation of the escape rate, the reactive flux theory for finite barriers is proposed. For
higher temperatures, instead of at the top of the barrier in the original reactive flux theory, the starting point of
the trajectories of Brownian particles is removed into a position inside the potential well where the probability
distribution can be regarded as an equilibrium one, and the potential barrier is replaced with an equivalent
parabolic potential barrier. The equivalent potential barrier frequency can be obtained by two schemes. The
population is also calculated more realistically for finite barriers. The theoretical method is tested by a Brownian
particle moving in a cubic metastable potential and subjected to Gaussian white noise. The numerical simulation
results confirm the approach satisfactorily until lower reduced barrier heights.
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I. INTRODUCTION

Kramers’s seminal paper about a diffusional model of
chemical reactions [1] has found various generalizations, for
example, to higher dimensional problems [2] and cases with
memory friction [3]. In most of these investigations, the bar-
rier height Vb measured in units of thermal energy kBT is
assumed to be sufficiently large so a rate description is mean-
ingful at all and any nonlinear force can safely be neglected
on the thermal length scale at the barrier [4]. Mel’nikov and
Meshkov (MM) [5] first proposed Kramers turnover theory
for Ohmic friction, Pollak, Grabert, and Hanggi (PGH) [6]
then used the normal mode representation of the dissipative
Hamiltonian in the vicinity of the barrier to derive a contin-
uum limit expression which was valid for the whole range of
damping strengths and is applicable to an arbitrary memory
friction. These turnover theories were established on the basis
that the barrier height is much greater than the thermal energy
(Vb � kBT ).

However, the potential barrier height is not very large in
numerical calculations or in many physical applications. The
numerical study of the Kramers problem at low damping [7]
showed that finite barrier effects are important and a very
slow convergence to the infinite barrier limit of the system
was observed. It has been found that the large differences
between analytical calculations and exact numerical results in
the underdamped regime for the hopping rate in a periodic
potential are essentially due to finite barrier effects [8]. There
are two kinds of major methods for finite barrier correction.
One is based on the Fokker-Planck equation, another is based
on the Hamiltonian-equivalent formulation of the generalized
Langevin equation (GLE). These approaches are the per-
turbation theories. Within the framework of MM theory, a
consistent expansion method in terms of the small parameters
of the problem was proposed [9]. The analytical result in
the regime of a weak friction provides a quantitative estima-
tion of finite barrier corrections in the small parameter T/Vb

(about � 0.2). Near the turnover region, a simple interpolating
expression was used to give satisfactory results. Within the
framework of Fokker-Planck processes in the spatial diffusion
regime, finite barrier corrections of the escape rate were deter-
mined for a particle crossing a barrier out of a metastable well
by means of the flux over population expression, the Rayleigh
quotient, and the mean first passage time to the stochastic
separatrix [10]. An improvement of the Kramers function
by means of a perturbation theory allows one to calculate
corrections to the rate. The result is a series representation
in powers of the nonlinear part of the force near the barrier.
The rate processes that a reactive coordinate in a symmetric
double well coupled to a harmonic mode were investigated
in the limit of large damping. Combining the Rayleigh quo-
tient and perturbation theory, finite barrier corrections were
systematically studied [11]. The smallest eigenvalue of the
Smoluchowski operator was yielded approximately by pertur-
bation corrections to the conventional Kramers-Langer trial
function. For moderate anisotropy parameters of damping,
the rate expression is in excellent agreement with the numer-
ically exact results. The Kramers Fokker-Planck model for
activated rate processes was solved for all friction values in
Ref. [12], including finite barrier corrections. A constrained
Gaussian integration transformation was introduced and the
phase space was extended, which allows the definition of
the unstable mode energy. A systematic small-friction-low-
temperature expansion was then performed in the extended
phase space. The unified treatment for all friction values is
due to the possibility of transition state theory in extended
phase space. The Hamiltonian equivalent for the GLE and
the normal modes were introduced within the context of the
reactive flux method in Ref. [13]. By utilizing the synthesis of
the variational transition state theory approach and the pertur-
bation theory introduced by PGH, the leading term expression
in inverse reduced barrier height expansion for the rate was
given, which is valid for arbitrary time-dependent friction
in the spatial diffusion regime. The finite barrier corrections
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in PGH theory [14] come from the temperature dependence
of energy loss for [15] finite temperature of the bath and
the energy dependence of the energy loss. The finite barrier
corrections significantly improves the accuracy of the theoret-
ical estimates for low to moderate frictions, especially in the
underdamped regime. The failure of finite barrier corrections
to PGH theory for lower barrier heights and higher frictions
is because PGH theory is based on a perturbation expansion
valid for small inverse barrier heights and weak frictions. The
decrease of the energy loss with increasing friction in PGH
theory is unphysical; an ad hoc improved version of PGH
theory was proposed by ignoring this unphysical decrease and
using the maximal value of the energy loss for the moderate
to high friction regime. The corrected PGH theory with finite
barrier corrections brings it into reasonable agreement with
numerically exact results. For the cubic potential and expo-
nential memory friction [16], comparison of PGH theory with
finite barrier corrections with numerically exact simulation
results shows that the finite barrier corrections to depopulation
factor significantly decrease the error of PGH theory for short
memory. In the strong friction long memory time limit, finite
barrier corrections to the depopulation factor in PGH theory
fail, which is probably due to the fundamental assumption
that consecutive traversals of the well are independent of each
other is no longer valid. The failure of finite barrier corrections
for the spatial diffusion factor was also found. A modification
version of PGH theory was proposed in Ref. [17] by choosing
a small parameter in perturbation expansion. The modified
turnover theory is superior to the standard PGH theory in the
moderate to strong damping regimes, as demonstrated by a
cubic potential with Ohmic friction. Considering that the en-
ergy interval of the escaping particle is bounded from below,
a finite barrier correction was introduced. The finite barrier
corrected PGH theory is quite accurate over the whole friction
range up to reduced barrier height 4. For lower reduced barrier
height 2, incorporating the finite barrier correction leads to a
much worse estimate in the underdamped regime. The sup-
posedly small expansion parameter is not small in this case,
so the leading order finite barrier correction provided in this
paper is insufficient.

Two approaches mentioned above suffer from some lim-
itations. The Fokker-Planck equation approach relies on the
existence of a Fokker-Planck equation, which is not always
the case for a generalized Langevin equation with an arbitrary
potential. Moreover, the approach is based on a perturbation
expansion; the leading order correction usually performed in
literature is insufficient for lower barrier heights. The equiv-
alent Hamiltonian approach in perturbation theory for weak
damping; extrapolation to the spatial diffusion regime is ques-
tionable, as mentioned above. In addition, it is difficult to
obtain a simple analytical expression from the finite barrier
correction to the PGH theory. Therefore, simple, accurate, and
widely applicable analytical approaches deserve investigation.

In the traditional reactive flux formulation, an initial equi-
librium distribution is assumed for the trajectories of particles
starting at the top of the barrier. It is not necessary to wait
for low-energy particles (the vast majority of all the particles)
at the bottom of one well to climb up to the top of the
barrier, leading to an enormous numerical savings [18–20].
The method of reactive flux is not only a useful starting

point of numerical methods but also a useful starting point
for deriving analytical results. In the context of the reactive
flux method, the Kramers formula was rederived [18] and the
Grote and Hynes’ rate expression for spatial diffusion regime
was recovered in the presence of non-Markovian friction [21].
The equilibrium state assumption at the top of the barrier is
reasonable for higher potential barriers because the current
is small. It is no longer a good approximation for lower
potential barriers where the current is not small enough. In
the present paper, the motion of the particle is described by a
Langevin equation with a metastable potential. We remove the
starting point of the trajectories into the potential well where
the probability distribution can be viewed as an equilibrium
one; the analytical expression of escape rate is derived in the
context of reactive flux method, which incorporates the finite
barrier corrections in a simple manner. The proposed approach
is probably applicable to various noises with Gaussian distri-
bution.

II. REACTIVE FLUX THEORY FOR FINITE BARRIERS

We consider that a Brownian particle of unit mass moves
in a metastable potential, the dynamics of the particle is de-
scribed by the Langevin equation,

ẍ + γ ẋ(t ) + V ′(x) = ξ (t ), (1)

where ξ (t ) is a zero mean Gaussian white noise that satisfies
the fluctuation-dissipation theorem,

〈ξ (t )ξ (t ′)〉 = 2kBT γ δ(t − t ′), (2)

kB is the Boltzmann constant, T is the temperature of the heat
bath, V (x) is a cubic metastable potential,

V (x) = −ax2 + bx3 + 4a3

27b2
, (3)

and a = 2/3, b = −4/27 are taken in the present paper, such
that the potential barrier height is Vb = 2 and the barrier
top is located at xb = 0. The situation is just the one con-
sidered by Kramers. Kramers replaced the potential in the
vicinity of the barrier with a parabolic potential in the spa-
tial diffusion regime, in which the barrier frequency is given
by ω2

b = −V ′′(x = xb). A current-carrying probability density
was worked out through solving the corresponding Fokker-
Planck equation; the famous Kramers formula is then derived
using the current divide population approach,

k = ω0

2πωb

[√
ω2

b + γ 2/4 − γ /2
]

exp(−Vb/kBT ), (4)

where ω0 is the potential well frequency given by ω2
0 =

V ′′(x = xw ) and xw is the position of the bottom of the po-
tential well.

The Kramers formula was also derived in the context of re-
active flux formulation [18]. The main steps can be outlined in
the following. The potential barrier is replaced by a parabolic
potential barrier in the spatial regime. The trajectories of
the particles start from the barrier top and an initial equilib-
rium distribution is assumed. Parallel to the original reactive
flux formula, the stationary escape rate can be expressed as
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FIG. 1. The original potential (solid line) and the equivalent
paraboloic potential (dashed line). x0 is the starting point of the
trajectories in reactive flux theory for finite barrier.

follows [22]:

k = exp(−Vb/kBT )

Q

∫ ∞

−∞
dv0 exp

(−v2
0

/
2kBT

)
× v0χ (v0, t → ∞), (5)

where Q is the partition function for particles in the potential
well; χ (v0, t ) is called the characteristic function or reactivity
index, it represents the passing probability of a particle with
initial velocity v0 over the barrier top at time t , given by

χ (v0, t ) =
∫ ∞

xb

dx
∫ ∞

−∞
dvW (x, v, t ; xb, v0). (6)

Here W (x, v, t ; xb, v0) denotes the conditional probability
density in phase space that corresponds to an ensemble
of particles starting at (xb, v0) at t = 0. By solving the
corresponding Fokker-Planck equation, W can be obtained
analytically, which is a Gaussian distribution. Substitute it into
Eq. (6) and combine Eqs. (5) and (6)—the Kramers formula
is then derived. Although the initial equilibrium assumption at
the top of the barrier is reasonable for large reduced potential
barrier heights or low temperatures due to a small current, it
is no longer a good approximation for finite barriers, because
the current becomes larger as the temperature increases.

To extend the reactive flux theory to finite barriers, we re-
move the starting point of the trajectories to somewhere x = x0

in the potential well where the probability distribution can
be regarded as an equilibrium one, and replace the potential
barrier from x0 to x1 with a equivalent parabolic barrier in the
spatial diffusion regime (Fig. 1), so an analytical solution can
be obtained. We expect both quasiequilibrium distribution and
equivalent potential barriers are good approximations, there-
fore x0 is so chosen that V (x0) = Vb − kBT , kBT is just the
average energy fluctuation of a quasiequilibrium distribution.
The equivalent potential barrier is given by

Ve(x) = Vb − 1
2� 2

b x2, (7)

�b is the equivalent potential barrier frequency, which will
be determined later. The equivalent potential barrier reflects

the whole shape of the potential in the barrier region, the
continuity at x = x0, x1 is not required. The expression of the
transition probability density in barrier region x ∈ [x0, x1] is
given by [22]

W (x, v, t ; x0, v0) = N1 exp[−α(x − x)2 − β(v − v)2

− γ (x − x)(v − v)], (8)

where N1 is a normalization constant, given by N1 =
1

2π
(4αβ − γ 2)1/2. α = 1/2σ−1

11 , β = 1/2σ−1
22 , γ = σ−1

12 = σ−1
21 ,

σ−1 is the inverse matrix of variance matrix σ , the ele-
ment of the latter is σi j =〈[xi − xi][x j − x j]〉 (x1 = x, x2 = v).
The variances σi j (t ) can be analytically calculated due to
the corresponding Langevin equation is a linear one. In ex-
pression (8), x = x0G11 + v0G12, v = x0G21 + v0G22, and Gi j

is the Green’s function of the corresponding homogeneous
Langevin equation.

The characteristic function χ can be obtained by substitut-
ing expression (8) into Eq. (6) and performing the integration

χ (v0, t ) = 1

2

[
1 + erf

(√
α − γ 2

4β
x

)]
. (9)

The long time limit is given by

χ (x0, v0, t → ∞) = 1

2

[
1 + erf

(√
−λ2

2γ kBT
(λ1x0 + v0)

)]
,

(10)

where λ1, λ2 are two roots of the following characteristic
equation:

λ2 − γ λ − � 2
b = 0, (11)

given by

λ1 =
γ +

√
4� 2

b + γ 2

2
,

λ2 =
γ −

√
4� 2

b + γ 2

2
. (12)

The escape rate k is obtained,

k =
∫ ∞

−∞
dv0v0W (x0, v0)χ (x0, v0, t → ∞)

= 1

n
exp

(
−Vb − 1/2� 2

b x2
0

kBT

)∫ ∞

−∞
dv0v0

× exp

(
− v2

0

2kBT

)
χ (x0, v0, t → ∞), (13)

where n is the population in potential well region x ∈
(−∞, xb], but the time-decay factor has been canceled by the
same factor in the numerator. Performing a partial integration,
we arrive at

k = 1

n
exp

(
−Vb − 1/2� 2

b x2
0

kBT

)
kBT

−λ2

2πγ kBT

∫ ∞

−∞
dv0

× exp

[
− v2

0

2kBT
+ λ2

2γ kBT
(λ1x0 + v0)2

]
. (14)
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Performing the Gaussian integration over v0, we arrive at a
similar formula as Kramers:

k = 1

n
exp

(
− Vb

kBT

)
kBT

�b
|λ2|

= kBT

n�b

[√
� 2

b + γ 2/4 − γ /2
]

exp

(
− Vb

kBT

)
. (15)

The population n can be expressed as

n =
∫ x0

−∞
dx

∫ ∞

−∞
dv0

1

Q
exp

(
− v2

0

2kBT

)
exp

(
−V (x)

kBT

)

+
∫ xb

x0

dx
∫ ∞

−∞
dv0Ps(x, v0), (16)

where Ps is the remarkable Kramers stationary probability
density [1,23]. Because the second term in above expression is
small, the Kramers stationary probability density for high bar-
riers is used for simplicity. In contrast to applying equilibrium
probability density in the usual calculation of population, a
more realistic expression is used here, and the difference is ob-
vious for lower barrier heights (for example, when the reduced
barrier height Vb/kT = 2, 2.5, the difference is about 5.2%
and 2.3%.). When T → 0, the equivalent barrier frequency
�b tends to ωb, and n can be integrated out using harmonic
potential well approximation, such that the escape rate expres-
sion (15) naturally reduces to the Kramers formula. The finite
barrier correction comes from two aspects: One is that the
original barrier frequency ωb defined by ω2

b = −V ′′(x = xb) is
replaced by an equivalent barrier frequency �b; another is that
the population n in Kramers approach is corrected in terms of
expression (16).

The equivalent potential barrier frequency can be deter-
mined by two schemes. One is to let the equivalent potential
approach the original potential in the barrier region—the
equivalent potential barrier frequency is provided by the min-
imization of the following average:

I =
∫ x1

x0

dx[V (x) − Ve(x)]2Peq(x), (17)

where Peq(x) is the Boltzmann distribution normalized in the
barrier region, in which the potential Ve(x) is used. The equiv-
alent potential Ve(x) is obtained specifically as follows: The
straight line V = Vb − kBT crosses the original potential line
at x0 and x1, the potential is approximated by a parabolic po-
tential in region [x0, x1] with the top at ( x0+x1

2 ,Vb) (see Fig. 1).
The integration (17) can be worked out analytically using an
error function with an imaginary variable, and location of
the minimal value can be determined numerically. Another
scheme is to let the steady state Fokker-Planck equation with
equivalent potential approach the steady-state Fokker-Planck
equation with original potential, the equivalent barrier fre-
quency is provided by the minimization of the following
average:

I =
∫ x1

x0

dx
∫ ∞

−∞
dv

[(
L̂FP − L̂e

FP

)
Peq(x, v)

]2
Peq(x, v), (18)

where L̂FP, L̂e
FP are Fokker-Planck operators corresponding

to original potential and equivalent potential, respectively,
Peq(x, v) is the equilibrium distribution in phase space. Two
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FIG. 2. The escape rate as a function of damping, where Vb = 2,
(a) T = 0.4, � 2

b = 1.286, (b) T = 0.6, � 2
b = 1.260, (c) T = 0.8,

� 2
b = 1.231, (d) T = 1, � 2

b = 1.194. The solid lines are theoretical
results, the dashed lines are numerical simulation results, and the
dotted lines are the original Kramers theoretical results.

schemes are in essential approaching the original potential
with an equivalent parabolic potential in barrier region. For
the parameters used in the present paper, numerical results
show that two schemes produce almost the same equivalent
barrier frequency. The first scheme relies on the existence of
a Fokker-Planck equation and the second scheme is universal,
which makes the proposed method widely applicable.

III. COMPARISON WITH NUMERICAL SIMULATIONS

To examine the theoretical results obtained above, we sim-
ulate the Langevin equation using the second-order stochastic
Runge-Kutta algorithm. We use the number of test particles
N = 2×105 and time step dt = 5×10−4 and dt = 2×10−4

(for larger damping) in the simulations. The results are stable
for time steps less than such quantities. The simulation time
is long enough to ensure the number of escaped particles is
larger than 3×104. The particles are initially located at the
bottom of the potential well x = xw with zero velocity. We
use a dimensionless system of units in the simulations. The
potential barrier height is taken as Vb = 2, the mass of the
Brownian particle is m = 1. The temperature is measured in
energy units (kB = 1). Figure 2 exhibits the dependence of the
Kramers rate on the frictions for different temperatures. The-
oretical results are also plotted in the same figure with solid
lines. The equivalent barrier frequency in analytical expres-
sion (15) is almost the same for two schemes (the relative error
is less than 1%). By using the potential approach scheme,
we have � 2

b = 1.286(T = 0.4), � 2
b = 1.260(T = 0.6), � 2

b =
1.231(T = 0.8), and � 2

b = 1.194(T = 1). Figure 2 indicates
that the numerical simulation results confirm the proposed
theoretical method until lower barrier heights (the minimal
reduced barrier height in the figure is Vb/kBT = 2). The an-
alytical results agree with the simulation results satisfactorily
as long as the escape dynamics is dominated by spatial dif-
fusion across the barrier top, as specified by γ > ωb. The
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FIG. 3. The logarithm of escape rate as a function of inverse
temperature. The circles are theoretical results, the triangles are
numerical simulation results, where Vb = 2, γ = 3. The straight line
is used to guide the eyes.

maximal relative error is about 2% for the applied parameters
in the spatial diffusion regime. Comparison of our theoreti-
cal results with simulation results indicates that the accuracy
of the theoretical results is not inferior to the PGH the-
ory [17]. In particular, it is superior to the PGH theory up
to the second perturbation theory [17] and the perturbation
theory based on the Fokker-Planck equation [10] for lower
barrier heights, where the expansion parameter is no longer
small.

The dependence of escape rate on temperature is shown in
Fig. 3. The theoretical results match well with the simulation

results. Although the equivalent barrier frequency is temper-
ature dependent, the Arrhenius law is still fulfilled for not
too low barriers due to the population also being temperature
dependent. The theoretical results can predict the deviation of
Arrhenius law in lower barriers. The deviation is visible when
the reduced barrier height reduces to 2, as shown in Fig. 3.

IV. SUMMARY

The purpose of the present paper is to develop a widely
applicable analytical approach to incorporate finite barrier
correction in the escape rate in a simple way. The reactive
flux theory for finite barrier is proposed. We chose the starting
point of the trajectories of Brownian particles inside the po-
tential well, and replace the original potential barrier with an
equivalent parabolic barrier. For the situation that a Brownian
particle moves in a cubic metastable potential and is subjected
to Gaussian white noise, the theoretical results match well
with the simulation results in the spatial diffusion regime. The
equivalent barrier assumption restricts the method to spatial
diffusion regime because of the potential shape sensitivity for
small damping. The equivalent potential barrier frequency is
determined by two schemes: the Fokker-Planck equation ap-
proach and the potential approach. They yield almost the same
frequency. The calculation of population is more realistic by
considering the real probability distribution in the potential
well. In contrast to the requirement that a Fokker-Planck equa-
tion is available in an arbitrary potential for some noise, only
needed is the Fokker-Planck equation in a quadratic potential
for this noise. The latter can be obtained for an arbitrary noise
with Gaussian distribution [24] and its analytical solution is
available [23]. If we think that the potential approach is ap-
plicable to an arbitrary Gaussian noise, the equivalent barrier
frequency can be calculated in a simple manner and this makes
the theoretical method applicable to a broad scope of noises.
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